集美学校2013年中考数学模拟试题一

合集下载

2013厦门中考数学试题(含答案)

2013厦门中考数学试题(含答案)

2013年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 2.已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°.3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体. 4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是 A .1. B .15. C .16. D .0.5.如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B =A .150°.B .75°.C .60°.D .15°. 6.方程2x -1=3x的解是A .3.B .2.C .1.D .0.7.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4). 二、填空题(本大题有10小题,每小题4分,共40分)8.-6的相反数是 .9.计算:m 2²m 3= .10.式子x -3在实数范围内有意义,则实数x 的取值范围是 .11.如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,图3E D CBA图2俯视图左视图主视图图1DE =2,则BC = .12则这些运动员成绩的中位数是 米. 13.x 2-4x +4= ( )2.14.已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 15.如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.16.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保 甲工人的安全,则导火线的长要大于 米. 17.如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) .三、解答题(本大题有9小题,共89分)18.(本题满分21分)(1)计算:5a +2b +(3a —2b );(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上 画出△ABC ,并画出与△ABC 关于原点O 对称的图形;(3)如图7,已知∠ACD =70°,∠ACB =60°,∠ABC =50°. 求证:AB ∥CD .19.(本题满分21分)(1求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);D C BA图7图4F E O DCA(2)先化简下式,再求值:2x 2+y 2x +y - x 2+2y 2x +y ,其中x =2+1, y =22—2; (3)如图8,已知A ,B ,C ,D 是⊙O 上的四点, 延长DC ,AB 相交于点E .若BC =BE . 求证:△ADE 是等腰三角形.20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为“向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.21.(本题满分6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间 x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.23.(本题满分6分)如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于 点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH . 求证:∠ABH =∠CDE .图9E DC BAH G FE DC图11A图824.(本题满分6分)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.25.(本题满分6分)如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心, r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0, x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2013年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)图12二、填空题(本大题共10小题,每题4分,共40分)8. 6 9. m510.x≥3 11. 612. 1.6513. x—214.m>115. 3 16. 1.317.(1,3)三、解答题(本大题共9小题,共89分)18.(本题满分21分)(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b……………………………3分=8a. ……………………………7分(2)解:正确画出△ABC……………………………10分正确画出△DEF ……………………………14分(3)证明1:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°. …………16分∵∠ABC=50°,∴∠BCD+∠ABC=180°. …………18分∴AB∥CD. …………21分证明2:∵∠ABC=50°,∠ACB=60°,∴∠CAB=180°—50°—60°=70°. ………………16分∵∠ACD=70°,∴∠CAB=∠ACD. ………………18分∴AB∥CD. ………………21分19.(本题满分21分)(1)解:20³0.15+5³0.20+10³0.1820+5+10……………………………5分≈0.17(公顷/人). ……………………………6分∴这个市郊县的人均耕地面积约为0.17公顷. ……………………7分(2)解:2x2+y2x+y—2y2+x2x+y=x 2—y2x +y……………………………9分 =x -y . ……………………………11分当 x =2+1, y =22—2时,原式= 2+1-(22—2) ……………………………12分=3—2. ……………………………14分(3)证明: ∵BC =BE ,∴∠E =∠BCE . ……………………………15分∵ 四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°. ……………17分∵∠BCE +∠DCB =180°,∴∠A =∠BCE . ………………18分 ∴∠A =∠E . ………………19分∴ AD =DE . ………………20分 ∴△ADE 是等腰三角形. ………………21分 20.(本题满分6分)解: 不成立 ……………………………1分 ∵ P(A)=812=23, ……………………………3分又∵P(B) =412=13, ……………………………5分而12+13=56≠23.∴ 等式不成立. ……………………………6分 21.(本题满分6分)证明1:∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴ AD BC =AE EC =12. ……………………………2分即:BC =2AD . ………………3分 ∴54=12³365( AD +2AD )∴AD =5. ………………4分 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ……………………………5分 ∴∠AED =90°.∴ AC ⊥BD . ……………………………6分证明2: ∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴DE BE =AEEC . ……………………………2分即3BE =48. ∴BE =6. ……………………………3分过点D 作DF ∥AC 交BC 的延长线于点F .由于AD ∥BC ,∴四边形ACFD 是平行四边形.∴DF =AC =12,AD =CF . ∴BF =BC +AD . ∴54=12³365³BF .∴BF =15. ……………………………4分 在△DBF 中,∵DB =9,DF =12,BF =15,∴DB 2+DF 2=BF 2. ……………………………5分 ∴∠BDF =90°.∴DF ⊥BD .∴AC ⊥BD . ……………………………6分 22.(本题满分6分)解1: 当0≤x ≤3时,y =5x . ……………………………1分 当y >5时,5x >5, ……………………………2分 解得 x >1.∴1<x ≤3. ……………………………3分当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y >5时,-53x +20>5, ……………………………5分解得 x <9.FABCD E∴ 3<x <9. ……………………………6分 ∴容器内的水量大于5升时,1<x <9 .解2: 当0≤x ≤3时,y =5x . ……………………………1分 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ……………………………2分 ∴ 1<x ≤3. ……………………………3分当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小,∴当y >5时,有x <9. ……………………………5分 ∴3<x <9. ……………………………6分∴容器内的水量大于5升时,1<x <9 .23.(本题满分6分)证明1:∵四边形ABCD 是正方形,∴∠F AD ==90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF . …………………1分∵AG =DE +HG ,AG =AH +HG , ∴ DE =AH . ……………………………2分 又AD =AB ,∴ △ADE ≌△ABH . ……………………………3分 ∴ ∠AHB =∠AED =90°.∵∠ADC ==90°, ……………………………4分 ∴ ∠BAH +∠ABH =∠ADF +∠CDE . ……………………………5分 ∴ ∠ABH =∠CDE . ……………………………6分 24.(本题满分6分)解: ∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).B G H FED CA∵点B (p ,q )在直线y =-x +m +n 上, ……………………………1分 ∴q =-p +m +n . ……………………………2分 又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m . 即p -m =p -m pm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ……………………………3分 ∵ nm =1,∴ p =n ,q =m . ……………………………4分 ∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12. ……………………………5分∵S =12( p +q ) p=12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大.12<S ≤58. ……………………………6分25.(本题满分6分)证明一:∵︵DE 的长是3π3,∴2πr 360²60=3π3.∴ r =3. ……………………1分作BN ⊥OA ,垂足为N .∵四边形OABC 是菱形, ∴AB ∥CO .∵∠O =60°,∴∠BAN =60°,∴∠AB N =30°.设NA =x ,则AB =2x ,∴ BN =3x分 ∵M 是OA 的中点,且AB =OA ,∴AM=x. ……………………………3分在Rt△BNM中,(3x)2+(2x)2=(7)2,∴x=1,∴BN=3. ……………………………4分∵BC∥AO,∴点O到直线BC的距离d=3. ……………………………5分∴d=r.∴直线BC与⊙O相切. ……………………………6分证明二:∵︵DE的长是3π3,∴2πr360²60=3π3. ∴ r=3. ……………………1分延长BC,作ON⊥BC,垂足为N.∵四边形OABC是菱形∴BC∥AO,∴ON⊥OA.∵∠AOC=60°,∴∠NOC=30°.设NC=x,则OC=2x,∴ON=3x……………………………2分连接CM,∵点M是OA的中点,OA=OC,∴OM=x. ……………………………3分∴四边形MONC是平行四边形.∵ON⊥BC,∴四边形MONC是矩形. ……………………………4分∴CM⊥BC. ∴CM=ON=3x.在Rt△BCM中,(3x)2+(2x)2=(7)2,解得x=1.∴ON=CM=3. ……………………………5分∴直线BC与⊙O相切.……………………………6分26.(本题满分11分)(1)解:不是……………………………1分解方程x2+x-12=0得,x1=-4,x2=3. ……………………………2分x1+x2=4+3=2³3.5. ……………………………3分∵3.5不是整数,∴方程x2+x-12=0不是“偶系二次方程”.…………………………4分(2)解:存在…………………………6分∵方程x2-6x-27=0,x2+6x-27=0是“偶系二次方程”,∴假设c=mb2+n. …………………………8分当b=-6,c=-27时,有-27=36m+n.∵x 2=0是“偶系二次方程”,∴n =0,m =- 34. …………………………9分 即有c =- 34b 2. 又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =- 34³32=-274. ∴可设c =- 34b 2. …………………………10分 对任意一个整数b ,当c =- 34b 2时, ∵△=b 2-4c=4b 2.∴ x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”. …………………………11分。

2013年厦门市中考数学试卷-答案

2013年厦门市中考数学试卷-答案
【考点】二次根式有意义的条件
11.【答案】6
【解析】∵ ,∴ ,∴ ,即 解得: .
【提示】根据 ,可判断 ,利用对应边成比例的知识可求出BC.
【考点】相似三角形的判定与性质
12.【答案】
【解析】按从小到大的顺序排列后,最中间的数是 ,所以中位数是 米.
【提示】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
4.【答案】C
【解析】∵任意抛掷一个均匀的正方体骰子,朝上的点数总共会出现6种情况,且每一种情况出现的可能性相等,而朝上一面的点数为5的只有一种,∴朝上一面的点数为5的概率是 .
【提示】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.
二者的比值就是其发生的概率的大小.
【考点】概率公式
,∵事件B为“向上一面的数字是3的整数倍”,
∴符合要求的数有:3,6,9,12一共有4个,则 ,
∵ ,

【提示】让向上一面的数字是2的倍数或3的倍数的情况数除以总情况数即为事件A所求的概率,进而得出事件B的概率,进而得出答案.
【考点】概率公式
21.【答案】见解析
【解析】证明:∵ ,
∴ ,
∴ ,
∵ ,
二、填空题
8.【答案】6
【解析】根据相反数的概念,得 的相反数是 .
【提示】求一个数的相反数,即在这个数的前面加负号.
【考点】相反数
9.【答案】
【解析】
【提示】根据同底数幂相乘,底数不变指数相加进行计算即可得解.
【考点】同底数幂的乘法
10.【答案】
【解析】根据题意得 ,解得
【提示】根据被开方数大于等于0列式进行计算即可求解.

2013年历年初三数学中考第一次模拟试卷及答案

2013年历年初三数学中考第一次模拟试卷及答案

2013年第一次中考模拟试卷初三数学(问卷)(考试时间100分钟 满分120分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案 1、下列运算正确的是( ▲ )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2、太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( ▲ )千瓦.(用科学计数法表示,保留2个有效数字)A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯3、一个用于防震的L 形包装塑料泡沫如图所示,则该物体的俯视图是( ▲ )4、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( ▲ ) A . B . C . D .15、人民币1993年版的一角硬币正面图案中有一个正九边形, 如果设这个正九边形的半径为R , 那么它的周长是( ▲ )(A )9Rsin 20° (B )9Rsin 40° (C )18Rsin 20° (D )18Rsin 40° 6、希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( ▲ )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%D .扇形图中,公务员部分所对应的圆心角为72° 7、已知m ,n 为实数,则解可以为 –3 < x <3的不等式组是 ( ▲ )⎩⎨⎧<<11.nx mx A ⎩⎨⎧><11m .nx x B ⎩⎨⎧<>11.nx mx C ⎩⎨⎧>>11.nx mx D 8、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数y =(x >0)和y =(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( ▲ )A .∠POQ 不可能等于90°B .=C .这两个函数的图象一定关于x 轴对称;D .△POQ 的面积是(|k 1|+|k 2|)9、如图,菱形ABCD 和菱形ECGF 的边长分别为3和4,∠A =120°,则图中阴影部分的面积( ▲ ) A .3 B .349C .32D .32 10、如图,已知点A (12,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =8时,这两个二次函数的最大值之和等于( ▲ )A .5B . 27C .8D .6第8题图 第10题图第9题图二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.数据a ,4,2,5,3的平均数为b ,且a 和b 是方程2430x x -+=的两个根,则b = . 12.某工厂2010年、2011年、2012年的产值连续三年呈直线上升,具体数据如下表:则2011年的产值为 ▲ .13.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角 三角板的 斜边AB 上,BC 与DE 交于点M .如果∠ADF =100°,那么∠BMD 为 ▲ 度. 14.已知关于x 的方程522=-+x mx 的解是正数,则m 的取值范围为 ▲ . 15、如图,已知点A (1,0)、B (7,0),⊙A 、⊙B 的半径分别为1和2,当⊙A 与⊙B 相切时,应将⊙A 沿x 轴向右平移 ▲ 个单位.16、如图,将正△ABC 分割成m 个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n 个 边长为1的小三角形,若941=n m ,则△ABC 的周长是 ▲ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。

2013年厦门市中考数学试卷

2013年厦门市中考数学试卷

2013年福建省厦门市中考数学一、选择题(共7小题;共35分)1. 下列计算正确的是 ( )A. B. C. D.2. ,则的补角是 ( )A. B. C. D.3. 如图是下列一个立体图形的三视图,则这个立体图形是 ( )A. 圆锥B. 球C. 圆柱D. 正方体4. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为的概率是 ( )A. B. C. D.5. 如图所示,在中,,,则 ( )A. B. C. D.6. 方程的解是 ( )A. B. C. D.7. 在平面直角坐标系中,将线段向左平移个单位,平移后,点,的对应点分别为点,.若点,,则点,的坐标分别是 ( )A. ,B. ,C. ,D. ,二、填空题(共10小题;共50分)8. 的相反数是.9. 计算:.10. 若在实数范围内有意义,则的取值范围是.11. 如图,在中,,,,,则 = .12. 在一次中学生田径运动会上,参加男子跳高的名运动员成绩如下表则这些运动员成绩的中位数是米.13. ()14. 已知反比例函数的图象的一支位于第一象限,则常数的取值范围是.15. 如图平行四边形的对角线,相交于点,点,分别是线段,的中点,若厘米,的周长是厘米,则厘米.16. 某采石场爆破时,点燃导火线的甲工人要在爆破前转移到米以外的安全区域.甲工人在转移过程中,前米只能步行,之后骑自行车.已知导火线燃烧的速度为米秒,步行的速度为米秒,骑车的速度为米秒.为了确保甲工人的安全,则导火线的长要大于米.17. 如图,在平面直角坐标系中,点是原点,点,点在第一象限且,点是线段的中点,点在线段上.若点和点关于直线对称,则点的坐标是(,).三、解答题(共9小题;共117分)18. (1)计算:;(2)在平面直角坐标系中,已知点,,.请在图1上画出,并画出与关于原点对称的图形;(3)如图2所示,已知,,.求证:.19. (1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:(2)先化简,再求值:,其中,;(3)如图,已知,,,是上的四点,延长,相交于点,若.求证:是等腰三角形.20. 有一个质地均匀的正面体,个面上分别写有这个整数(每个面只有一个整数且互不相同).投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,记事件为“向上一面的数字是的整数倍”,请你判断等式是否成立,并说明理由.21. 如图,在梯形中,,对角线,相交于点.若,,,梯形的高是,面积是.求证:.22. 一个有进水管与出水管的容器,从某时刻开始的分内只进水不出水,在随后的分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示.当容器内的水量大于升时,求时间的取值范围.23. 如图所示,在正方形中,点是边上任意一点,,垂足为,延长交于点.在线段上取点,使得,连接.求证:.24. 已知点是平面直角坐标系的原点,直线与双曲线交于两个不同的点和.直线与轴交于点,求的面积的取值范围.25. 如图所示,已知四边形是菱形,,点是边的中点,以点为圆心,为半径作分别交,于点,,连接.若,的长是.求证:直线与相切.26. 若,是关于的方程的两个实数根,且(是整数),则称方程为“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.(1)判断方程是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数,是否存在实数,使得关于的方程是“偶系二次方程”,并说明理由.答案第一部分1. A2. B3. C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.4. C5. B【解析】在中,,,是等腰三角形,;又,(三角形内角和定理).6. A 【解析】去分母得解得经检验是分式方程的解.7. D 【解析】线段向左平移个单位,点,,点,的坐标分别是,.第二部分8.9.10.11.12.13.14.15.【解析】提示:由题意知,,.16.17. ,【解析】有题意可知,为的中点,.,,, .点 和点 关于直线 对称, 平分 , , , . 第三部分18. (1)(2) 如图所示: 与 关于原点 对称;(3) , , , , .19. (1) 甲市郊县所有人口的人均耕地面积是(公顷).(2)原式当 , 时, 原式(3) 因为 , , , 四点共圆, 所以 , 因为 , 所以 , 所以 , 所以 ,即是等腰三角形. 20. 不成立,理由:投掷这个正面体一次,记事件为“向上一面的数字是或的整数倍”,符合要求的数有,,,,,,,一共个,则,事件为“向上一面的数字是的整数倍”,符合要求的数有,,,一共有个,则,,.21. ,,,,,,,梯形,,过作交延长线于,则四边形是平行四边形,,,在中,,,,,,.22. ①时,设,则,解得,;②时,设,函数图象经过点,,解得.当时,由得,,由得,,当容器内的水量大于升时,时间的取值范围是.23.在正方形中,,,,,又,,在和中,,,,,,,,在和中,,,,,,.24. 如图,直线与轴交于点,点坐标为,点坐标为,则为等腰直角三角形,点与点关于直线对称,则点坐标为,,点在双曲线上,,即..,,,.25. 如图,过点作于,过点作于,则四边形为矩形,.设菱形的边长为,则.菱形中,,,,,.在中,,,,,,即,解得,.的长为,,,即圆心到直线的距离等于圆的半径,直线与相切.26. (1)不是,解方程得,..不是整数,不是“偶系二次方程.(2)存在.理由如下:和是偶系二次方程,假设,当,时,.是偶系二次方程,时,,.是偶系二次方程,当时,.可设.对于任意一个整数,时,,,,.,是整数,对于任何一个整数,时,关于的方程是“偶系二次方程”.。

2013年初三数学一模试题答案 (1)

2013年初三数学一模试题答案 (1)

2012-2013学年度第二学期广东肇庆中学九年级一模考试数学科试卷答案ABCCDBDADB11.x=5 12. 3101015.7⨯ 13. 12-=x y 14. 2)1(100m - 15.2 16.3/217.解:原式672(1)122-=---++ (4分) 76122=··············································································· (5分) 2=. 18.解:原式222()()2a b ab a b b a b a a b ab ⎡⎤++=-÷⎢⎥--⎣⎦2222()()a b ab ab a b a b -=-+ ······························································ (2分) 2()()2()()a b a b ab ab a b a b +-=-+ 2a b=+. ·············································································· (4分) 当13a =-+,13b =--时,原式212==--. 19.设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品.依题意有220100100410x x -+=-. ······························································ (3分) 整理得2653000x x -+=.解得5x =或60x =. ··············································································· (5分)5x =时,1050x -=-<,5x ∴=舍去.60x ∴=.答:改进操作方法后每天生产60件产品.20作图见答案13题图,答案13题图A CB D E M··························································· 2分(2)ABC △是等边三角形,D 是AC 的中点,BD ∴平分ABC ∠(三线合一),2ABC DBE ∴∠=∠. ························································································· 4分CE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠,2ACB E ∴∠=∠. ····························································································· 5分又ABC ACB ∠=∠,22DBC E ∴∠=∠,DBC E ∴∠=∠,BD DE ∴=.又DM BE ⊥,BM EM ∴=.21.(1)解:掷两枚硬币出现的情况是(正,正)、(正,反)、(反,正)、(反,反),故出现两枚硬币都朝上的概率是14; ······················································································· 3分 (2)25,125,75 ·························································································· 6分(3)略(只要有理就行)22. 解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ····························· 1分在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ················ 2分CD AC ∴=·sin 30CAD ∠=·sin 60153=°.AD AC =·cos 30CAD ∠=·cos 60°=15.又在Rt CDB △中, 22270BC BD BC CD ==,-, ()227015365BD ∴=-=.23. 1)证明:∵C 是AD 的中点,∴AC CD =.∴CAD ABC ∠=∠.∵AB 是O 直径,∴90ACB ∠=.∴90CAD AQC ∠+∠=.又CE AB ⊥,∴90ABC PCQ ∠+∠=.∴AQC PCQ ∠=∠.∴在PCQ △中,有PC PQ =. ……1分∵CE ⊥直径AB ,∴AC AE =.∴AE CD =. CBA D∴CAD ACE ∠=∠.∴在APC △中,有PA PC =. ……1分 ∴PA PC PQ ==.∴P 是ACQ △的外心. ……1分(2)解:∵CE ⊥直径AB 于F ,∴在Rt BCF △中,由3tan 84CF ABC CF BF ∠===,, 得44328333BF CF ==⨯=. ……1分 ∴由勾股定理,得222232408()33BC CF BF =+=+=. ∵AB 是O 直径,∴在Rt ACB △中,由340tan 43AC ABC BC BC ∠===,, 得334010443AC BC ==⨯=. ……1分 易知Rt ACB △∽Rt QCA △,∴2AC CQ BC =.∴2210154023AC CQ BC ===. ……1分 (3)证明:∵AB 是O 直径,∴90ACB ∠=.∴90DAB ABD ∠+∠=.又CF AB ⊥,∴90ABG G ∠+∠=.∴DAB G ∠=∠.∴Rt AFP △∽Rt GFB △.∴AF FP FG BF=,即AF BF FP FG =. ……1分 易知Rt ACF △∽Rt CBF △, ∴2FC AF BF =.(或由射影定理得) ……1分 ∴2FC FP FG =. ……1分 由(1),知PC PQ =,∴FP PQ FP PC FC +=+=.∴2()FP PQ FP FG +=. ……1 24.(1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-.228y x x ∴=-++2(1)9x =--+,顶点(19)D , ····························································································· (2分) (2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+,它与x 轴的夹角为45,设OB 的中垂线交CD 于H ,则(210)H ,. 则10PH t =-,点P 到CD 的距离为221022d PH t ==-. 又22224PO t t =+=+. ···································································· (4分) 224102t t ∴+=-. 平方并整理得:220920t t +-=1083t =-±.∴存在满足条件的点P ,P 的坐标为(21083)-±,. ··································· (6分) (3)由上求得(80)(412)E F -,,,. ①若抛物线向上平移,可设解析式为228(0)y x x m m =-+++>.当8x =-时,72y m =-+.当4x =时,y m =. 720m ∴-+≤或12m ≤. 072m ∴<≤. ··················· (8分) ②若抛物线向下移,可设解析式为228(0)y x x m m =-++->.由2288y x x m y x ⎧=-++-⎨=+⎩,有20x x m -+=. 140m ∴=-≥△,104m ∴<≤. ∴向上最多可平移72个单位长,向下最多可平移14个单位长. ······················· (10分)A B C O x y D F H PE25.解:(1) ∵BC AD //, ∴DBC ADB ∠=∠.∵2==AB AD ,∴ADB ABD ∠=∠.∴ABD DBC ∠=∠.∵︒=∠90ABC .∴︒=∠45PBC . ················································ (1分) ∵ABAD PC PQ =,AB AD =,点Q 与点B 重合,∴PC PQ PB ==. ∴︒=∠=∠45PBC PCB . ······························································ (1分) ∴︒=∠90BPC . ········································································· (1分) 在Rt △BPC 中,22345cos 3cos =︒⨯=⋅=C BC PC . ···················· (1分) (2) 过点P 作BC PE ⊥,AB PF ⊥,垂足分别为E 、F . ··················· (1分)∴︒=∠=∠=∠90BEP FBE PFB .∴四边形FBEP 是矩形.∴BC PF //,BF PE =.∵BC AD //,∴AD PF //.∴ABAD BF PF =. ∵23=AD ,2=AB ,∴43=PE PF . ··············································· (1分) ∵x QB AB AQ -=-=2,3=BC ,∴22APQ x S PF -=△,32PBC S PE =△. ∴42x S S PBC APQ -=∆∆,即42x y -= . ················································ (2分) 函数的定义域是0≤x ≤87. ··························································· (1分) (3) 过点P 作BC PM ⊥,AB PN ⊥,垂足分别为M 、N .易得四边形PNBM 为矩形,∴BC PN //,BN PM =,︒=∠90MPN .∵BC AD //,∴AD PN //.∴AB AD BN PN =.∴ABAD PM PN =. ·············· (1分) ∵AB AD PC PQ =,∴PCPQ PM PN =. ······················································ (1分) 又∵︒=∠=∠90PNQ PMC ,∴Rt △PCM ∽Rt △PQN . ··············· (1分) ∴QPN CPM ∠=∠. ··································································· (1分) ∵︒=∠90MPN ,∴︒=∠=∠+∠=∠+∠90MPN QPM QPN QPM CPM , 即︒=∠90QPC . ········································································· (1分)。

2012-2013学年湖北省黄冈市麻城市集美学校九年级(上)期末数学模拟试卷

2012-2013学年湖北省黄冈市麻城市集美学校九年级(上)期末数学模拟试卷

九年级(上)期末数学模拟试卷一.选择题(每小题3分,共24分)1.(3分)(2011•安徽模拟)下面图形:平行四边形,正三角形,正方形,等腰梯形,正六边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为()A.B.C.D.2.(3分)(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.73.(3分)(2012秋•麻城市校级期末)若关于x一元二次方程(m+2)x2+5x+m2+3m+2=0的常数项为0,则m的值等于()A.﹣1 B.﹣2 C.﹣1或﹣2 D.04.(3分)(2008•内江)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,且AB>AD+BC,AB是⊙O的直径,则直线CD与⊙O的位置关系为()A.相离 B.相切 C.相交 D.无法确定5.(3分)(2009•尤溪县校级自主招生)在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°(如图),则r与R之间的关系是()A.R=2r B.R=r C.R=3r D.R=4r6.(3分)(2012•深圳模拟)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P 的半径的比为()A.5﹕3 B.4﹕1 C.3﹕1 D.2﹕17.(3分)(2006•眉山)如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°8.(3分)(2008•天门)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2012•深圳模拟)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则点(a,b)在第象限.10.(3分)(2012•深圳模拟)若式子有意义,则x的取值范围是.11.(3分)(2008秋•海淀区期末)若关于x的一元二次方程x2+3x﹣(m﹣2)=0没有实数根,则m的取值范围是.12.(3分)(2012•深圳模拟)若⊙O1和⊙O2相交于点A、B,且AB=24,⊙O1的半径为13,⊙O2的半径为15,则O1O2的长为或.(有两解)13.(3分)(2014•淮阴区校级模拟)如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为cm2.14.(3分)(2012秋•麻城市校级期末)在一所4000人的学校随机调查了100人,其中有24人上学之前没有吃过早餐,则在这所学校里随便问一个人,上学之前吃过早餐的概率是.15.(3分)(2012秋•麻城市校级期末)一个直角三角形的两条边的长是方程x2﹣14x+48=0的两个根,则此直角三角形的周长为.16.(3分)(2009•黄石模拟)如图,将一个含有45°角的三角尺绕顶点C顺时针旋转135°后,顶点A所经过的路线与顶点B所经过的路线长的比值为.三、解答题(共72分)17.(8分)(2012秋•麻城市校级期末)(1)化简:a2+3a﹣(2)解方程:4x2﹣4x+1=x2+6x+9.18.(8分)(2009•武汉)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.19.(8分)(2011秋•宜昌期末)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若3(x1+x2)=x1x2,求k的值.20.(8分)(2011•永春县质检)如图,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)P为BA延长线上的一点,当PC与⊙O相切时,求PO的长.21.(8分)(2014•昌宁县二模)将背面相同,正面分别标有1,2,3,4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取两张卡片,求卡片正面上的数字之和大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成两位数恰好是3的倍数的概率(请用树状图或列表法加以说明).22.(8分)(2012秋•芜湖期末)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?23.(12分)(2012秋•麻城市校级期末)如图,AB是圆O的直径,AD、BC都垂直于AB,AD=13cm,BC=16cm,DC=5cm,点P、Q是动点,点P以1cm/s的速度由A向D运动,同时Q从C向B以2cm/s的速度运动,当其中一点到达时,另一点同时停止运动.(1)当P从A向D运动t秒时,四边形PQCD的面积S与t的关系式;(2)是否存在时间t,使得梯形PQCD是等腰梯形?若存在求出时间t,若不存在说明理由;(3)是否存在时间t,使得PQ与圆相切?24.(12分)(2010秋•鄂州期末)如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线第四象限上一动点,四边形OEAF是以OA为对角线的平行四边形,求▱OEAF的面积S与x之间的函数关系式,并求出自变量的取值范围;(3)若S=24,试判断▱OEAF是否为菱形;(4)若点E在(1)中的抛物线上,点F在对称轴上,以O、E、A、F为顶点的四边形能否为平行四边形?若能,求出点E、F的坐标;若不能,请说明理由.(第(4)问不写解答过程,只写结论)九年级(上)期末数学模拟试卷参考答案一.选择题(每小题3分,共24分)1.A 2.C 3.A 4.C 5.C 6.D 7.C 8.C二、填空题(共8小题,每小题3分,满分24分)9.三10.-≤x< 11.m12.144 13.112π14.15.24或14+ 16.:1三、解答题(共72分)17.18.19.20.21.22.23.24.。

2013年厦门市中考数学试卷及答案

2013年厦门市中考数学试卷及答案
个面上只有一个整数且每个面上的整数互不相同)•投掷这个正12面体一次,记事件A为
“向上一面的数字是2或3的整数倍”,记事件B为“向上一面的数字是3的整数倍”,
1
请你判断等式“P(A)=2+P(B)”是否成立,并说明理由•
21.(本题满分6分)如图9,在梯形ABCD中,AD//BC,对角线AC,BD相交于点E,若AE=4,CE=8,DE=3,
2013年厦门市初中毕业及高中阶段各类学校招生考试
数学参考答案及评分标准
、选择题(本大题共7小题,每小题3分,共21分)
题号
1
2
3
4
5
6
7
选项
A
B
C
C
B
A
D
二、填空题(本大题共10小题,每题4分,共40分)
5
8.69.m10.x>311.6
12. 1.6513.x—214.m>1
15.316.1.317.(1,.3)
/ABC=50°.求证:AB/CD.
19.(本题满分21分)
(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:
郊县
人数/万
人均耕地面积/公顷
A
20
0.15
B
5
0.20
C
10
0.18
求甲市 郊县所有人口的人均耕地面积(精确到0.01公顷);
(2)先化简下式,再求值:
20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1〜12这12个整数(每
梯形ABCD的高是 西,面积是54.求证:AC丄BD.
5
22.(本题满分6分)一个有进水管与出水管的容器, 从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图10所示.

集美区近年年中考数学模拟试卷(含解析)(1)(2021年整理)

集美区近年年中考数学模拟试卷(含解析)(1)(2021年整理)

福建省厦门市集美区2016年中考数学模拟试卷(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省厦门市集美区2016年中考数学模拟试卷(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省厦门市集美区2016年中考数学模拟试卷(含解析)(1)的全部内容。

2016年福建省厦门市集美区中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列各数中,无理数的是()A.B.C.πD.2.下列事件中,是必然事件的是( )A.打开电视机,正在播放广告B.掷一枚均匀硬币,正面一定朝上C.每周的星期日一定是晴天D.我市夏季的平均气温比冬季的平均气温高3.下列图形中,周长最长的是()A. B.C. D.4.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,在应用公式s2=计算方差时,是这n次测量结果的()A.平均数 B.众数C.中位数 D.最大值5.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.一个运算程序输入x后,得到的结果是4x3﹣2,则这个运算程序是()A.先乘4,然后立方,再减去2 B.先立方,然后减去2,再乘4C.先立方,然后乘4,再减去2 D.先减去2,然后立方,再乘47.下列性质中,菱形具有但矩形不一定具有的是()A.对边相等B.对边平行C.对角相等D.对角线互相垂直8.不等式组的其中一个解是x=0,且a<b<0,则这个不等式组可以是() A.B.C.D.9.如图,P为⊙O外一点,PA切⊙O于点A,且OP=5,PA=4,则sin∠APO等于()A.B.C.D.10.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是( )A.B.C.D.二、填空题(本大题有6小题,每小题4分,共24分)11.计算:5a﹣3a= .12.在一个不透明的口袋中装有2个红球和4个白球,它们除颜色外其他完全相同,从中摸出一个球,则摸到红球的概率是.13.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.14.计算0.78×102016﹣4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集美学校2013年中考数学模拟试题一一、选择题:(本题24分)1、下列各数中,比-1小的数是( ) A .0 B .-2 C .12D .12、下列运算正确是( )A .-(a -1)=-a -1B .(a -b )2=a 2-b 2C .a 2 =aD . a 2•a 3=a 53、下列因式分解正确的是( ) A .x 3﹣x=x (x 2-1) B .x 2+3x+2=x (x+3)+2C .x 2-y 2=(x -y )2D .x 2+2x+1=(x+1)24、如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是( )A. B. C . D . 5、下列命题正确的个数是( )个.①用四舍五入法按要求对0.05049分别取近似值为0.050(精确到0.001);②若代数式2-5x x+2 有意义,则x 的取值范围是x ≤-25 且x ≠-2;③数据1、2、3、4的中位数是2.5 ;④月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为3.8×108米.A .1B .2C .3D .46、如图1,在Rt △ABC 中,AB=AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE=AF .如果∠AED=62°,那么∠DBF=( ) A .62° B .38° C .28°D .26°图1图2图3图47、 如图2,将放置于直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A 1OB 1.已知∠AOB=30°,∠B=90°,AB=1,则B 1点的坐标为( ) . A .(32 ,12 )B .(32 ,32 )C .(12 ,32 )D (32 ,32 )8、如图3,在平行四边形ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结论一定正确的是:①△CDF ≌△EBC ;②∠CDF=∠EAF ;③△ECF 是等边△;④CG ⊥AE ( )A .只有①②B .只有①②③C .只有③④D .①②③④二、填空题:(本题24分)9、已知 1x = 3y+z = 5z+x ,则 x -2y 2y+z 的值为 .10、已知2x y =-⎧⎨=⎩和13x y =⎧⎨=⎩是方程x 2-ay 2-bx=0的两个解,那么ab= .11、如图4所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,右面的一条抛物线的解析式为y=x 2-4x+5表示,而且左右两条抛物线关于y 轴对称,则左面钢缆的表达式为 .12、如图5,AB是⊙O 的直径,C ,D 两点在⊙O 上,若∠BCD=40°,则∠ABD 的度数为.图5图613、将直径为16cm 的圆形铁皮,做成四个相同圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的高为 .14、如图6,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点,若∠APD=60°,则CD 的长为 .15、如图7,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点E 处,若∠EBC=20°,则∠EBD 的度数为 . 16、函数43(0)3(01)5(1)x x y x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值为 .三、解答题:(本题72分)17、(本题满分5分)解不等式组11237122x x x x +≥+⎧⎪⎨+--⎪⎩>.图718、(本题满分6分)2012年北京春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题:(1)求出统计表中的a = ,并补全统计图; (2)打算购买住房面积小于100平方米的消费者 人数占被调查人数的百分比为 ;(3)求被调查的消费者平均每人年收入为多少万元?19、(本题满分6分)如图,在直角梯形ABCD 中,AB ∥CD,AD ⊥DC,AB=BC,且AE ⊥BC .⑴ 求证:AD=AE ;⑵ 若AD =8,DC =4,求AB 的长.20、(本题满分6分)在不透明的袋中有大小、形状和质地等完全相同的小球,它们分别标有数字-1、-2、1、2.从袋中任意摸出一小球(不放回),将袋中的小球搅匀后,再从袋中摸出另一个小球. (1)请你表示摸出小球上的数字可能出现的所有结果;(2)若规定:如果摸出的两个小球上的数字都是方程x 2-3x+2=0的根,则小明赢.如果摸出的两个小球上的数字都不是方程x 2-3x+2=0的根,则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.21、(本题满分7分)某超市规定:凡一次购买大米180kg 以上(含180kg )可以享受折扣价格,否则只能按原价付款.王师傅到该超市买大米,发现自己准备购买的数量只能按原价付款,且需要500元,于是他多买了40kg ,就可全部享受折扣价,也只需付款500元. (1)求王师傅原来准备购买大米的数量x (kg )的范围;(2)若按原价购买4kg 与按折扣价购买5kg 大米的付款数相同,那么王师傅原来准备购买多少kg 大米.22、(本题满分8分)如图,已知在△ABC 中,AB=AC ,以AB 为直径的半圆⊙O 与边BC 交于点D ,与边AC 交于点E ,过点D 作DF ⊥AC 于F . (1)求证:DF 为⊙O 的切线;(2)若DE= 52 ,AB= 52 ,求AE 的长.23、(本题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏西30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.⑴快艇从港口B 到小岛C 需要多少时间?⑵快艇从小岛C 出发后最少需要多少时间才能和考察船相遇? 24、(本题满分12分)某品牌专卖店准备采购数量相同的男女情侣衬衫,并以相同的销售价x (元)进行销售,男衬衫的进价为30元,当定价为50元时,月销售量为120件,售价不超过100元时,价格每上涨1元,销量减少1件;售价超过100元时,超过100元的部分,每上涨1元,销量减少2件.受投放量限制衬衫公司要求该专卖店每种衬衫每月订购件数不得低于30件且不得超过120件.该品牌专卖店销售男衬衫利润为y 1 (元),销售女衬衫的月利润为y 2(元),且y 2与x 间的函数关系如图所示,AB 、BC 都是线段,,销售这两种衬衫的月利润W (元)是y 1与y 2的和.(1)求y 1、y 2与x 间的函数关系式;(2)求出W 关于x 的函数关系式;(3)该专卖店经理应该如何采购,如何定价,才能使每月获得的总收益W 最大?说明理由. 25、(本题满分14分)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线L 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A→B→C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O 一C ﹣B 相交于点M .当Q 、M 两点相遇时,P 、Q 两点停止运动,设点P 、Q 运动的时间为t 秒(t >0).△MPQ 的面积为S .(1)点C 的坐标为 ,直线L 的解析式为 .(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值. (4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线L 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.第22题图第18题第19题图参考答案一、选择题:1、 B ;2、D ;3、D ;4、B ;5、C ;6、C ;7、D ;8、B. 二、填空题:9、32 ;10、-23 ;11、x 2+4x+5;12、50°;13、215 cm ;14、23 ;15、25°;16、4. 三、解答题:17、解:解不等式①,得x≤8,解不等式②,得x >-13 ,所以,原不等式组的解集是-13 <x≤8.18、解:(1)a =50, 如图;(2)52%; (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5 (万元)故被调查的消费者平均每人年收入为7.5万元.19、解:(1)连接AC ,∵A B ∥CD ,∴∠ACD=∠BAC ,∵AB=BC ,∴∠ACB=∠BAC ,∴∠ACD=∠ACB ,∵A D ⊥DC , AE ⊥BC ,∴∠D=∠AEC=900 ,∵AC=AC ,∴△ADC ≌△AEC ,∴AD=AE , (2)由(1)知:AD=AE ,DC=EC ,设AB =x ,则BE=x -4 ,AE=8, 在Rt △ABE 中, ∠AEB=900, 由勾股定理得: 2228(4)x x +-=,解得:x=10,∴AB=10 . 20、解:(1)可能出现的所有结果如下:共12种结果;(2)∵x 2﹣3x+2=0,∴(x ﹣1)(x ﹣2)=0,∴x 1=1,x 2=2;∵摸出的两个小球上的数字都是方程x 2﹣3x+2=0的根的可能一共有2种, 摸出的两个小球上的数字都不是方程的根的可能一共有2种,∴P 小明赢=212= 16,P 小亮赢=212 = 16, ∴游戏公平.21、解:(1)x <180;x+40≥180,解得:140≤x <180;(2)设王师傅原来准备买大米x 千克,原价为500x 元;折扣价为500x+40元.据题意列方程为:4·500x = 5·500x+40,解得:x=160,经检验x=160是方程的解. 答:王师傅原来准备买160千克大米.22、证明:(1)连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=DC ,∵OA=OB ,∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 为⊙O 的切线; (2)连接BE 交OD 于G ,∵AC=AB ,AD ⊥BCED ⊥BD ,∴∠EAD=∠BAD ,∴ ED BD =,∴ED=BD ,OE=OB ,∴OD 垂直平分EB ,∴EG=BG ,又AO=BO , ∴OG=12 AE .在Rt △DGB 和Rt △OGB 中,BD 2﹣DG 2=BO 2﹣OG 2,∴(52 )2-(54-OG )2=BO 2-OG 2, 解得:OG= 34 .∴AE=2OG= 32.23、解:(1)由题意可知:∠CBO=60°,∠COB=30°.∴∠BCO=90°.在Rt △BCO 中,∵OB=120,∴BC=60,OC= 60 3 .∴快艇从港口B 到小岛C 的时间为:60÷60=1(小时). (2)设快艇从C 岛出发后最少要经过x 小时才能和考查船在OA 上的D 处相遇,则CD=60x .∵考查船与快艇是同时出发,∴考查船从O 到D 行驶了(x+2)小时,∴OD=20(x+2).过C 作CH ⊥OA ,垂足为H ,在△OHC 中,∵∠COH=30°,∴CH=30 3 ,OH=90.∴DH=OH ﹣OD=90﹣20(x+2)=50﹣20x .在Rt △CHD 中,CH 2+DH 2=CD 2,∴(30 3 )2+(50﹣20x )2=(60x )2.整理得:8x 2+5x ﹣13=0.解得:x 1=1,x 2=- 138.∵x >0,∴x=1.答:快艇后从小岛C 出发后最少需要1小时才能和考查船相遇.24、解:(1)由已知可求得:2122005100(50100)23308100(100120)x x x y x x x ⎧-+-≤≤=⎨-+-≤⎩<;220800(5080)101600(80120)x x y x x -≤≤⎧=⎨-+≤⎩<;(2)2222205900(5080)1903500(80100)23206500(100120)x xx W x x x x x x ⎧-+-≤≤⎪=-+-≤⎨⎪-+-≤⎩<<;(3)配方得:222(110)6200(5080)(95)5525(80100)2(80)6300(100120)x x W x x x x ⎧--+≤≤⎪=--+≤⎨⎪--+≤⎩<<,当50≤x≤80时,W 随x 增大而增大,所以x=80时,W 最大=5300; 当80<x <100时,x=95,W 最大=5525;第19题图当100<x<120时,W随x增大而减小,而x=100时,W=5500;综上所述,当x=95时,W最大且W最大=5525,故专卖店经理应该将两种衬衫定价为95元,进货数量确定为120﹣(95﹣50)=75件时,专卖店月获利最大且为5525元.25、解:(1)由题意知:点A的坐标为(8,0),点B的坐标为(11.4),且OA=BC,故C点坐标为C(3,4),设直线l的解析式为y=kx,将C点坐标代入y=kx,解得k= 43,∴直线l的解析式为y= 43x;故答案为:(3,4),y=43x;(2)根据题意,得OP=t,AQ=2t.分四种情况讨论:①当0<t≤52时,如图1,M点的坐标是(t,43t).过点C作CD⊥x轴于D,过点Q作QE⊥x轴于E,可得△AEQ∽△ODC,∴AQOC=AEOD=QECD,∴2t5=AE3=QE4,∴AE =6t5,EQ=85t,∴Q点的坐标是(8+65t,85t),∴PE=8+65t-t= 8+15t,∴S=12·MP·PE=12·43t·(8+15t)=215t2+163t;②当52<t≤3时,如图2,过点Q作QF⊥x轴于F,∵BQ=2t﹣5,∴OF=11﹣(2t﹣5)=16﹣2t,∴Q点的坐标是(16﹣2t,4),∴PF=16﹣2t﹣t=16﹣3t,∴S=12·MP·PF=12·43t·(16-3t)= -2t2+323t,③当点Q与点M相遇时,16﹣2t=t,解得t =163.当3<t<163时,如图3,MQ=16﹣2t﹣t=16﹣3t,MP=4.S=12·MP·PF =12·4·(16-3t)=﹣6t+32;(3)解:①当52t<≤时,222162160(20)153153S t t t=+=+-,∵215a=>,抛物线开口向上,对称轴为直线20t=-,∴当52t<≤时,S随t的增大而增大.∴当52t=时,S有最大值,最大值为856.②当532t<≤时,2232812822()339S t t t=-+=--+。

相关文档
最新文档