2014-2015年江苏省扬州市邗江中学高一(上)期中数学试卷及参考答案
江苏省扬州市高一数学上学期期中考试试题苏教版

江苏省邗江中学2012-2013学年度第一学期期中试卷高一年级数学学科试卷一、填空题:本大题共14小题,每小题5分,共计70分. 1. 若{}21,,x x ∈则x = ▲ ;2. 指数函数()f x 的图象经过)4,2(,则=)3(f _____▲____;3.函数lg(4)y x =-的定义域为 ▲ ;4.计算122100log 8-=____▲____;5.函数2)1(log )(++=x x f a ,0(>a 且)1≠a 必过定点 ▲ ; 6. 如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标 分别为(04)(20)(64),,,,,,则((0))f f = ▲ ;7.若函数)(x f 是R 上的奇函数,则=+++-+-)2012()2011()0()2011()2012(f f f f f ▲ .8. 已知函数()f x 在定义域[0,)+∞单调递增,则满足)1(-x f <1()3f 的x 取值范围是 ▲_ .9.函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则a 的取值范围为 ▲ . 10. 已知函数20,()3, 0x x f x x x >⎧=⎨+≤⎩,.若3()()02f m f +=,则实数m 的值等于_ ▲_ _.11.函数()1-+=x x x f 的最小值是 ▲ .12.关于下列命题:①若函数x y 2=的定义域是{}0|≤x x ,则它的值域是}1|{≤y y ; ② 若函数xy 1=的定义域是}2|{>x x ,则它的值域是}21|{≤y y ;③若函数2x y =的值域是}40|{≤≤y y ,则它的定义域一定是}22|{≤≤-x x ; ④若函数x y 2log =的值域是}3|{≤y y ,则它的定义域是}80|{≤<x x .其中错误..的命题的序号是 ▲ ( 注:把你认为错误..的命题的序号都填上). 13.若a x x f +-=2)1(21)(的定义域和值域都是[1,b ],则=+b a ▲ ; 第6题图14. 函数()()2(1)1()(3)41x x f x a x ax ⎧--<⎪=⎨-+≥⎪⎩满足对任意12x x ≠都有1212()()0f x f x x x ->-成立,则a 的取值范围是 ▲ .二、解答题:(本大题共6小题,共计90分.解答应写出必要的文字步骤.) 15. (本题满分14分)设全集U =R ,集合{}{}{}13,04,A x x B x x C x x a =-≤≤=<<=<。
扬州市邗江区2014-2015高一下学期高一数学期中试卷答案

由 an 0 an 1 0
11 2n 0
……………………………… 10 分
11 2(n 1) 0
4.5 n 5.5 ……………………………… 12 分
又n N
故 n 5 ……………………………… 14 分
16.(本小题14分)
已知
, cos(α﹣ β)= , sin(α+β)=
.求 sin2α的值.
( a1
17
7
,d
, a12 =15)
4
4
4.设 θ为第二象限角,若
,则 sinθ+cosθ=
.( )
2
.
解:∵tan( θ+ ) =
=,
∴tanθ=﹣ , ∵θ为第二象限角,
∴cosθ= ﹣
=﹣
, sinθ=
=,
则 sinθ+cosθ= ﹣
=﹣ .
故答案为:﹣
5. △ABC 中,∠B=120 °, AC=7 , AB=5 ,则 △ABC 的面积为
7. sin15 s°in75 的°值是
.
解:∵sin15 °sin75 °
=sin15 °cos15°
= sin30°
1
=.
8.在 △ABC 中, AB=5 , AC=7 , BC=8 ,则 BC 边上的中线 AD 的长等于
.
( 21 )
9. 已知 { an } 是等差数列, a1 =1,公差 d≠0,Sn 为其前 n 项和, 若 a1 , a2 , a5 成等比数列,
则 S8=
.
解:∵{a n} 是等差数列, a1, a2,a5 成等比数列,
∴
=a1?( a1+4d),又 a1=1,
2014-2015学年高一下学期期中考试数学试卷-Word版含答案

2014-2015学年高一下学期期中考试数学试卷-Word版含答案2014——2015学年下学期高一年级期中考数学学科试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 不等式0121≤+-x x 的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞) B.⎣⎢⎡⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) D. ⎝ ⎛⎦⎥⎤-12,12. 若0<<b a ,则下列不等式不能成立的是 ( ) A.ba11> B .b a 22> C .b a > D .b a )21()21(> 3. 不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134. 等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( )A .297B .144C .99D .665. 已知直线1l :01)4()3(=+-+-y k x k 与2l :032)3(2=+--y x k 平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或26. 在△ABC 中,80=a ,70=b ,45=A ,则此三角形解的情况是 ( ) A 、一解 B 、两解 C 、一解或两解 D 、无解7. 如果0<⋅C A ,且0<⋅C B ,那么直线0=++C By Ax 不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.已知点()5,x 关于点),1(y 的对称点为()3,2--,则点()y x p ,到原点的距离为( )A .4B .13C .15D .179. 计算机是将信息转换成二进制进行处理的,二进制即“逢二进一”,如(1 101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13,那么将二进制数(11…114个01)2转换成十进制数是( )A .216-1B .216-2C .216-3D .216-4 10. 数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( ) A.61B .61- C .6 D .6- 11. 已知0,0>>y x ,且112=+yx,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-2,4)C .(-∞,-4]∪[2,+∞)D .(-4,2) 12. 设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( ) A .2012 B .2013 C .2014 D .2015第Ⅱ卷(非选择题 共90分)19.(12分) 已知直线l 过点)2,3(P ,且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求OAB ∆的面积的最小值及此时直线l 的方程.20. (12分) 某观测站C 在城A 的南偏西20˚的方向上,由A 城出发有一条公路,走向是南偏东40˚,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问还需走多少千米到达A 城?21. (12分) 在各项均为正数的等差数列{}n a 中,对任意的*N n ∈都有12121+=+++n n n a a a a a . (1)求数列{}n a 的通项公式n a ;(2)设数列{}n b 满足11=b ,na n nb b 21=-+,求证:对任意的*N n ∈都有212++<n n n b b b .22. (12分)设函数())0(132>+=x xx f ,数列{}n a 满足11=a ,)1(1-=n n a f a ,*N n ∈,且2≥n .(1)求数列{}n a 的通项公式; (2)对*N n ∈,设13221111++++=n n n a a a a a a S ,若ntS n 43≥恒成立,求实数t 的取值范围.答案一、选择题:(每题5分,共60分)13、 3 14、349π15、 2 16、 ①②⑤三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 解:(1)由题意,得⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16.∵公差d>0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n≥2,n ∈N *), ∴b n -b n -1=2n -1(n≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n≥2,n ∈N *),且b 1=a 1=1,∴b n =2n -1+2n -3+…+3+1=n 2(n≥2,n ∈N *). ∴b n =n 2(n ∈N *).题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D BBCCACDCDDA18. 解析 27(1)4sin cos 2180,:22B C A A B C +-=++=︒由及得 22272[1cos()]2cos 1,4(1cos )4cos 5214cos 4cos 10,cos ,20180,60B C A A A A A A A A -+-+=+-=-+=∴=︒<<︒∴=︒即 22222222(2):cos 211cos ()3.2223123,3: 2 :.221b c a A bcb c a A b c a bc bc b c b b a b c bc bc c c +-=+-=∴=∴+-=+===⎧⎧⎧=+==⎨⎨⎨===⎩⎩⎩由余弦定理得代入上式得由得或 19. 解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1.由基本不等式知3a +2b ≥26ab,即ab≥24(当且仅当3a =2b,即a =6,b =4时等号成立).又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0. 20. 解 据题意得图02,其中BC=31千米,BD=20千米,CD=21千米,∠CAB=60˚.设∠ACD = α ,∠CDB = β . 在△CDB 中,由余弦定理得:71202123120212cos 222222-=⨯⨯-+=⋅⋅-+=BD CD BC BD CD β,734cos 1sin 2=-=ββ.()CDA CAD ∠-∠-︒=180sin sin α ()β+︒-︒-︒=18060180sin()143523712173460sin cos 60cos sin 60sin =⨯+⨯=︒-︒=︒-=βββ在△ACD 中得1514352321143560sin 21sin sin =⨯=⋅︒=⋅=αA CD AD . 所以还得走15千米到达A 城. 21. 解:(1)设等差数列{a n }的公差为d.令n =1,得a 1=12a 1a 2.由a 1>0,得a 2=2.令n =2,得a 1+a 2=12a 2a 3,即a 1+2=a 1+2d ,得d =1.从而a 1=a 2-d =1.故a n =1+(n -1)·1=n. (2)证明:因为a n =n ,所以b n +1-b n =2n ,所以b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1 =2n -1.又b n b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=-2n <0, 所以b n b n +2<b 2n +1.22. 解:(1)由a n =f ⎝⎛⎭⎪⎫1a n -1,可得a n -a n -1=23,n ∈N *,n≥2.所以{a n }是等差数列.又因为a 1=1,所以a n =1+(n -1)×23=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=92n +12n +3=92⎝⎛⎭⎪⎫12n +1-12n +3.所以S n =92⎝ ⎛⎭⎪⎫13-12n +3=3n 2n +3,n ∈N *. S n ≥3t 4n ,即3n 2n +3≥3t 4n ,得t≤4n 22n +3(n ∈N *)恒成立.令g(n)=4n 22n +3(n ∈N *),则g(n)=4n 22n +3=4n 2-9+92n +3=2n +3+92n +3-6(n ∈N *).令p =2n +3,则p≥5,p ∈N *.g(n)=p +9p -6(n ∈N *),易知p =5时,g(n)min =45.所以t≤45,即实数t 的取值范围是⎝⎛⎦⎥⎤-∞,45.。
扬州市2014—2015学年度高一数学第一学期期末调研测试试题参考答案

扬州市2014—2015学年度第一学期期末调研测试试题高一 数 学 参 考 答 案一、填空题: 1. {}0,1,3 2.12-3.1 4. 3π 5. {|31}x x x ≥-≠且 6.21 7.()2,+∞ 8.4 9.2133a b →→+ 10. 23- 11. (3,0),()k k Z ππ-∈ 12. (-3,1)(1,2)(2,+)∞ 13.12m ≥-或1m =- 14. 2813. 解:由题方程22|1|0x mx x +--=在区间(0,2)上有且只有1解,即方程2|1|x m x x -=-在区间(0,2)上有且只有1解,从而函数2|1|,(0,2)x y x x x-=-∈图象与直线y m =有且只有一个公共点。
作出函数212,(0,1)|1|1,11,(1,2)x x x x y x x x x x⎧-∈⎪⎪-=-=-=⎨⎪⎪-∈⎩的图象, 结合图象知12m ≥-或1m =- 14.解:令()3x f x t -=,则()3x f x t =+,()4f t =,又()3tf t t =+,故34tt +=,显然1t = 为方程34t t +=一个解,又易知函数3x y x =+是R 上的增函数,所以方程34t t +=只有一个解1,故()31x f x =+,从而(3)28f =二、解答题:(解法不唯一,请关注学生答卷,合理给分)15.解:(I)由2280x x --+=,解得{}4,2A =- ……………………………2分1a =时,(],1B =-∞ …………………………………… …………… ……4分{}4A B ∴=-I ……………………………………………………………7分(2)A B ⊆Q410210a a --≤⎧∴⎨-≤⎩ ……………………………………………………………10分1142a ∴-≤≤……………………………………………………… ……14分 16.解:(1)由题:2216,9a b ==,043cos606a b =⨯=…………………………3分22(2)(2)232216362932a b a b a a b b ∴+-=+-=⨯+⨯-⨯=……………………7分(2)由题:2222|2|(2)4441646949a b a b a a b b -=-=-+=⨯-⨯+=…………11分|2|7a b ∴-= …………………………………………………………………………14分17.解:(1)由题2sin cos a b θθ⋅=+r r ,若52a b ⋅=r r ,则52sin cos =2θθ+,1sin cos =2θθ∴ ……2分所以2(sin cos )=1+2sin cos 2θθθθ+=.又因为θ为锐角,所以sin cos θθ+7分 (2)因为//a b ,所以tan 2θ=, ……10分所以222222sin 2cos tan 222311sin tan tan 42θθθθθθ++==+=+=, ……15分18.解:(1)①选择函数模型()sin ,(0,0,)y A x B A ωϕωπϕπ=++>>-<<拟合收购价格(元/斤)与相应月份之间的函数关系,……………………………………………1分 由题:1,6,4A B T ===,2||T πω=,2πω∴=,sin()62y x πϕ∴=++,………3分由题图象:sin()62y x πϕ=++图象过点(1,6),02x πϕ∴+=一解为1x =,2πϕ∴=-,sin()66cos 222y x x πππ∴=-+=-… ………………………………………………5分②选择函数模型()2log y x a b =++拟合养殖成本(元/斤)与相应月份之间的函数关系…………………………………………………6分由题:()2log y x a b =++图象过点(1,3),(2,4),()()223log 14log 2a ba b =++⎧⎪⎨=++⎪⎩, ………8分解得:03a b =⎧⎨=⎩,2log 3y x ∴=+, … …………………………………10分(2)由(1):当5x =时,56cos6cos 622y x ππ=-=-=,222log 3log 53log 83336y x =+=+<+=+= 当6x =时,6cos6cos36172y x ππ=-=-=+=,22log 63log 833367y =+<+=+=<当7x =时,76cos6cos622y x ππ=-=-=,222log 3log 73log 83336y x =+=+<+=+= 当8x =时,6cos6cos 46152y x ππ=-=-=-=,22log 3log 833365y x =+=+=+=>当9x =时,96cos6cos622y x ππ=-=-=,222log 3log 93log 83336y x =+=+>+=+= 当10x =时,6cos6cos572y x ππ=-=-=,222log 3log 103log 163437y x =+=+<+=+=当11x =时,116cos6cos622y x ππ=-=-=,222log 3log 113log 83336y x =+=+>+=+= 当12x =时,6cos6cos 652y x ππ=-=-=,222log 3log 123log 833365y x =+=+>+=+=>这说明第8、9、11、12这四个月收购价格低于养殖成本,生猪养殖户出现亏损。
2014江苏省扬州中学高一上数学综合试题(7)

高一上数学试题(7)一、填空题(本大题共14小题,每小题5分,共70分) 1.函数)32sin()(π+=x x f 的最小正周期是__________.2.函数x x f 2sin 2)(=的最小正周期是_____________3.若22παπ≤≤-,πβ≤≤0,R m ∈,如果有0sin 3=++m αα,0cos )2(3=++-m ββπ,则)cos(βα+值为_______4.在ABC ∆中,120,5,7A AB BC ∠===,则sin sin BC的值为___________. 5.已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于________ .6.设ABC ∆的三个内角A B C 、、所对的边长依次为a b c 、、,若ABC ∆的面积为S ,且22()S a b c =--,则sin 1cos AA=- .7.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、,若41cos ,7,2-==+=B c b a ,则=b .8.若53sin =θ且02sin <θ,则=2tan θ. 9.已知(,0)2πα∈-,且4cos 5α=,则tan 2α=___________.10.函数)02(sin 2<<-=x x y π的反函数为 .11.已知135sin ,53)cos(-==-ββα,且)0,2(),2,0(πβπα-∈∈,则______sin =α.12.已知4cos25θ=,且sin 0θ<,则tan θ的值为_________ 13.设函数()|s i n |c o s 2,,22f x x x x ππ⎡⎤=+∈-⎢⎥⎣⎦,则函数()f x 的最小值是_________.14.函数2sin 2cos y x x =+的定义域为2,3πα⎡⎤-⎢⎥⎣⎦,值域为]2,41[-,则α的取值范围是 .二、解答题(本大题共六小题,共计90分,解答时应写出文字说明、证明过程或演算步骤。
2014-2015年江苏省扬州市邗江中学高二上学期期中数学试卷及参考答案

2014-2015学年江苏省扬州市邗江中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)椭圆9x2+16y2=144的焦点坐标为.2.(5分)质点的运动方程为S=2t+1(位移单位:m,时间单位:s),则t=1时质点的速度为m/s.3.(5分)在正方体ABCD﹣A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为.4.(5分)如果函数y=f(x)的图象在点P(1,0)处的切线方程是y=﹣x+1,则f′(1)=.5.(5分)定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有个.6.(5分)方程+=1表示椭圆,则k的取值范围是.7.(5分)长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D 的体积为cm3.8.(5分)已知双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为.9.(5分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:其中真命题的序号是.①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.10.(5分)若椭圆的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F分成5﹕3的两段,则此椭圆的离心率为.11.(5分)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为.12.(5分)已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥P﹣ABC的体积为.13.(5分)设双曲线的左、右焦点分别为F1,F2,点P在双曲线的右支上,且PF1=4PF2,则此双曲线离心率的最大值为.14.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC 1|=2的点P的个数为.二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(15分)已知函数f(x)=x2+1,(1)求在区间[1,2]上f(x)的平均变化率;(2)求f(x)在x=1处的导数.16.(15分)如图,平面PAC⊥平面ABC,AC⊥BC,PE∥CB,M,N分别是AE,PA的中点.(1)求证:MN∥平面ABC;(2)求证:平面CMN⊥平面PAC.17.(15分)根据下列条件求椭圆的标准方程:(1)焦点在x轴,两准线间的距离为,焦距为2;(2)已知P点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为和,过P点作长轴的垂线恰好过椭圆的一个焦点.18.(15分)如图,用一块长为2米,宽为1米的矩形木板,在教室的墙角处围出一个直三棱柱的储物角(使木板垂直于地面的两边与墙面贴紧),试问应怎样围才能使储物角的容积最大?并求出这个最大值.19.(15分)如图,圆O与离心率为的椭圆T:+=1(a>b>0)相切于点M(0,1).(1)求椭圆T与圆O的方程;(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求d12+d22的最大值;②若3•=4•,求l1与l2的方程.20.(15分)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)过点Q作直线l与双曲线C1有且只有一个交点,求直线l的方程;(3)设椭圆C2:4x2+y2=1.若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.2014-2015学年江苏省扬州市邗江中学高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)椭圆9x2+16y2=144的焦点坐标为(,0).【解答】解:椭圆的方程9x2+16y2=144化为标准形式为:,∴a2=16,b2=9,∴c2=a2﹣b2=7,又该椭圆焦点在x轴,∴焦点坐标为:(,0).故答案为:(,0).2.(5分)质点的运动方程为S=2t+1(位移单位:m,时间单位:s),则t=1时质点的速度为2m/s.【解答】解:∵质点的运动方程为S=2t+1,∴s′=2,∴该质点在t=1秒的瞬时速度2;故答案为:2.3.(5分)在正方体ABCD﹣A1B1C1D1中,直线AD1与平面ABCD所成的角的大小为45°.【解答】解:∵正方体ABCD﹣A1B1C1D1中,∴D1D⊥平面ABCD,∴直线AD是直线AD1在平面ABCD内的射影,∴∠D1AD=α,就是直线AD1平面ABCD所成角,在直角三角形AD1AD中,AD1=D1D,∴∠AD1AD=45°故答案为:45°4.(5分)如果函数y=f(x)的图象在点P(1,0)处的切线方程是y=﹣x+1,则f′(1)=﹣1.【解答】解:在点P处的斜率就是在该点处的导数,∴f′(1)=﹣1,故答案为:﹣1.5.(5分)定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有4个.【解答】解:如图所示:①过点P作平面α∥平面ABC.则△ABC的三个顶点到α的距离相等;②分别取线段AB、BC、CA的中点,则三个平面PFD、PDE、PEF皆满足题意.综上可知:满足题意的平面α共有4个.故答案为4.6.(5分)方程+=1表示椭圆,则k的取值范围是k>3.【解答】解:方程+=1表示椭圆,则,解可得k>3,故答案]为k>3.7.(5分)长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D 的体积为6cm3.【解答】解:如图所示,连接AC,BD,相交于点O.∵AB=AD=3cm,∴矩形ABCD是正方形,AC=BD=3.∴AO⊥BD,又平面BB1D1D⊥平面ABCD,∴AO⊥平面BB1D1D.∴AO是四棱锥A﹣BB1D1D的高.∴四棱锥A﹣BB1D1D的体积V===6.故答案为:6.8.(5分)已知双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为=1.【解答】解:由双曲线渐近线方程可知①因为抛物线的焦点为(4,0),所以c=4②又c2=a2+b2③联立①②③,解得a2=4,b2=12,所以双曲线的方程为.故答案为.9.(5分)用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:其中真命题的序号是①④.①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.【解答】解:∵若a∥b,b∥c,∴由平行公理,知a∥c,故①正确;∵a⊥b,b⊥c,∴a与c平行、相交或异面,故②不正确;∵a∥γ,b∥γ,∴a与b平行、相交或异面,故③不正确;∵a⊥γ,b⊥γ,∴a∥b,故④正确.故答案为:①④.10.(5分)若椭圆的左、右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F分成5﹕3的两段,则此椭圆的离心率为.【解答】解:∵,a2﹣b2=c2,=.故答案为:.11.(5分)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为.【解答】解:依题设P在抛物线准线的投影为P',抛物线的焦点为F,则,依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和.故答案为:.12.(5分)已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为,则三棱锥P﹣ABC的体积为9.【解答】解:根据题意几何体为正三棱锥,如图,PD=a;OD=a;OP==.设棱长为a,则OD+PD=×a+a=a=2⇒a=3,V棱锥=×a2×a=9,故答案是913.(5分)设双曲线的左、右焦点分别为F1,F2,点P在双曲线的右支上,且PF1=4PF2,则此双曲线离心率的最大值为.【解答】解:∵点P在双曲线的右支上,且|PF1|=4|PF2|,∴|PF1|﹣|PF2|=3|PF2|=2a,∴|PF2|=,.则,∴.故此双曲线离心率的最大值为.故答案为.14.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是棱上一点,则满足|PA|+|PC1|=2的点P的个数为6.【解答】解:∵正方体的棱长为1∴AC1=,∵|PA|+|PC1|=2,∴点P是以2c=为焦距,以a=1为长半轴,以为短半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD 上各有一点满足条件.故答案为:6.二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(15分)已知函数f(x)=x2+1,(1)求在区间[1,2]上f(x)的平均变化率;(2)求f(x)在x=1处的导数.【解答】解:(1)∵f(x)=x2+1,∴f(1)=2,f(2)=5∴该函数在区间[1,2]上的平均变化率为=3,(2)∵f′(x)=2x,∴f′(1)=216.(15分)如图,平面PAC⊥平面ABC,AC⊥BC,PE∥CB,M,N分别是AE,PA的中点.(1)求证:MN∥平面ABC;(2)求证:平面CMN⊥平面PAC.【解答】证明:(1)∵M,N分别是AE、PA的中点,∴MN∥PE,∵PE∥CB,∴MN∥CB,∵MN不在平面ABC中,BC⊂平面ABC,∴MN∥平面ABC.(2)∵平面PAC⊥平面ABC,交线为AC,AC⊥BC,∴BC⊥平面PAC,∵MN∥BC,∴MN⊥平面PAC∵MN⊂平面CMN,∴平面CMN⊥平面PAC.17.(15分)根据下列条件求椭圆的标准方程:(1)焦点在x轴,两准线间的距离为,焦距为2;(2)已知P点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为和,过P点作长轴的垂线恰好过椭圆的一个焦点.【解答】解:(1)据题意解得a=3,c=,∴a2=9,b2=a2﹣c2=4∴椭圆的标准方程:(2)据题意得2a=+=,∴a=,又∵解得∴∴椭圆的标准方程:或18.(15分)如图,用一块长为2米,宽为1米的矩形木板,在教室的墙角处围出一个直三棱柱的储物角(使木板垂直于地面的两边与墙面贴紧),试问应怎样围才能使储物角的容积最大?并求出这个最大值.【解答】解:设木板与一面墙的夹角为θ,以木板宽1为三棱柱的高,则棱柱的底面积是:S=•2cosθ•2sinθ=sin2θ≤1,当θ=时等号成立;此时棱柱的体积V1=hS=1×1=1;若以木板的长2为三棱柱的高,则最大体积为V2=2×=,∴V1>V2,∴应取底面为等腰三角形,且高为1时,围成的容积最大.19.(15分)如图,圆O与离心率为的椭圆T:+=1(a>b>0)相切于点M(0,1).(1)求椭圆T与圆O的方程;(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求d12+d22的最大值;②若3•=4•,求l1与l2的方程.【解答】解:(1)由题意知:,b=1.又a2=b2+c2,所以a2=c2+1,联立,解得a=2,c=所以椭圆C的方程为.圆O的方程x2+y2=1;(2)①设P(x0,y0)因为l1⊥l2,则,因为,所以=,因为﹣1≤y0≤1,所以当时,取得最大值为,此时点.②设l1的方程为y=kx+1,由,得:(k2+1)x2+2kx=0,由x A≠0,所以,代入y=kx+1得:.所以.由,得(4k2+1)x2+8kx=0,由x C≠0,所以,代入y=kx+1得:.所以.把A,C中的k置换成可得,所以,,由,得=,整理得:,即3k4﹣4k2﹣4=0,解得.所以l1的方程为,l2的方程为或l1的方程为,l2的方程为.20.(15分)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)过点Q作直线l与双曲线C1有且只有一个交点,求直线l的方程;(3)设椭圆C2:4x2+y2=1.若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.【解答】解:(1)双曲线C1:2x2﹣y2=1左顶点A(﹣,0),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=x+1,所以,解得.所以所求三角形的面积为S=|OA||y|=;(2)由题意,直线的斜率存在,∵过点Q作直线l与双曲线C1有且只有一个交点,∴直线l与双曲线的渐近线平行,∵渐近线的斜率为±,∴直线l的方程为y﹣=(x+),即y=x+2+或y=﹣x﹣2+;(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=x,由得,所以|ON|2=.同理|OM|2=,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以=+=3,即d=.综上,O到直线MN的距离是定值.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析

XXX2014-2015学年高一上学期期中考试数学试题 Word版含解析没有明显有问题的段落需要删除,只需修改格式错误和语言表达不清的地方。
XXX2014-2015学年第一学期期中考试高一数学试题第Ⅰ卷选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1、已知集合$S=\{x|x+1\geq2\}$,$T=\{-2,-1,0,1,2\}$,则$S\cap T=$()A。
$\{2\}$。
B。
$\{1,2\}$。
C。
$\{0,1,2\}$。
D。
$\{-1,0,1,2\}$解题思路】:题目给出了集合$S$和$T$,需要先求出它们的具体表达内容,再求它们的交集。
$S$是一次函数不等式的解,$S=\{x|x\geq1\}$;$S\cap T=\{1,2\}$,故选B。
2、用阴影部分表示集合$C\cup A\cup B$,正确的是()解题思路】:题目给出了四个图形,需要判断哪个图形表示$C\cup A\cup B$。
利用XXX求解,A中阴影部分表示$C\cup(A\cup B)$,B中阴影部分表示$(C\cup A)\cap B$,C中阴影部分表示$A\cap B$,D中阴影部分表示$C\cup A\cup B$,故选D。
3、函数$y=\log_{\frac{1}{2}}(x-1)$的定义域是()A。
$(1,+\infty)$。
B。
$[1,+\infty)$。
C。
$(0,+\infty)$。
D。
$[0,+\infty)$解题思路】:题目给出了函数$y=\log_{\frac{1}{2}}(x-1)$,需要求出它的定义域。
由$\log_{\frac{1}{2}}(x-1)>0$得$x-1>0$,即$x>1$,故选A。
4、下列函数中,在其定义域内既是奇函数又是减函数的是()A。
$y=-|x|$。
B。
$y=x$。
C。
$y=|x|$。
江苏省扬州中学高一上学期期中考试 数学

江苏省扬州中学2014—2015学年度第一学期期中考试高一数学试卷 2014.11一、填空题(每小题5分,共70分) 1.已知全集,集合,则等于 ▲ . 2.集合的子集个数为 ▲ . 3.函数()lg(2)f x x =-+定义域为 ▲ .4.若函数在上递减,在上递增,则实数= ▲ .5.下列各组函数中,表示相同函数的是 ▲ . ①与 ② 与③与 ④与6.若函数3log ,(0)()2,(0)x x x f x x >⎧=⎨≤⎩,则 ▲ .7.已知幂函数的图象经过点,则 ▲ .8.如果函数的零点所在的区间是,则正整数 ▲ .9.已知偶函数在单调递减,,若,则实数的取值范围是 ▲ . 10.如果指数函数在上的最大值与最小值的差为,则实数 ▲ . 11.若2134,1xym x y==+=,则实数 ▲ . 12.对于函数定义域中任意的,给出如下结论:①()()()2121x f x f x x f +=⋅; ②()()()2121x f x f x x f ⋅=+; ③当时,()[]1212()()0x x f x f x -->; ④当时,()()1212()22f x f x x x f ++<, 那么当时,上述结论中正确结论的序号是 ▲ .13.已知函数ln ,(05)()10,(5)xe xf x x x ⎧<≤⎪=⎨->⎪⎩,若(其中),则的取值范围是 ▲ . 14.已知实数满足,,则 ▲ .16.(本小题满分14分)f x已知函数()(1)当时,求函数的定义域;(2)若函数的定义域为,求实数的取值范围.17.(本小题满分14分)已知函数(其中且).(1)判断函数的奇偶性并证明;(2)解不等式.18.(本小题满分16分)某商场经调查得知,一种商品的月销售量Q (单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q 关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10 万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.19. (本小题满分16分) 已知函数,(1)判断的奇偶性并说明理由;(2)当时,判断在上的单调性并用定义证明;(3)当时,若对任意,不等式()9f x m >恒成立,求实数的取值范围.20.(本小题满分16分)已知二次函数(其中)满足下列3个条件: ①的图象过坐标原点; ②对于任意都有11()()22f x f x -+=--成立; ③方程有两个相等的实数根, 令()()1g x f x x λ=--(其中),(1)求函数的表达式;(2)求函数的单调区间(直接写出结果即可);(3)研究函数在区间上的零点个数.命题、校对:高二数学备课组高一数学试卷答案 2014.11一、填空题1. {1} 2. 4 3. 4. 5 5.③ 6. 7. 8. 2 9. 10.或 11. 36 12. ①③ 13. 14. -2 二、解答题15.解:由题意得,解得或, 当时,,满足要求,此时; 当时,,不满足要求,综上得:,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省扬州市邗江中学高一(上)期中数学试卷一.填空题:本大题共14小题,每小题5分,共计70分.(答案请写在答题卡的指定位置)江苏省邗江中学2014-2015学年度第一学期高一数学期中试卷命题人魏跃兵霍庆元1.(5分)已知集合A={1,2,3,4},B={1,3},则C A B.2.(5分)已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.3.(5分)已知函数f(2x+1)=4x2,则f(5)=.4.(5分)函数y=ln(3﹣2x)的定义域是.5.(5分)设a=log1.20.9,b=1.10.8,则a,b的大小关系是.6.(5分)方程log3x+x=3的解的个数是.7.(5分)函数f(x)=x2﹣2x+3,x∈[0,3]的值域是.8.(5分)已知幂函数y=f(x)的图象过点,则f(﹣2)=.9.(5分)函数f(x)=log2(x﹣1)的单调递增区间是.10.(5分)若f(x)为定义在R上的奇函数,当x≥0时,f(x)=x2+2x,则f(﹣1)=.11.(5分)若函数y=a x(a>0,a≠1)在区间x∈[0,1]上的最大值与最小值之和为3,则实数a的值为.12.(5分)已知函数f(x)的定义域为R,对于任意的x∈R,都满足f(﹣x)=f(x),且对于任意的a,b∈(﹣∞,0],当a≠b时,都有<0.若f(m+1)<f(2),则实数m的取值范围是.13.(5分)函数f(x)=x2+bx+3满足f(2+x)=f(2﹣x),若f(m)<0,则f (m+2)与f(log2π)的大小关系是f(m+2)f(log2π).14.(5分)下列几个命题,其中正确的命题有.(填写所有正确命题的序号)①函数y=log2(x﹣3)+2的图象可由y=log2x的图象向上平移2个单位,向右平移3个单位得到;②函数的图象关于点(1,2)成中心对称;③在区间(0,+∞)上函数的图象始终在函数y=x的图象上方;④任一函数图象与垂直于x轴的直线都不可能有两个交点.二.解答题:本大题共6小题,共计90分.解答应写出必要的文字步骤.(请写在答题卡的指定位置)15.(10分)(1)计算log3+log3﹣log24;(2)已知+=3,求x+的值.16.(12分)设集合A={x|x<﹣3,或x>6},B={x|3<x<7}.(1)求A∩B;(2)设C={x|x≥m},且B∩C=B,求实数m的取值范围.17.(12分)设函数f(x)=()10﹣ax,其中a为常数,且f(3)=.(1)求a的值;(2)若f(x)≥4,求x的取值范围.18.(15分)甲商店某种商品11月份(30天,11月1日为第一天)的销售价格P(元)与时间t(天)函数关系如图(一)所示,该商品日销售量Q(件)与时间t(天)函数关系如图(二)所示.(1)写出图(一)表示的销售价格与时间的函数关系式P=f(t)及其定义域,写出图(二)表示的日销售量与时间的函数关系式Q=g(t)及其定义域;(2)写出日销售金额M(元)与时间t的函数关系式M=h(t)及其定义域并求M的最大值.(注:日销售金额M=销售价格P×日销售量Q).19.(15分)已知函数f(x)=,x∈(﹣1,1).(1)用单调性的定义证明f(x)在x∈(﹣1,1)上是单调减函数;(2)若关于x的不等式f(x)≥a(x2﹣3x+2)对于任意x∈(﹣1,1)恒成立,求实数a的取值范围.20.(16分)已知函数f(x)=ax2﹣|x|+2a﹣1 (a为实常数).(1)判断函数f(x)的奇偶性并给出证明;(2)若函数f(x)在区间[1,2]上是增函数,求实数a的取值范围;(3)若a>0,设g(x)=|f(x)﹣x|在区间[﹣2,2]上的最大值为h(a),求h (a)的表达式.2014-2015学年江苏省扬州市邗江中学高一(上)期中数学试卷参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共计70分.(答案请写在答题卡的指定位置)江苏省邗江中学2014-2015学年度第一学期高一数学期中试卷命题人魏跃兵霍庆元1.(5分)已知集合A={1,2,3,4},B={1,3},则C A B{2,4} .【解答】解:因为集合A={1,2,3,4},B={1,3},所以C A B={2,4},故答案为:{2,4}.2.(5分)已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是0.【解答】解:由于a是实数,若集合{x|ax=1}是任何集合的子集,则此集合必是空集,故方程ax=1无根,所以a=0故答案为:0.3.(5分)已知函数f(2x+1)=4x2,则f(5)=16.【解答】解:已知函数f(2x+1)=4x2,令t=2x+1,则x=,故有f(t)=4 .故f(5)=4=16,故答案为16.4.(5分)函数y=ln(3﹣2x)的定义域是(﹣∞,).【解答】解:由3﹣2x>0,得x<.∴原函数的定义域为(﹣∞,).故答案为:(﹣∞,).5.(5分)设a=log1.20.9,b=1.10.8,则a,b的大小关系是a<b.【解答】解:∵a=log1.20.9<0,b=1.10.8>1,∴a<b.故答案为:a<b.6.(5分)方程log3x+x=3的解的个数是1.【解答】解:根据函数y=log3x,函数y=3﹣x,图象的交点个数可判断:方程log3x+x=3的解的个数是1,故答案为:17.(5分)函数f(x)=x2﹣2x+3,x∈[0,3]的值域是[2,6] .【解答】解:函数f(x)=x2﹣2x+3,x∈[0,3]的对称轴为x=1,开口向上,在区间[0,3]不是单调增,∴f(x)max=f(3)=6,f(x)min=f(1)=2,∴函数的值域为[2,6].故答案为:[2,6].8.(5分)已知幂函数y=f(x)的图象过点,则f(﹣2)=.【解答】解:设f(x)=x a,因为幂函数图象过,则有8=,∴a=﹣3,即f(x)=x﹣3,∴f(﹣2)=(﹣2)﹣3=﹣故答案为:﹣9.(5分)函数f(x)=log2(x﹣1)的单调递增区间是(1,+∞).【解答】解:f(x)=log2(x﹣1)由y=log2t和t=x﹣1复合而成,∵t=x﹣1>0,由复合函数的单调性可知f(x)=log2(x﹣1)的单调增区间是(1,+∞).故答案为:(1,+∞).10.(5分)若f(x)为定义在R上的奇函数,当x≥0时,f(x)=x2+2x,则f(﹣1)=﹣3.【解答】解:∵f(x)为定义在R上的奇函数,∴f(﹣1)=﹣f(1),∵当x≥0时,f(x)=x2+2x,∴f(1)=1+2=3,即f(﹣1)=﹣f(1)=﹣3.故答案为:﹣3.11.(5分)若函数y=a x(a>0,a≠1)在区间x∈[0,1]上的最大值与最小值之和为3,则实数a的值为2.【解答】解:①当0<a<1时函数y=a x在[0,1]上为单调减函数∴函数y=a x在[0,1]上的最大值与最小值分别为1,a∵函数y=a x在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=a x在[0,1]上为单调增函数∴函数y=a x在[0,1]上的最大值与最小值分别为a,1∵函数y=a x在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故答案为:2.12.(5分)已知函数f(x)的定义域为R,对于任意的x∈R,都满足f(﹣x)=f(x),且对于任意的a,b∈(﹣∞,0],当a≠b时,都有<0.若f(m+1)<f(2),则实数m的取值范围是(﹣3,1).【解答】解:由f(﹣x)=f(x),可得函数f(x)为偶函数,∴f(|x|)=f(x),再根据对任意的a,b∈(﹣∞,0],当a≠b时,都有,故函数在(﹣∞,0]上是减函数,∴函数在[0,+∞)上是增函数,故由f(m+1)<f(2),∴f(|m+1|)<2∴|m+1|<2可得﹣2<m+1<2,解得﹣3<m<1,故答案为:(﹣3,1).13.(5分)函数f(x)=x2+bx+3满足f(2+x)=f(2﹣x),若f(m)<0,则f (m+2)与f(log2π)的大小关系是f(m+2)>f(log2π).【解答】解:∵函数f(x)=x2+bx+3满足f(2+x)=f(2﹣x)∴抛物线的对称轴为2∴b=﹣4∴f(x)=(x﹣3)(x﹣1)即抛物线与x轴交于(1,0),(3,0)点∵f(m)<0∴1<m<3∴3<m+2<5∴f(m+2)>0∵2<π<4∴1<log2π<2∴f(log2π)<0f(m+2)>f(log2π).14.(5分)下列几个命题,其中正确的命题有①④.(填写所有正确命题的序号)①函数y=log2(x﹣3)+2的图象可由y=log2x的图象向上平移2个单位,向右平移3个单位得到;②函数的图象关于点(1,2)成中心对称;③在区间(0,+∞)上函数的图象始终在函数y=x的图象上方;④任一函数图象与垂直于x轴的直线都不可能有两个交点.【解答】解:①将y=log2x的图象向上平移2个单位,得到y=log2x+2的图象,再将所得图象向右平移3个单位得到y=log2(x﹣3)+2的图象,故①正确;②函数==2﹣,此函数是由反比例函数y=﹣向左平移一个单位,再向上平移2个单位得到的,由反比例函数的对称中心为(0,0)知,此函数的对称中心为(﹣1,2),故②错误;③∵点(0,0),(1,1)是函数的图象与函数y=x的图象的两个交点,且,故③错误;④由函数的定义,对于定义域内的任意一个x,由唯一的一个函数值与其对应,故任一函数图象与垂直于x轴的直线都不可能有两个交点.④正确故答案为①④二.解答题:本大题共6小题,共计90分.解答应写出必要的文字步骤.(请写在答题卡的指定位置)15.(10分)(1)计算log3+log3﹣log24;(2)已知+=3,求x+的值.【解答】解:(1)原式=.(2)由已知得.所以.16.(12分)设集合A={x|x<﹣3,或x>6},B={x|3<x<7}.(1)求A∩B;(2)设C={x|x≥m},且B∩C=B,求实数m的取值范围.【解答】解:(1)∵A={x|x<﹣3,或x>6},B={x|3<x<7},∴A∩B={x|6<x<7};(2)∵C={x|x≥m},且B∩C=B,∴B⊆C,则m≤3.17.(12分)设函数f(x)=()10﹣ax,其中a为常数,且f(3)=.(1)求a的值;(2)若f(x)≥4,求x的取值范围.【解答】解:(1)由f(3)=,可得()10﹣3a=,所以,10﹣3a=1,解得a=3.(2)由已知()10﹣3x≥4=()﹣2,所以10﹣3x≤﹣2,解得x≥4,故f(x)≥4解集为{x|x≥4}.18.(15分)甲商店某种商品11月份(30天,11月1日为第一天)的销售价格P(元)与时间t(天)函数关系如图(一)所示,该商品日销售量Q(件)与时间t(天)函数关系如图(二)所示.(1)写出图(一)表示的销售价格与时间的函数关系式P=f(t)及其定义域,写出图(二)表示的日销售量与时间的函数关系式Q=g(t)及其定义域;(2)写出日销售金额M(元)与时间t的函数关系式M=h(t)及其定义域并求M的最大值.(注:日销售金额M=销售价格P×日销售量Q).【解答】解:(1)设价格函数是y=kt+b,过点(0,15)、(30,30),则,∴b=15,k=;∴ff(t)=t+15(0<t≤30,t∈N);设销售量函数y=at+m,过点(0,160),(30,40),则,∴m=160,a=﹣4;∴g(t)=﹣4t+160(0<t≤30)(t∈N);(2)M=h(t)=(t+15)(﹣4t+160)=﹣2t2+20t+2400(0<t≤30,t∈N)∴t=5时,M的最大值为2450元.19.(15分)已知函数f(x)=,x∈(﹣1,1).(1)用单调性的定义证明f(x)在x∈(﹣1,1)上是单调减函数;(2)若关于x的不等式f(x)≥a(x2﹣3x+2)对于任意x∈(﹣1,1)恒成立,求实数a的取值范围.【解答】解:(1)证明:任取x1,x2∈(﹣1,1),且x1<x2,则f(x1)﹣f(x2)=﹣=,又∵x1,x2∈(﹣1,1),x1<x2,∴(1+x1)(1+x2)>0,x2﹣x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在x∈(﹣1,1)上是单调减函数.(2)∵y=x2﹣3x+2=(x﹣2)(x﹣1)在(﹣1,1)上单调递减且恒有y>0,不等式f(x)≥a(x2﹣3x+2)对于任意x∈(﹣1,1)恒成立,即为a≤,对于任意x∈(﹣1,1)恒成立,令g(x)===,当x=时取得最小值,g()=,所以a的取值范围是a≤.20.(16分)已知函数f(x)=ax2﹣|x|+2a﹣1 (a为实常数).(1)判断函数f(x)的奇偶性并给出证明;(2)若函数f(x)在区间[1,2]上是增函数,求实数a的取值范围;(3)若a>0,设g(x)=|f(x)﹣x|在区间[﹣2,2]上的最大值为h(a),求h (a)的表达式.【解答】解:(1)对于函数f(x)=ax2﹣|x|+2a﹣1,它的定义域为R,且满足f (﹣x)=f(x),故函数为偶函数.(2)当a=0时,在区间[1,2]上,f(x)=﹣|x|﹣1=﹣x﹣1,不满足在区间[1,2]上是增函数,故a≠0.在区间[1,2]上,函数f(x)=ax2﹣x+2a﹣1的图象对称轴方程为x=,根据函数f(x)在区间[1,2]上是增函数,可得①,或②,求得a≥.(3)当x∈[﹣2,2]时,g(x)=|f(x)﹣x|=,①0,即≥2,h(a)=max=6a﹣5;②a,即0<2,h(a)=max=6a﹣1∴h(a)=.。