两角和与差的正切公式及应用5-21
人教A版高中数学必修一 《三角恒等变换》三角函数(第3课时两角和与差的正弦、余弦、正切公式)

当堂达标 固双基
31
1.思考辨析 (1)存在 α,β∈R,使 tan(α+β)=tan α+tan β 成立.( ) (2)对任意 α,β∈R,tan(α+β)=1t-antαan+αttaannββ都成立.( ) (3)tan(α+β)=1t-antαan+αttaannββ等价于 tan α+tan β=tan(α+β)·(1-tan αtan β).( )
3.熟悉两角和与差的正切公式的常 素养.
见变形,并能灵活应用.(难点)
2
自主预习 探新知
3
两角和与差的正切公式
名称 简记符号
公式
使用条件
两角和 的正切 T(α+β)
tan(α+β)=1t_-a_n_t_αa_n+_α_t_taa_nn_β_β α,β,α+β≠kπ+π2(k∈Z) 且 tan α·tan β≠1
两角差 T(α-β)
的正切
tan(α-β)=1t_+a_n_t_αa_n-_α_t_taa_nn_β_β α,β,α-β≠kπ+π2(k∈Z) 且 tan α·tan β≠-1
4
1.已知 tan α+tan β=2,tan(α
C [∵tan(α+β)=1t-antαan+αttaannββ
+β)=4,则 tan αtan β 等于( ) =4,且 tan α+tan β=2,
A.2
B.1
∴1-tan2αtan β=4,解得 tan αtan
C.12
D.4
β=12.]
5
2.求值:tan1112π=________.
-2+ 3Biblioteka [tan11π 12
=-tan
π 12
=
-tanπ4-π6
两角和与差的正弦、余弦、正切公式及二倍角公式 课件

探
究
返 首 页
17
课
前 自 主
5.若tan α=13,tan(α+β)=12,则tan β=
.
回 顾
课
1 7
[tan β=tan[(α+β)-α]=1t+antaαn+αβ+-βttaannαα=1+12-12×31 31=17.]
课 后 限 时 集 训
堂
考
点
探
究
返 首 页
18
课
前
自
主回顾 第1课时Fra bibliotek时 集 训
堂
考 点 探 究
cos 2α=ccooss22αα-+ssiinn22αα=11- +ttaann22αα.
返 首 页
7
课 前
2.降幂公式
自
主 回 顾
sin2α=1-c2os 2α;
课 后
限
课
cos2α=1+c2os 2α;
时 集 训
堂
考 点 探
sin αcos α=12sin 2α.
究
用.
返
首
页
34
公式的变形用
课
1
前 自
sin235°-2
主
(1)化简cos 10°cos 80°=
.
回
课
顾
(2)化简sin2α-π6+sin2α+π6-sin2α的结果是
.
后 限 时
课 堂 考 点
(1)-1
(2)12
[(1)cossin1203°5c°o-s 8120°=1c-osc1o20s°s7i0n°-1012°=-112cos
课
前
二、教材改编
自
主 回 顾
1.已知cos α=-35,α是第三象限角,则cosπ4+α为(
一轮复习课件 第3章 第5节 两角和与差的正弦、余弦和正切公式

考情分析
1.会用向量的数量积推导出 两角差的余弦公式.
1.从考查内容看,利用两角和 与差的正弦、余弦、正切公式
2.能利用两角差的余弦公式 进行三角函数式的化简、求值
导出两角差的正弦、正切公 式.
是高考的重点,公式的逆用、
3.能利用两角差的余弦公式 导出两角和的正弦、余弦、
变形应用是高考的热点. 2.从考查题型看,三种题型都 可能出现,常将公式变形与三
辅助角公式中,当 φ 为特殊角,即|ab|的值为 1 或
3或
3 3
时要熟练掌握,对 φ 是非特殊角的情况,只要求会求最值即
可.
【活学活用】 2.已知函数 f(x)= 3sin 2x-2sin2x. (1)求函数 f(x)的最大值; (2)求函数 f(x)的零点的集合. 解:(1)f(x)= 3sin 2x-(1-cos 2x)=2sin2x+π6-1, 所以,当 2x+π6=2kπ+π2,k∈Z,
三角函数式化简要遵循的“三看”原则 (1) 一 看 “ 角 ” . 这 是 最 重 要 的 一 点 , 通 过 角 之 间 的 关 系,把角进行合理拆分与拼凑,从而正确使用公式. (2)二看“函数名称”.看函数名称之间的差异,从而确 定使用的公式. (3)三看“结构特征”.分析结构特征,可以帮助我们找 到变形的方向,常见的有“遇到分式要通分”等.
答案:7102
5.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=______.
解析:∵2α=(α+β)+(α-β), ∴tan 2α=tan[(α+β)+(α-β)] =1t-antaαn+αβ++βttaannαα--ββ=1-3+3×5 5=-814=-47. 答案:-47
【考向探寻】 利用公式化简三角函数式.
高考数学复习考点知识讲解课件20 两角和与差的正弦、余弦、正切公式及二倍角公式

2 cos(45°- 15°) =
2×
3 2
=
6 2.
(3)原式=coss1in01°-0°co3ss1i0n°10°=212cossin1100°-°co2s31s0i°n10°
=4sin30°c2ossin1100°-°cocso1s03°0°sin10°
=4sins3in02°-0°10°=4.
— 返回 —
运用和、差、倍角公式时,不但要熟悉公式的正用,还要熟悉公式的逆用及变形应用, 如 tanα+tanβ=tan(α+β)·(1-tanαtanβ)和二倍角的余弦公式的多种变形等.
— 20 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:辅助角公式的运用 【例 2】 化简:(1)sin1π2- 3cos1π2; (2)cos15°+sin15°; (3)sin110°-sin830°; (4)3 15sinx+3 5cosx.
— 18 —
(新教材) 高三总复习•数学
— 返回 —
[解析]
(1)a =
3 2
cos29°-
1 2
sin29°=
sin(60°-
29°)
=
sin31°,
b
=
1-c2os66°=
2sin16° 2sin2233°= sin33°, c = 1+2tatann1261°6°= 1+cocssoi1ns62211°66°°= 2sin16°cos16°= sin32°, 显 然
— 7—
(新教材) 高三总复习•数学
2.已知 cosα=-45,α∈π,32π,则 sinα+π4等于( C )
A.-
2 10
B.
2 10
22第四章 三角函数、解三角形 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式

(2)设 α 为锐角,若 cosα+π6=54,则 sin2α+π3的值为
12 A.25
√24
B.25
C.-2245
解析 因为 α 为锐角,且 cosα+π6=54,
D.-1225
所以 sinα+π6= 1-cos2α+π6=35,
所以 sin2α+π3=sin 2α+π6 =2sinα+6πcosα+π6=2×53×54=2245,故选 B.
tan α+tan β
tan(α+β)= 1-tan
αtan
(T(α+β)) β
2.二倍角公式
sin 2α= 2sin αcos α ; cos 2α= cos2α-sin2α = 2cos2α-=1
2tan α tan 2α= 1-tan2α .
1-2sin2α ;
【概念方法微思考】 1.诱导公式与两角和差的三角函数公式有何关系? 提示 诱导公式可以看成和差公式中 β=k·π2(k∈Z)时的特殊情形. 2.怎样研究形如f(x)=asin x+bcos x函数的性质? 提示 先根据辅助角公式 asin x+bcos x= a2+b2·sin(x+φ),将 f(x)化成 f(x)
解析
cos2α2
= 121+cos α = 1+cos α =4sin α.
1234567
2
PART TWO
题型分类 深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
自主演练
题型一 和差公式的直接应用
1.(2018·石家庄质检)若 sin(π-α)=13,且π2≤α≤π,则 sin 2α 的值为
A.-
2 10
B.
2 10
√C.-7102
D.7102
2020版高考数学复习第四章三角函数解三角形第3节两角和与差的正弦余弦和正切公式课件理新人教A版

2 2 2 2
sin(α+φ)其中tan
b φ=a
· cos(α-φ)其中tan
a φ=b.
[微点提醒] 1.tan α±tan β=tan(α±β)(1∓tan αtan β).
2.二倍角的正弦、余弦、正切公式
2sin αcos α sin 2α=_____________. 1-2sin2α cos2α-sin2α =_____________ 2cos2α-1 =_____________. cos 2α=_____________
2tan α 2 1 - tan α tan 2α=________________ .
多维探究
cos 10° - 3cos(-100° ) 【例 2-1】 (1)计算: =________. 1-sin 10°
解析
cos 10° - 3cos(-100° ) cos 10° + 3cos 80° cos 10° + 3sin 10° = = = 2· sin 40° 1-sin 10° 1-cos 80°
1 A. 2 3 B. 2 1 C.- 2 3 D.- 2
)
解析 由三角函数定义,sin α=cos 47°,cos α=sin 47°, 则sin(α-13°)=sin αcos 13°-cos αsin 13°
=cos 47°cos 13°-sin 47°sin 13° 1 =cos(47° +13° )=cos 60° = . 2 答案 A
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.
两角和与差的正、余弦公式、正切公式、二倍角公式

1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。
中职数学 第五章 三角计算及其应用

第二节 二倍角的正弦、余弦和正切公式
【例3】
第二节 二倍角的正弦、余弦和正切公式
课堂练习
第三节 三角函数的积化和差和差化积
sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ sin(α+β)+sin(α-β)=2sinαcosβ sinαcosβ= [sin(α+β)+sin(α-β)].
第一节 两角和与差的正弦、余弦和正切公式
【例10】
第一节 两角和与差的正弦、余弦和正切公式
想一想
例10求tan285° 的值还有其 他算法吗?
第一节 两角和与差的正弦、余弦和正切公式
【例11】
第一节 两角和与差的正弦、余弦和正切公式
【例12】
第一节 两角和与差的正弦、余弦和正切公式
课堂练习
第三节 三角函数的积化和差和差化积
【例2】
第三节 三角函数的积化和差和差化积
第三节 三角函数的积化和差和差化积
第三节 三角函数的积化和差和差化积
课堂练习
1. 1)2sin64°cos10°;
2. 1)sin54°+sin22°;
(2)2sin84°cos132°. (2)sin5α-sin3α.
y=Asin(ωx+φ)=Asinz.
第四节 正弦型曲线
第四节 正弦型曲线
【例1】
第四节 正弦型曲线
【例2】
第四节 正弦型曲线
第四节 正弦型曲线
第四节 正弦型曲线
图 5-2
第四节 正弦型曲线
第四节 正弦型曲线
【例3】
第四节 正弦型曲线
学习提示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活学活用
4 1 (1)已知 cos , 0, , tan( ) , 5 2 求 tan 及 tan(2 )的值。
4 12 (2)已知 sin( ) , 0, , cos( ) , 2 5 2 13
(2) tan75
tan 42 tan18 (3) ; 1 tan 42 tan18 tan 30 tan 75 (4) . 1 tan 30 tan 75
( 1) -2- 3; (2)2+ 3; (3) 3; (4) 1. (5) 1.
巩固练习 化简: (1)tan(α+β)(1-tanαtanβ)
两角和与差的正切公式
课 前 小 测
3 1.已知 sin , 是第四象限角, 求 sin( ), 5 4 cos( ), tan( )的值。 4 4
5 3 2.sin , , 求 cos 6 6 5 3
答案:
tan(α-β)+tanβ (2) 1-tan(α-β)tanβ (1)tanα+ tanβ
(2)tanα
tan tan tan 1 tan tan tan tan tan 1 tan tan
典例剖析
1 2 例题2、( 1)已知 tan , tan( ) , 求 tan (2 ) . 2 5
4 4 (2)已知 tan( ) , tan( ) , 求 tan 2 . 5 5
2 π 1 π (3)已知 tan( ) , tan( ) , 求 tan( ). 5 4 4 4
)
3.tan10°tan20°+tan10°tan60°+tan20°tan60
4、已知tanα=3,tanβ=2,α、β∈(0, ), 2 3
。
1 2、已知tan(α+β)= ,tanα=-2,则 tanβ= 。 3
求证:α+β= 4
思维拓展
tan 20 tan 40 tan120 6、求值: tan 20 tan 40
b tan tan tan tan a 代入即可 分析 : tan( ) 而 . c 1 tan tan tan tan a
2、已知tanα、tanβ是方程3x2+5x-1=0的两根, 则tan(α+β)= 。
5 4
活学活用
1.已知、 满足
4
,求(1 tan )(1 tan )的值.
2、已知 tan 和tan( )是方程x 2 px q 0的两 4 个根,问p、q满足的关系式?
课堂检测: 1、化简
1 tan 750 1 tan 750
=(
3 3
5 10 (2)已知, 均为锐角, sin , cos , 5 10 求 -的值。
4
变式: (1)已知向量a (cos ,sin ), b (cos ,sin ), 2 5 a b , 求 cos( ). 5
ቤተ መጻሕፍቲ ባይዱ
5
基础训练题
() 1 tan105
典例剖析
1 tan15 例1.求 的值. 1 tan15
1 tan105 的值呢? 1 tan105
分析, 1 tan 45 , 1 tan15 tan 45 tan15 3 1 tan15 1 tan 45 tan15
1 tan (2)已知 , 化简 4 1 tan
0 0 0 0 3. (1) sin 72 cos 42 cos 72 sin 42
(2) cos 20 cos 70 sin 20 sin 70
0 0 0
2015-5-21 两角和与差的正弦余弦正切公式
0
2
应用
3 1 sin x sin x ① cos x 2 2 6
2 1.是否存在锐角,,使得 +2 = 且tan tan 3 2 说明理由。 .
活学活用
=2- 3同时成立?若存在,求出 , 的值;若不存在,
能力训练题
例4.已知一元二次方程ax2 bx c 0(a 0且a c) 的根是 tan , tan , 求 tan( )的值.
2
及
2
分别为为第二、第三象限角,求 tan
+
2
的值。
典例剖析
1 1 例3:(1)求tan( - )= ,tan =- ,且 , (0, ) 2 7 求2 -的值.
10 1 (2)求sin = ,tan = ,且 , (0, ) 10 7 2 求 +2的值.
∴tan17+tan28=tan(17+28)(1tan17 tan28) =1 tan17tan28 ∴原式=1 tan17tan28+ tan17tan28=1
tan20+tan40+ 3 tan20tan40呢? 你发现了 什么规律? tan23+tan37+ 3 tan23tan37呢?
活学活用
1 tan15 (1)计算 3 tan 60 tan15
1- 3tan75 (2) 呢? o 3 + tan75
o
tan17+tan28+tan17tan28 例2:求值:
解: ∵
tan 17 tan 28 tan( 17 28 ) 1 tan17 tan 28
cos x 3
3 1 ② cos x 3 sin x 2( cos x sin x) 2 2 2sin x 6 ③ 2 cos x 6 sin x 2 2 sin x 6
例1:
3 3 (1)已知 , 0 , cos( ) , 4 4 4 4 5 5 sin( ) 4 13 求(1)sin( + )的值;(2) cos( - )的值。