Coherent Two-Dimensional Fourier Transform Infrared
国防科学技术大学研究生院学位论文...

禽瑟辩学控零大学赣变奎院孥靛论文纯处理,在押GA上实现的难发在于运算精度及逡髯速度之闻翡矛蔗。
最基本的两套方粜即采用定点的lMs算法及浮点的IMs算法。
定点算法可提高逡算速度,保证权矢擞的更新速率与数据遴率一至,从而最大隈度地加快算法的收敛速度,但这一方案的最大缺点在于运算的数字溢出问题,即定点数表示的动懑范围小而弓l起豹数字处遴孛熬交基澄交,瓣最终导至运葬爨谈冀法不狡敛。
浮点数据虫子其大静动态藩围及较高的数据表承精度等特点,一巍豁来藏在鼗字僚弩勉毽中褥到了广泛的滋用。
但比起定点数据来,就FPGA寓现来说,其所占的逻辑资源要多得多,遮算时延也会成倍增加,不利于需要高速数字信号处理的场龠。
如何将定点运算和浮点运算的优点结合起来,即在满足避掉精度的同时保证邋算速度也是学者稍长麓研究静一个课题。
本文首次擐据顼瓣鹣其体揍况提出一耪嚣适合手碍喀A安现鹣籍位浮煮数錾格式,并详缨鹚述7一辩嵩效缮秘兹多簸入浮熹热法器的设计,井撒据奈奎斯特定瑗,采用三级流水线搽作的方式成功在鼢GA上实现了基于浮点运算的LMs算法,并对FPGA实现的结果进行仿真分析。
仿真结果表明,本文所采取的浮点格式的LMS算法可满足术项目的抗干扰要求。
鹜2,18浮点tMs算法懿暖效圈《S谢鼯-30dB,s粥b-lod辫蘑防秘学技术大掌磷寒生巯掌餐论文3.S本牵小结扩额遽穰系统孛,魏码瓣步楚冀孛凝核心懿羧零,扩鬏逶蔼毂撬予撬犍戆魄体现在伪秘阿步后的解扩上。
奉章首先瓣宣接序捌扩颏递信系统的一般原理傲了介绍,而厝较详细地讨论了直接序列扩频通信系统中的同步原理及方法,并羹点分褥了零系统溪采蘩瓣基予潺动糖关豹擒获方法及蓥予延迟镶耦繇豹鼹黥方浚。
熬于捕获环路与跟踪环路最大限度地重用功能模块的想法,本文还仔细地讨论了~种全数字实现的直接序列扩频系统的脚步电路。
利用野GJA实现伪粥同步嘏跋熬关键滔熬在予合理掰分功能棱获及灌确掌握各囊麓穰浃之翅豹控潮警被控麓关祭和整个系统的时序关系,基于此,本义还对同步电路中关键模块的Fpe谴实现进行了详缨域讨论,势绘出了秘癍豹孵廖露及剐m覆理匿。
分析化学英语词汇(2)

变形振动:formation vibration
面内弯曲振动:in-plane bending vibration,β
剪式振动:scissoring vibration,δ
面内摇摆振动:rocking vibration,ρ
面外弯曲振动:out-of-plane bending vibration,γ
分配色谱法:partition chromatography
吸附色谱法:adsorpion chromaography
离子交换色谱法:ion exchange chromatography,IEC
空间排阻色谱法:steric exclusion chromatography,SEC
亲和色谱法:affinity chromatography
异裂(非均裂):heterolytic cleavage
半均裂:hemi-homolysis cleavage
重排:rearragement
分子量:MW
α-裂解:α-cleavage
第十八章 色谱分析法概论
色谱法(层析法):chromatography
固定相:stationary phase
分配系数:distribution cofficient
狭义分配系数:partition coefficient
凝胶色谱法:gel chromatography
凝胶渗透色谱法:gel permeation chromatography,GPC
凝胶过滤色谱法:gel filtration chromatography,GFC
薄层色谱-红外吸收光谱联用:TLC-IR
电子信息工程专业英语词汇.doc

电子信息工程专业英语词汇transistor n 晶体管 plug vt堵,塞,插上n塞子,插头,插销 OSI开放式系统互联参考模型(Open System diode n 二极管 coaxial adj 同轴的,共轴的Interconnect) semiconductor n 半导体 fiber n 光纤 GSM全球移动通信系统(Global System forresistor n 电阻器 relay contact 继电接触器 Mobile Communications) capacitor n 电容器 single instruction programmer 单指令编程器 GPRS通用分组无线业务(General Packet Radio dedicated manufactures programmingunit 专 alternating adj 交互的 Service)amplifier n 扩音器,放大器供制造厂用的编程单元 FDD(frequencydivision duplex)频分双工 integrated circuit 集成电路 beam n (光线的)束,柱,梁 TDD(time division duplex)时分双工 polarize v(使)偏振,(使)极化linear time invariant systems 线性时不变系统 VPI虚路径标识符(Virtual Path Identifier); voltage n 电压,伏特数 Cathode Ray Tube(CRT) 阴极射线管 ISDN(Integrated Services Digital Network)综 tolerance n 公差;宽容;容忍 neuron n神经元;神经细胞合业务数字网 fuzzy adj 模糊的 condenser n 电容器;冷凝器 IDN综合数字网(integrated digital network)dielectric n 绝缘体;电解质 Artificial Intelligence Shell 人工智能外壳程序 HDTV (high definition television)高清晰度电视 electromagnetic adj 电磁的 Expert Systems 专家系统 DCT(Discrete Cosine Transform)离散余弦变换 Artificial Intelligence 人工智能 adj 非传导性的 VCI(virtual circuit address)虚通路标识 deflection n偏斜;偏转;偏差 Perceptive Systems 感知系统 MAN城域网Metropolitan area networks linear device 线性器件 neural network 神经网络 LAN局域网local area networkthe insulation resistance 绝缘电阻 fuzzy logic 模糊逻辑 WAN广域网wide area network anode n 阳极,正极 intelligent agent 智能代理同步时分复用STDM Synchronous Time Division cathode n 阴极 electromagnetic adj 电磁的 Multiplexing breakdown n 故障;崩溃 coaxial adj 同轴的,共轴的统计时分复用STDM Statistical Time Divisionterminal n 终点站;终端,接线端 microwave n 微波 Multiplexing emitter n 发射器 charge v充电,使充电单工传输simplex transmission collect v 收集,集聚,集中 insulator n 绝缘体,绝缘物半双工传输half-duplex transmission insulator n 绝缘体,绝热器 nonconductive adj非导体的,绝缘的全双工传输full-duplex transmission oscilloscope n 示波镜;示波器antenna n天线;触角交换矩阵Switching Matrix gain n 增益,放大倍数modeling n建模,造型电路交换 circuit switchingforward biased 正向偏置 simulation n 仿真;模拟分组交换packet switching reverse biased 反向偏置 prototype n 原型报文交换message switching P-N junction PN结 array n 排队,编队奇偶校验parity checking MOS(metal-oxide semiconductor) 金属vector n 向量,矢量循环冗余校验CRC Cyclic Redundancy Check 氧化物半导体 wavelet n 微波,小浪虚过滤Virtual filter enhancement and exhausted 增强型和耗sine 正弦 cosine 余弦数字滤波digital filtering 尽型 inverse adj倒转的,反转的n反面;相反v伪随机比特Quasi Random Bit integrated circuits 集成电路倒转带宽分配 Bandwidth allocation analog n 模拟 high-performance 高精确性,高性能信源information sourcedigital adj 数字的,数位的 two-dimensional 二维的;缺乏深度的信宿destination horizontal adj, 水平的,地平线的 three-dimensional 三维的;立体的;真实的数字化digitalize vertical adj 垂直的,顶点的 object-oriented programming面向对象的程序数字传输技术Digital transmission technology amplitude n 振幅,广阔,丰富设计灰度图像Grey scale images attenuation n衰减;变薄;稀薄化 spectral adj 光谱的灰度级Grey scale level multimeter n 万用表 attenuation n衰减;变薄;稀释幅度谱Magnitude spectrumfrequency n 频率,周率 distortion n 失真,扭曲,变形相位谱Phase spectrum the cathode-ray tube 阴极射线管 wavelength n 波长频谱frequency spectrum dual-trace oscilloscope 双踪示波器 refractive adj 折射的智能设备Smart Device signal generating device 信号发生器 ATM 异步传输模式Asynchronous Transfer 软切换Soft handover peak-to-peak output voltage 输出电压峰峰值 Mode 硬切换 Hard Handover sine wave 正弦波 ADSL 非对称用户数字线Asymmetric digital 相干检测Coherent detection triangle wave 三角波 subscriber line 边缘检测Edge detection square wave 方波 VDSL甚高速数字用户线very high data rate 冲突检测collision detection amplifier 放大器,扩音器 digital subscriber line 业务集合service integration oscillator n 振荡器 HDSL高速数据用户线 high rate digital 业务分离/综合service separation/ integration feedback n 反馈,回应 subscriber line 网络集合network integration phase n 相,阶段,状态FDMA频分多址(Frequency Division Multiple 环形网Ring networks filter n 滤波器,过滤器 Access) 令牌环网Token Ring network rectifier n整流器;纠正者 TDMA时分多址(Time Division Multiple Access) 网络终端NetworkTerminal band-stop filter 带阻滤波器 CDMA同步码分多址方式(Code Division Multiple 用户终端user terminalband-pass filter 带通滤波器 Access) 用户电路line circuit decimal adj 十进制的,小数的 WCDMA宽带码分多址移动通信系统(Wideband 电路利用率channel utilization(通道利用率) hexadecimal adj/n十六进制的 Code Division Multiple Access) 相关性coherence binary adj 二进制的;二元的TD-SCDMA(Time Division Synchronous Code 相干解调coherent demodulation octal adj 八进制的 Division Multiple Access)时分同步码分多址数字图像压缩digital image compression domain n 域;领域 SDLC(synchronous data link control)同步数据图像编码image encoding code n代码,密码,编码v编码链路控制有损/无损压缩lossy/lossless compression the Fourier transform 傅里叶变换 HDLC(high-level data link control)高级数据链路解压decompression Fast Fourier Transform 快速傅里叶变换控制呼叫控制Call Control microcontroller n 微处理器;微控制器 IP/TCP(internet protocol/transfer Control 误差控制error control assembly language instrucions n 汇编语Protocol)网络传输控制协议存储程序控制stored program control 言指令 ITU (International Telecommunication Union)存储转发方式store-and-forward manner chip n 芯片,碎片国际电信联盟语音\视频传输voice\video transmission modular adj 模块化的;模数的 ISO国际标准化组织(International 视频点播video-on-demand(VOD) sensor n 传感器Standardization Organization); 会议电视Video Conference有线电视cable television deploy 采用,利用,推广应用 multiplex 多路复用的量化quantization take the form of 采用…的形式 degradation 恶化,降级吞吐量throughput parameter 参数,参量 dioxide 二氧化碳话务量traffic layer 层 LED(light-emitting-diode) 发光二极管多径分集Multipath diversity dope 掺杂 evolution 发展,展开,渐进 FET(field effect transistors) 场效应管多媒体通信MDM Multimedia Communication feedback 反馈,回授多址干扰Multiple Access Interference audio recording 唱片dimension 范围,方向,维,元人机交互man machine interface ultra-high-frequency(UHF) 超高频 scenario 方案 in excess of 超过交互式会话Conversational interaction scenario 方案,电影剧本路由算法Routing Algorithm in excess of 超过 amplifer 放大器目标识别Object recognition hypertext 超文本 noninvasive 非侵略的,非侵害的话音变换Voice transform ingredient 成分,因素 tariff 费率,关税率;对…征税中继线trunk line ingredient 成分,组成部分,要素 distributed functional plane(DFP) 分布功传输时延transmission delay metropolitan-area network(WAN) 城域网能平面远程监控remote monitoring metropolitan area network(WAN) 城域网,DQDB(distributed queue dual bus) 分布式光链路optical link 城市网络队列双总线拓扑结构Topology congestion 充满,拥挤,阻塞 hierarchy 分层,层次均方根root mean square collision 冲突 partition 分成whatsoever=whatever 0 extractive 抽出;释放出 segmentation 分割switchboard (电话)交换台 extract 抽取,取出,分离 interface 分界面,接口bipolar (电子)双极的 lease 出租,租约,租界期限,租界物 asunder 分开地,分离地 premise (复)房屋,前提 pass on 传递,切换 detached 分离的,分开的,孤立的 cursor (计算机尺的)游标,指导的 transmission 传输 dispense 分配 elapse (时间)经过,消失 facsimile 传真 allocate 分配,配给;配给物vaporize (使)蒸发 innovative=innovatory 创新的,富有革新精神centigrade 分为百度的,百分度的,摄氏温度subsystem (系统的)分部,子系统,辅助系的的统 track 磁道 fractal 分形 metallic (像)金属的,含金属的,(声音)impetus 促进,激励 molecule 分子,微小,些微刺耳的 cluster 簇cellular 蜂窝状的 dispatch (迅速)派遣,急件 stored-program control(SPC) 存储程序控制 cellular 蜂窝状的,格形的,多孔的 consensus (意见)一致,同意 a large number of 大量的 auxiliary storage(also called secondary storage)deadline (最后)期限,截止时间 peal 大声响,发出辅助存储器tomographic X线体层摄像的 supersede 代替 decay 腐烂,衰减,衰退 alas 唉,哎呀 supplant 代替,取代 negative 负电 cluster 把…集成一束,一组,一簇,一串,out-of-band signaling 带外信号 vicinity 附近,邻近一群simplex transmission 单工传输 vicinity 附近地区,近处 encyclopedia 百科全书 monochromatic 单色的,单色光的,黑白的 sophisticated 复杂的,高级的,现代化的 millionfold 百万倍的 ballistic 弹道的,射击的,冲击的 high-frequency(HF) 高频 semiconductor 半导体 conductor 导体 high definition television 高清晰度电视 radius 半径范围,半径,径向射线 hierarchy 等级制度,层次 chromium 铬 half-duplex transmission 半双工传输 infrastructure 底层结构,基础结构 annotate 给…作注解 accompaniment 伴随物,附属物geographic 地理的,地区的 in terms of 根据,按照 reservation 保留,预定geographically 地理上 disclosure 公布,企业决算公开 quotation 报价单,行情报告,引语 GIS(ground instrumentation system) 地面测public network 公用网 memorandum 备忘录量系统 functionality 功能,功能度 redundancy 备用ground station 地面站 mercury 汞 be viewed as 被看作… earth orbit 地球轨道 resonator 共鸣器 be regards as 被认为是 extraterrestrial 地球外的,地球大气圈外的 resonance 共振 as such 本身;照此;以这种资格 Land-sat 地球资源卫星 whimsical 古怪的,反复无常的 textual 本文的,正文的 rug 地毯,毯子 administration 管理,经营 verge 边界 ignite 点火,点燃,使兴奋cursor 光标(显示器),游标,指针 variation 变化,变量 electromagnetic 电磁的 optical computer 光计算机 conversion 变化,转化 inductive 电感photoconductor 光敏电阻 identity 标识;标志 arc 电弧 optical disks 光盘criterion 标准,准则 telephony 电话(学),通话 optically 光学地,光地 in parallel on 并联到,合并到 dielectric 电介质,绝缘材料;电解质的,绝wide-area networks 广域网 juxtapose 并置,并列缘的 specification 规范,说明书 dialing pulse 拨号脉冲 capacitor 电容 silicon 硅 wave-guide 波导telecommunication 电信,无线电通讯 the international telecommunication union(ITU)wavelength division multiplexed 波分复scenario 电影剧本,方案国际电信联盟用 modem pool 调制解调器(存储)池 excess 过剩 baud rate 波特率 superimposing 叠加,重叠 obsolete 过时的,废弃的 playback 播放(录音带,唱片) pin 钉住,扣住,抓住 maritime 海事的 no greater than 不大于customize 定做,定制 synthetic 合成的,人造的,综合的 update 不断改进,使…适合新的要求,更monolithic 独立的,完全统一的 synthetic 合成的,综合性的新 aluminize 镀铝 rational 合乎理性的 asymmetric 不对称的strategic 对全局有重要意义的,战略的 rationalization 合理化 irrespective 不考虑的,不顾的 substantial 多的,大的,实际上的 streamline 合理化,理顺 inevitably 不可避免的 multi-path fading 多径衰落 infrared 红外线的,红外线 inevitable 不可避免的,不可逃避的,必定的 multi-path 多路,多途径;多路的,多途径的 skepticism 怀疑论 segment 部分 multi-access 多路存取,多路进入 ring network 环形网 abrasion 擦伤,磨损 multiplex 多路复用hybrid 混合物counterpart 伙伴,副本,对应物 pervasive 扩大的,渗透的implementation 实施,实现,执行,敷设 electromechanical 机电的,电动机械的 tensile 拉力的,张力的 entity 实体,存在 Robot 机器人 romanticism 浪漫精神,浪漫主义 vector quantification 矢量量化 Robotics 机器人技术,机器人学 discrete 离散,不连续 mislead 使…误解,给…错误印象,引错accumulation 积累 ion 离子 vex 使烦恼,使恼火,基础结构 force 力量;力infrastructure 基础defy 使落空 substrate 基质,底质 stereophonic 立体声的 facilitate 使容易,促进 upheaval 激变,剧变 continuum 连续统一体,连续统,闭联集 retina 视网膜 compact disc 激光磁盘(CD) smart 灵巧的;精明的;洒脱的 compatible 适合的,兼容的 concentrator 集中器,集线器 token 令牌transceiver 收发两用机 centrex system 集中式用户交换功能系统 on the other hand 另一方面 authorize 授权,委托,允许 converge on 集中于,聚集在…上 hexagonal 六边形的,六角形的 data security 数据安全性 lumped element 集总元件 hexagon 六角形,六边形 data independence 数据独立CAI(computer-aided instruction) 计算机monopoly 垄断,专利 data management 数据管理辅助教学 video-clip 录像剪辑 database 数据库computer-integrated manufacturing(CIM) 计aluminum 铝 database management system(DBMS) 数算机集成制造 pebble 卵石,水晶透镜据库管理信息系统 computer mediated communication(CMC) 计forum 论坛,讨论会database transaction 数据库事务算机中介通信 logical relationships 逻辑关系 data integrity 数据完整性,数据一致性 record 记录 code book 码本attenuation 衰减 register 记录器,寄存器 pulse code modulation(PCM) 脉冲编码调制 fading 衰落,衰减,消失 expedite 加快,促进 roam 漫步,漫游dual 双的,二重的 weight 加权 bps(bits per second) 每秒钟传输的比特transient 瞬时的 accelerate 加速,加快,促进 ZIP codes 美国邮区划分的五位编码 deterministic 宿命的,确定的 categorize 加以类别,分类susceptible(to) 敏感的,易受…的 algorithm 算法 in addition 加之,又,另外 analog 模拟,模拟量 dissipation 损耗 hypothetical 假设的 pattern recognition模式识别 carbon 碳 rigidly 坚硬的,僵硬的 bibliographic 目录的,文献的 diabetes 糖尿病 compatibility 兼容性,相容性 neodymium 钕cumbersome 讨厌的,麻烦的,笨重的 surveillance 监视 the european telecommunication razor 剃刀,剃 surveillance 监视 standardization institute(ETSI) 欧洲电信标准go by the name of 通称,普通叫做 retrieval 检索,(可)补救局 commucation session 通信会话 verification 检验coordinate 配合的,协调的;使配合,调整 traffic 通信业务(量) simplicity 简单,简明 ratify 批准,认可 synchronous transmission 同步传输 film 胶片,薄膜 bias 偏差;偏置 concurrent 同时发生的,共存的 take over 接管,接任 deviate 偏离,与…不同 simultaneous 同时发生的,同时做的 ruggedness 结实 spectrum 频谱 simultaneous 同时发生的,一齐的 threshold 界限,临界值 come into play 其作用 coaxial 同轴的 with the aid of 借助于,用,通过entrepreneurial 企业的 copper 铜 wire line 金属线路,有线线路 heuristic methods 启发式方法 statistical 统计的,统计学的 coherent 紧凑的,表达清楚的,粘附的,相play a …role(part) 起…作用 dominate 统治,支配干的stem from 起源于;由…发生 invest in 投资 compact 紧密的 organic 器官的,有机的,组织的 perspective 透视,角度,远景 approximation 近似hypothesis 前提 graphics 图示,图解 undertake 进行,从事 front-end 前置,前级 pictorial 图像的 transistor 晶体管 potential 潜势的,潜力的coating 涂层,层 elaborate 精心制作的,细心完成的,周密安intensity 强度deduce 推理排的 reasoning strategies 推理策略 coincidence 巧合,吻合,一致vigilant 警戒的,警惕的 scalpel 轻便小刀,解剖刀 inference engine 推理机 alcohol 酒精,酒 inventory 清单,报表 topology 拓扑结构 local area networks(LANs) 局域网 heterodyne 外差法的 spherical 球的,球形的local-area networks(LANs) 局域网 distinguish 区别,辨别 peripheral外界的,外部的,周围的 drama 剧本,戏剧,戏剧的演出 succumb 屈服,屈从,死 gateway 网关 focus on 聚集在,集中于,注视 hazardous 危险的 global functional plane(GFP) 全局功能平面insulator 绝缘 full-duplex transmission 全双工传输 microwave 微波(的) root mean square 均方根 hologram 全息照相,全息图 microprocessor 微处理机,微处理器 uniform 均匀的 microelectronic 微电子 deficiency 缺乏open-system-interconnection(OSI) 开放系thermonuclear 热核的 nuance微小的差别(色彩等) 统互连 artifact 人工制品 encompass 围绕,包围,造成,设法做到 expire 开始无效,满期,终止 AI(artificial intelligence) 人工智能 maintenance 维护;保持;维修 immunity 抗扰,免除,免疫性 fusion 熔解,熔化 satellite communication 卫星通信take…into account 考虑,重视… diskettes(also called floppy disk) 软盘 satellite network 卫星网络programmable industrial automation 可编程sector 扇区 transceiver 无线电收发信机工业自动化 entropy 熵 radio-relay transmission 无线电中继传输demountable 可拆卸的 uplink 上行链路 without any doubt 无疑 tunable 可调的 arsenic 砷 passive satellite 无源卫星 reliable 可靠 neural network 神经网络 sparse 稀少的,稀疏的 be likely to 可能,大约,像要 very-high-frequency(VHF) 甚高频 downlink 下行链路 videotex video 可视图文电视upgrade 升级 precursor 先驱,前任 negligible 可以忽略的 distortion 失真,畸变 visualization 显像 aerial 空气的,空中的,无形的,虚幻的;天线identification 识别,鉴定,验明 feasibility 现实性,可行性 broadband 宽(频)带 pragmatic 实际的 linearity 线性度constrain 限制,约束,制约 regenerative 再生的 ABC American Broadcasting Company 美considerable 相当的,重要的 improve over 在……基础上改善国广播公司 geo-stationary 相对地面静止 play important role in 在…中起重要作用 Automatic Bass Compensation 自动低音by contrast 相反,而,对比起来 in close proximity 在附近,在很近补偿 coorelation 相关性underlying 在下的,基础的 Automatic Brightness Control 自动亮度控制mutual 相互的 in this respect 在这方面mutually 相互的,共同的 entail 遭遇,导致 ABL Automatic Black Level 自动黑电平 interconnect 相互连接,互连 presentation 赠与,图像,呈现,演示 ABLC Automatic Brightness Limiter Circuit 自动亮度限制电路 one after the other 相继,依次 narrowband 窄(频)带minicomputer 小型计算机 deploy 展开,使用,推广应用 ABU Asian Broadcasting Union 亚洲广播protocol 协议,草案 megabit 兆比特联盟(亚广联 ABS American Bureau of Standard 美国protocol 协议,规约,规程germanium 锗psycho-acoustic 心理(精神)听觉的;传音positive 正电标准局的quadrature 正交 AC Access Conditions 接入条件 channelization 信道化,通信信道选择 orthogonal 正交的 Audio Center 音频中心 run length encoding 行程编码 quadrature amplitude modulation(QAM) 正 ACA Adjacent Channel Attenuation 邻频groom 修饰,准备交幅度调制道衰减 virtual ISDN 虚拟ISDN on the right track 正在轨道上 ACC Automatic Centering Control 自动中multitude 许多,大批,大量 sustain 支撑,撑住,维持,持续心控制whirl 旋转 outgrowh 支派;长出;副产品 Automatic Chroma Control 自动色度(增preference 选择,喜欢 dominate 支配,统治益avalanche 雪崩 knowledge representation 知识表示 ACK Automatic Chroma Killer 自动消色pursue 寻求,从事 knowledge engineering 知识工程器 interrogation 询问 knowledge base 知识库 ACP Additive Colour Process 加色法 dumb 哑的,不说话的,无声的 in diameter 直径 ACS Access Control System 接入控制系subcategory 亚类,子种类,子范畴 helicopter 直升飞机统 orbital 眼眶;轨道 acronym 只取首字母的缩写词 Advanced Communication Service 高级oxygen 氧气,氧元素 as long as 只要,如果通信业务 service switching and control points(SSCPs) 业tutorial 指导教师的,指导的 Area Communication System 区域通信务交换控制点 coin 制造(新字符),杜撰系统service control points(SCPs) 业务控制点 fabrication 制造,装配;捏造事实 ADC Analog to Digital Converter 模-数转service controlfunction(SCF) 业务控制功能 proton 质子换器 in concert 一致,一齐intelligence 智能,智力,信息 Automatic Degaussirng Circuit 自动消磁handover 移交,越区切换 intelligent network 智能网电路 at a rate of 以……的速率 intermediate 中间的 ADL Acoustic Delay Line 声延迟线 in the form of 以…的形式 nucleus(pl.nuclei) 中心,核心 ADS Audio Distribution System 音频分配base on… 以…为基础 neutrons 中子系统 yttrium 钇(稀有金属,符号Y) terminal 终端,终端设备 AE Audio Erasing 音频(声音asynchronous transmission 异步传输 overlay 重叠,覆盖,涂覆 AEF Automatic Editing Function 自动编asynchronous 异步的 highlight 重要的部分,焦点辑功能 exceptional 异常的,特殊的 charge 主管,看管;承载 AES Audio Engineering Society 音频工程voice-grade 音频级 dominant 主要的,控制的,最有力的协会indium 铟 cylinder 柱面 AF Audio Frequency 音频 give rise to 引起,使产生 expert system 专家系统 AFA Audio Frequency Amplifier 音频放大private network 专用网络器 cryptic 隐义的,秘密的hard disk 硬盘 transition 转变,转换,跃迁 AFC Automatic Frequency Coder 音频编hard automation 硬自动化 relay 转播码器 relay 转播,中继Automatic Frequency Control 自动频率by means of 用,依靠equip with 用…装备 repeater 转发器,中继器控制 subscriber 用户pursue 追赶,追踪,追求,继续 AFT Automatic Fine Tuning 自动微调 desktop publish 桌面出版 Automatic Frequency Track 自动频率跟telex 用户电报PBX(private branch exchange) 用户小交换机ultraviolet 紫外线的,紫外的;紫外线辐射踪或专用交换机 field 字段 Automatic Frequency Trim 自动额率微vendor 自动售货机,厂商调 be called upon to 用来…,(被)要求…superiority 优势 naturally 自然的;天生具备的 AGC Automatic Gain Control 自动增益控predominance 优势,显著 synthesize 综合,合成制integrate 综合,使完全 AI Artificial Intelligence 人工智能 active satellite 有源卫星in comparison with 与…比较 ISDN(intergrated services digital network) 综 ALM Audio-Level Meter 音频电平表 comparable to 与…可比合业务数字网 AM Amplitude Modulation 调幅 preliminary 预备的,初步的 as a whole 总体上 AMS Automatic Music Sensor 自动音乐premonition 预感,预兆bus network 总线形网传感装置 nucleus 原子核 crossbar 纵横,交叉 ANC Automatic Noise Canceller 自动噪valence 原子价 impedance 阻抗声消除器circumference 圆周,周围 initial 最初的,开始的 ANT ANTenna 天线teleprocessing 远程信息处理,遥控处理 optimum 最佳条件 AO Analog Output 模拟输出 perspective 远景,前途 appear as 作为…出现 APS Automatic Program Search 自动节constrain 约束,强迫 A Analog 模拟目搜索 mobile运动的,流动的,机动的,装在车 A/D Analog to Digital 模-数转换 APPS Automatic Program Pause System 上的 AAC Advanced Audio Coding 高级音频编自动节目暂停系统 convey 运输,传递,转换码 APSS Automatic Program Search System impurity 杂质 ABB Automatic Black Balance 自动黑平自动节目搜索系统 impurity 杂质,混杂物,不洁,不纯衡 AR Audio Response 音频响应ARC Automatic Remote Control 自动遥 BTA Broadband Terminal Adapter宽带 CII China Information Infrastructure 中国控终端适配器信息基础设施ASCII American Standard Code for Broadcasting Technology Association (日CIF Common Intermediate Format 通用中Information Interchange 美国信息交换标准本间格式 AST Automatic Scanning Tracking 自动 BTL Balanced Transformer-Less 桥式推 CIS Chinese Industrial Standard 中国工业扫描跟踪挽放大电路标准ATC Automatic Timing Control 自动定时 BTS Broadcast Technical Standard 广播 CLV Constant Linear Velocity 恒定线速度控制技术标准 CM Colour Monitor 彩色监视器 Automatic Tone Correction 自动音频校 BTU Basic Transmission Unit 基本传输单 CMTS Cable Modem Termination System正元线缆调制解调器终端系统 ATM Asynchronous Transfer Mode 异步 BVU Broadcasting Video Unit 广播视频 CNR Carrier-to-Noise Ratio 载噪比传输模式型(一种3/4英寸带录像机记录格式 CON Console 操纵台ATF Automatic Track Finding 自动寻迹 BW BandWidth 带宽 Controller 控制器 ATS Automatic Test System 自动测试系 BWTV Black and White Television 黑白 CPB Corporation of Public Broadcasting 统电视 (美国公共广播公司ATSC Advanced Television Systems CA Conditional Access 条件接收 CPU Central Processing Unit 中央处理单元 Committee (美国高级电视制式委员会) CAC Conditional Access Control 条件接 CRC Cyclic Redundancy Check 循环冗余校 ***C Automatic Volume Control 自动音收控制验量控制 CAL Continuity Accept Limit 连续性接 CRCC CRI Cyclic Redundancy Check Code ***R Automatic Voltage Regulator 自动受极限循环冗余校验码稳压器 CAS Conditional Access System 条件接 CROM China Radio International 中国国际AWB Automatic White Balance 自动白平收系统广播电台衡 Conditional Access Sub-system 条件接 CRT Control Read Only Memory 控制只读 AZC Automatic Zooming Control 自动变收子系统存储器焦控制 CATV Cable Television 有线电视,电缆电 CS Cathode-Ray Tube 阴极射线管 AZS Automatic Zero Setting 自动调零视 CSC Communication Satellite 通信卫星 BA Branch Amplifier 分支放大器 Community Antenna Television 共用天 CSS Color Sub-carrier 彩色副载波Buffer Amplifier 缓冲放大器线电视 Center Storage Server 中央存储服务器 BAC Binary-Analog Conversion 二进制模 C*** Constant AngularVelocity 恒角速 Content Scrambling System 内容加扰系统拟转换度 CSU Channel Service Unit 信道业务单元BB Black Burst 黑场信号 CBC Canadian Broadcasting Corporation CT Color Temperature 色温 BBC British Broadcasting Corporation 英加拿大广播公司 CTC Cassette Tape Controller 盒式磁带控国广播公司 CBS Columbia Broadcasting System (美制器BBI Beijing Broadcasting Institute 北京国哥伦比亚广播公司 Channel Traffic Control 通道通信量控制广播学院 CC Concentric Cable 同轴电缆Counter Timer Circuit 计数器定时器电路 BC Binary Code 二进制码 CCG Chinese Character Generator 中文 Counter Timer Control 计数器定时器控制Balanced Current 平衡电流字幕发生器 CTE Cable Termination Equipment 线缆终 Broadcast Control 广播控制 CCIR International Radio Consultative 端设备 BCT Bandwidth Compression Technique Committee 国际无线电咨询委员会 Customer Terminal Equipment 用户终端设带宽压缩技术 CCITT International Telegraph and 备 BDB Bi-directional Data Bus 双向数据总Telephone Consultative CTV Color Television 彩色电视线 Committee 国际电话电报咨询委员会 CVD China Video Disc 中国数字视盘BER Basic Encoding Rules 基本编码规则 CCR Central Control Room 中心控制室 CW Carrie Wave 载波 Bit Error Rate 比特误码率 CCTV China Central Television 中国中央 DAB Digital Audio Broadcasting 数字音频 BF Burst Flag 色同步旗脉冲电视台广播BFA Bare Fiber Adapter 裸光纤适配器 Close-Circuit Television 闭路电视 DASH Digital Audio Stationary Head 数字 Brillouin Fiber Amplifier 布里渊光纤放大 CCS Center Central System 中心控制系音频静止磁头器统 DAT Digital Audio Tape 数字音频磁带BGM Background Music 背景音乐 CCU Camera Control Unit 摄像机控制器DBMS Data Base Management System 数 BIOS Basic Input,Output System 基本CCW Counter Clock-Wise 反时针方向据库管理系统输入输出系统 CD Compact Disc 激光唱片 DBS Direct Broadcast Satellite 直播卫星B-ISDN Broadband-ISDN 宽带综合业务 CDA Current Dumping Amplifier 电流放 DCC Digital Compact Cassette 数字小型盒数据网大器带 BIU Basic Information Unit 基本信息单 CD-E Compact Disc Erasable 可抹式激光Dynamic Contrast Control 动态对比度控制元唱片 DCT Digital Component Technology 数字 Bus Interface Unit 总线接口单元 CDFM Compact Disc File Manager 光盘分量技术 BM Bi-phase Modulation 双相调制文件管理(程序Discrete Cosine Transform 离散余弦变换BML Business Management Layer 商务 CDPG Compact-Disc Plus Graphic 带有静 DCTV Digital Color Television 数字彩色电管理层止图像的CD唱盘视BN Backbone Network 主干网 CD-ROM Compact Disc-Read Only DD Direct Drive 直接驱动BNT Broadband Network Termination 宽Memory 只读式紧凑光盘 DDC Direct Digital Control 直接数字控制带网络终端设备 CETV China Educational Television 中国 DDE Dynamic Data Exchange 动态数据交 BO Bus Out 总线输出教育电视台换BPG Basic Pulse Generator 基准脉冲发 CF Color Framing 彩色成帧 DDM Data Display Monitor 数据显示监视生器 CGA Color Graphics Adapter 彩色图形器 BPS Band Pitch Shift 分频段变调节器 (显示卡 DES Data Elementary Stream 数据基本码BSI British Standard Institute 英国标准 CI Common Interface 通用接口流学会 CGA Color Graphics Adapter 彩色图形(显示卡 Data Encryption Standard 美国数据加密 BSS Broadcast Satellite Service 广播卫星 CI Common Interface 通用接口标准业务 CIE Chinese Institute of Electronics 中国电 DF Dispersion Flattened 色散平坦光纤 BT Block Terminal 分线盒、分组终端子学会 DG Differential Gain 微分增益 British Telecom 英国电信 DI Digital Interface 数字接口DITEC Digital Television Camera 数字电视摄像机 DL Delay Line 延时线DLD Dynamic Linear Drive 动态线性驱动 DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital Multimedia Broadcasting 数字多媒体广播DMC Dynamic Motion Control 动态控制DME Digital Multiple Effect 数字多功能特技 DMS Digital Mastering System 数字主系统DN Data Network 数据网络 DNG Digital News Gathering 数字新闻采集 DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输出总线 DOCSIS Data Over Cable Service Interface Specifications 有线数据传输业务接口规范 DOC Drop Out Compensation 失落补偿 DOS Disc Operating System 磁盘操作系统DP Differential Phase 微分相位 Data Pulse 数据脉冲 DPCM Differential Pulse Code Modulation差值脉冲编码调制 DPL Dolby Pro Logic 杜比定向逻辑 DSB Digital Satellite Broadcasting 数字卫星广播 DSC Digital Studio Control 数字演播室控制DSD Dolby Surround Digital 杜比数字环绕声 DSE Digital Special Effect 数字特技DSK Down-Stream Key 下游键 DSP Digital Signal Processing 数字信号处理Digital Sound Processor 数字声音处理器 DSS Digital Satellite System 数字卫星系统 DT Digital Technique 数字技术Digital Television 数字电视 Data Terminal 数据终端 Data Transmission 数据传输DTB Digital Terrestrial Broadcasting 数字地面广播 capacitance欢迎您阅读该资料,希望该资料能给您的学习和生活带来帮助,如果您还了解更多的相关知识,也欢迎您分享出来,让我们大家能共同进步、共同成长。
光学傅里叶变换英文

光学傅里叶变换英文The optical Fourier transform is a fundamental concept in the realm of optics and signal processing, bridging the gap between the spatial and frequency domains. It's a technique that allows us to analyze the frequency components of an image or signal, much like how a prism splits white lightinto its constituent colors.In a lab setting, the process is almost poetic. You start with a coherent light source, often a laser for its purity and precision. This light illuminates an object or a transparency, which acts as our signal in the spatial domain. The light waves interact with the object, picking up its unique pattern of transparencies and opacities, effectively encoding the object's information into the light.This patterned light then passes through a lens, which acts as a Fourier transformer. The lens doesn't just focus the light; it performs a mathematical miracle. It takes the two-dimensional spatial information and transforms it into a two-dimensional frequency distribution. The result is a diffraction pattern, an array of concentric rings and bright spots that may seem abstract but are rich with data.Each ring, each spot, represents a different frequency component of the original object. The beauty of this transformation is that it allows us to see the invisible. Frequencies that are invisible to the naked eye becomevisible as patterns of light and dark. It's as if we've given the light a new language to describe the world.But the optical Fourier transform isn't just a scientific curiosity; it has practical applications that touch our lives in profound ways. In communications, it helps to designfilters for mobile phones and satellites. In medicine, it's used in OCT (Optical Coherence Tomography) to create detailed images of the retina. In astronomy, it's instrumental in analyzing the light from distant stars and galaxies.The emotional resonance of the optical Fourier transform lies in its ability to reveal the unseen. It's a tool of discovery, a key that unlocks the hidden frequencies of the universe. It's a testament to human ingenuity and our relentless pursuit of understanding the world around us. Each time we use it, we're not just processing data; we're engaging in a dance with the very fabric of reality, one that continues to inspire awe and wonder.。
光学相干层析成像(OCT)-OSA2010最新文章

Three-dimensional speckle suppression in optical coherence tomography based on the curvelettransformZhongping Jian1,*, Lingfeng Yu1, Bin Rao1, Bruce J. Tromberg1, and Zhongping Chen1,2 1Beckman Laser Institute, University of California, Irvine, California 92612, USA2z2chen@*zjian@Abstract: Optical coherence tomography is an emerging non-invasivetechnology that provides high resolution, cross-sectional tomographicimages of internal structures of specimens. OCT images, however, areusually degraded by significant speckle noise. Here we introduce to ourknowledge the first 3D approach to attenuating speckle noise in OCTimages. Unlike 2D approaches which only consider information inindividual images, 3D processing, by analyzing all images in a volumesimultaneously, has the advantage of also taking the information betweenimages into account. This, coupled with the curvelet transform’s nearlyoptimal sparse representation of curved edges that are common in OCTimages, provides a simple yet powerful platform for speckle attenuation.We show the approach suppresses a significant amount of speckle noise,while in the mean time preserves and thus reveals many subtle features thatcould get attenuated in other approaches.©2010 Optical Society of AmericaOCIS codes: (110.4500) Imaging systems: Optical Coherence Tomography; (110.6150)Imaging systems: Speckle Imaging; (100.2980) Image processing: Image Enhancement. References and links1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory,C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).2. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7),1427–1439 (1997).3. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1),95 (1999).4. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherencetomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901 (2007).5. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in opticalcoherence tomography,” J. Opt. Soc. Am. A 22(11), 2366 (2005).6. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use ofa spatially adaptive wavelet filter,” Opt. Lett. 29(24), 2878–2880 (2004).7. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCTimages,” Opt. Express 16(16), 12313–12333 (2008).8. P. Puvanathasan, and K. Bizheva, “Speckle noise reduction algorithm for optical coherence tomography basedon interval type II fuzzy set,” Opt. Express 15(24), 15747–15758 (2007).9. S. H. Xiang, L. Zhou, and J. M. Schmitt, “Speckle Noise Reduction for Optical Coherence Tomography,” Proc.SPIE 3196, 79 (1997).10. Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle Attenuation by Curvelet Shrinkage inOptical Coherence Tomography,” Opt. Lett. 34, 1516 (2009).11. E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” SIAM MultiscaleModel. Simul. 5(3), 861 (2006).12. E. J. Candès, and D. L. Donoho, “Curvelets–a surprisingly effective nonadaptive representation for objects withedges,” in Curves and Surface Fitting, C. Rabut, A. Cohen, and L. L. Schumaker, eds. (Vanderbilt University Press, Nashville, TN., 2000).13. E. J. Candès, and D. L. Donoho, “New tight frames of curvelets and optimal representations of objects withpiecewise C2 singularities,” Commun. Pure Appl. Math. 57, 219 (2003).14. J.-L. Starck, E. J. Candès, and D. L. Donoho, “The Curvelet Transform for Image Denoising,” IEEE Trans.Image Process. 11(6), 670–684 (2002).#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 102415. B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatileretinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).16. S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for imagedenoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).1. IntroductionOptical coherence tomography (OCT) has been undergoing rapid development since its introduction in the early 1990s [1]. It provides high resolution, cross-sectional tomographic images of internal structures of specimens, and therefore gains a wide variety of application in the field of biomedical imaging. Compared with other medical imaging modalities, 3D OCT has advantages in that it is non-invasive and it can acquire and display volume information in real time. However, due to its coherent detection nature, OCT images are accompanied with a significant amount of speckle noise, which not only limits the contrast and signal-to-noise ratio of images, but also obscures fine image features.Various methods have been developed to minimize the effect of speckle noise. Those methods can generally be classified into two categories: the first one performs noise attenuation by acquiring extra data, such as using spatial compounding and frequency compounding [2, 3]. While effective, this method generally requires extra effort to acquire data and cannot process images from standard OCT systems, and is therefore less preferred than the second category, which uses digital signal processing techniques to process images acquired with standard OCT systems. Different digital signal processing algorithms have been proposed, including for example enhanced Lee filter [4], median filter [4], symmetric nearest neighbor filter [4], adaptive Wiener filter [4], I-divergence regularization [5], as well as filtering in a transform domain such as the wavelet [4, 6–9]. Recently we described a speckle suppression algorithm in a transform domain called curvelets [10]. There we showed the curvelet representation of OCT images is very efficient, and with that, we significantly improved qualities of OCT images in the respects of signal to noise ratio, contrast to noise ratio, and so on.In almost all those algorithms, however, speckle reduction is performed on each image in a volume individually, and then all despeckled images are put together to form a volume. This process treats images as if they are independent from each other and therefore no relationship among different images is utilized, which is a waste of information provided by 3D OCT data. As many biological structures have layered structures not just in 2D, but also in 3D, and speckle noise is still random in 3D, we would expect that a despeckling algorithm based on 3D processing will be more powerful in attenuating noise and preserving features, especially those fine features across different images.There are a number of ways to do 3D processing, such as extending those two-dimensional filters mentioned above to three dimensional, or performing a 3D transform followed by processing in the transformed domain. The 3D transform can be, for example, the 3D wavelet transform, the 3D curvelet transform, or a hybrid one, such as a 2D curvelet transform of individual images followed by a one-dimensional wavelet transform along the perpendicular direction. Given the many superior properties of the curvelet transform, here we extend our earlier work of 2D curvelets to 3D, by performing the speckle attenuation in the 3D curvelet domain. We will first introduce some background information of the curvelet transform and its properties, then describe our algorithm in detail, and finally present the curvelet despeckling results tested on three-dimensional Fourier domain OCT images.2. Method2.1 Curvelet transformThe curvelet transform is a recently developed multiscale mathematical transform with strong directional characters [11–13]. It is designed to efficiently represent edges and other singularities along curves. The transform decomposes signals using a linear and weighted combination of basis functions called curvelets, in a similar way as the wavelet transform decomposes signals as a summation of wavelets. Briefly, the curvelet transform is a higher-#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1025dimensional extension of the wavelet transform. While the wavelet transform providesstructured and sparse representations of signals containing singularities that satisfy a variety of local smoothness constraints, including for example piecewise smoothness, they are unableto capitalize in a similar effective fashion on signals of two and more dimensions. The curvelet transform can measure information of an object at specified scales and locations and only along specified orientations. To achieve that, curvelets first partition the frequency plane into dyadic coronae, and (unlike wavelets) then subpartition the coronae into angular wedges [11]. Curvelets have time-frequency localization properties of wavelets, yet (unlike wavelets) also show a high degree of directionality and anisotropy. The curvelet transform is particularly suitable for noise attenuation, as it maps signals and noise into different areas in the curvelet domain, the signal’s energy is concentrated in a limited number of curvelet coefficients, and the reconstruction error decays rapidly as a function of the largest curvelet coefficients.The two-dimensional curvelets are, roughly speaking, 2D extensions of wavelets. Theyare localized in two variables and their Fourier duals (e.g., x-y and fx-fy), and are uniquelydecided by four parameters: scale, orientation, and two translation parameters (x,y)). There are several software implementations of the curvelet transform, and the one often used is the wrapping method of Fast Discrete Curvelet Transform (FDCT) [11]. The left of Fig. 1 shows a curvelet partitioning of fx-fy plane, where there are 6 scales, represented by the squares, and going from the inner to outer, the scale is j =1,2,3,…6. Each scale is further partitioned into a number of orientations, and the number doubles every other scale starting from the second (coarsest) scale. That is, going from the inner to the outer, the number of orientations is l=1, n, 2n, 2n, 4n, 4n… where n is the number of orientation at the second (coarsest) scale. This way, the directional selectivity increases for finer scales. The right side of Fig. 1 shows two example curvelets at the specific scales and orientations denoted by A and B in the partition diagram, respectively. Each curvelet oscillates in one direction, and varies more smoothly in the others. The oscillations in different curvelets occupy different frequency bands. Each curvelet is spatially localized, as its amplitude decays rapidly to zero outside of certain region. The directional selectivity of curvelets can be observed, for example, (A) is mainly along the horizontal direction while (B) is in another direction. This property can be utilized to selectively attenuate/preserve image features along certain directions.Fig. 1. Left: A schematic of the curvelet partitioning of fx-fy domain. The number of scales is6, and the number of orientations at the second scale is 8. Right: two example curvelets, shownfor the scale and orientation A and B, respectively. The curvelet A is along horizontaldirection, while B is along a dipping direction.The three-dimensional (3D) transform is very similar to the two-dimensional transform,except that each scale is defined by concentric cubes in the fx-fy-fz domain, and the division into orientations is performed by dividing the square faces of the cubes into sub-squares. Like in 2D transform, the number of orientations is specified for the second (coarsest) scale, which then determines the number of sub-squares in each direction. For example, a value of 8 orientations would lead to 64 sub-squares on each face. And since there are 6 faces to each cube, there would be a total of 384 orientations at that scale. The number of orientations doubles every other scale for finer scales, the same way as in the 2D transform.#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010(C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 10262.2 The despeckling algorithmThe curvelet-based despeckling algorithm consists of the following steps:I. A preprocessing step is first applied to the acquired data to compensate for the motionof the target during the data acquisition process. 3D OCT data is acquired image byimage, not obtained at one single shot. Although the scanning time can be quite short, the target can still move during that short time. The motion can have significant impact on acquired images. For example, it can seriously distort the shapeof the target, making the edge detection and other image analysis especially challenging. It can also make some continuous features across images not continuousany more, which would make the corresponding 3D curvelet transform coefficientssmaller than they should. Those smaller coefficients can then be attenuated duringthe despeckled process, which in turn, can lead to the loss of image features. Tominimize the impact of the motion, those features are first aligned in all directions.For example, for our acquired retina images, data are preprocessed based on the ideathat Retinal Pigment Epithelium (RPE) in neighboring images should be continuous,and blood vessels in fundus image should have minimal abrupt changes. The aligneddata is then further processed in the next steps.II. Take a logarithm operation of the aligned data. This is to convert the multiplicative noise into additive noise, as it is well known that speckles can be well modeled asmultiplicative noise. That is, log(s) = log(x) + log(z), where s is the measured data, xis the noise free signals to be recovered, and z is the speckle noise.III. Take the 3D forward curvelet transform of the data to produce the curvelet coefficients. The curvelet transform is a linear process, so the additive noise is stilladditive after the transform: S j,l,p = X j,l,p + Z j,l,p, where S j,l,p, X j,l,p, and Z j,l,p are thecoefficients for measured data, speckle-free signals, and speckle noise, respectively;j, l and p are parameters used for the curvelet transform, j is the scale, l is the orientation, and p is the spatial coordinates.IV. Selectively attenuate the obtained curvelet coefficients. A hard threshold T j,l is applied to each curvelet coefficients S j,l,p, so thatS = S j,l,p when |S j,l,p|>T j,l, and,,j l pS =0 when |S j,l,p|≤T j,l.j l p,,V. Take the inverse 3D curvelet transform of the attenuated curvelet coefficients to reconstruct despeckled data. The obtained data is in logarithm scale, so an exponential calculation of base 10 is applied to convert the despeckled data back tothe original linear scale when needed.In the process, one of the most important steps is the selection of the threshold T j,l, which determines to a large extent the performance of the algorithm. Here we use a simple yet powerful strategy called k-sigma method to set the threshold [14], in which T j, l=k×σ1×σ2, where k is an adjustable parameter, σ1 is the standard deviation of noise from a background region in the image data, and σ2 is the standard deviation of noise in the curvelet domain at a specific scale j and orientation l. By choosing a background region that does not have image features, one can directly compute the mean value and the standard deviation σ1. σ2, on the other hand, cannot be directly calculated from the forward curvelet transformed data, because the transformed data contain coefficients of not only noises, but also of image features, and it is not easy to separate them in the curvelet domain. One easier way to get σ2 is to simulate the noise data from the mean value and σ1, by assuming the noise has Gaussian distribution. Then the simulated data is transformed into the curvelet domain. The standard deviation σ2 at a specific scale and orientation can then be directly computed [14]. Although the noise in the background region may not be exactly the same as some speckle noises, the adjustable parameter k compensates that and the value of k can vary with scale and/or orientation. The#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1027larger k is, the more noise will be removed, and the best of its value can be determined by trial and error. To quantify the performance of the algorithm, we compute five quality metrics [6]: contrast-to-noise ratio (CNR), which measures the contrast between image features and noise,and defined to be 10log[()s b CNR μμ=−; equivalent number of looks (ENL),which measure the smoothness of areas that should be homogeneous but are corrupted by speckle noise, and defined to be 22/s s ENL μσ=, where μs and σs are the mean and standard deviation of a signal area, and μb and σb are the mean and standard deviation of a background noise area, respectively; peak signal to noise ratio (SNR), defined as 20log[max()/]SNR x σ=, where x is the amplitude data and σ is the noise variance of the background noise area; crosscorrelation (XCOR), which measures the similarity between theimages before and after denoising, and is defined as ,,,/m n m n m n XCOR s y =∑,where s is the intensity data before denoising, y is the intensity data after denoising, and m and n are the indexes of the images; and FWHM, the full width at half maximum, which measures the image sharpness. Both CNR and ENL are computed using log scale data, and are averaged over many areas. SNR and XCOR are computed using linear scale data. The value of XCOR is smaller than 1, and the larger XCOR is, the closer the denoised image is to the original image.2.3 Experimental setupThe image data is acquired by a Fourier domain OCT system [15]. The low-coherence light source has a center wavelength of 890nm and an FWHM bandwidth of 150nm. A broadband optical isolator was used to prevent optical feedback before light enters a 2 by 2 broadband fiber- coupler-based interferometer. Light at the reference arm was focused onto a reference mirror. The sample arm was modified from the patient module of a Zeiss Stratus OCT instrument. The detection arm was connected to a high performance spectrometer, which makes the system bench-top sensitivity of 100 dB with 650 μw light out of the sample-arm fiber and 50 μs CCD integration time. A 9 dB of SNR roll-off from 0 mm imaging depth to 2 mm depth was observed. The system speed was set to be 16.7 K A-lines/s, with its CCD A-line integration time being 50 μs and the line period being 60 μs. With the system, we acquired a 3D volume of human retina, with a lateral resolution of 7.8 μm and axial resolution of 4 μm.3. ResultsWe applied our algorithm to the acquired data. Figure 2 shows experimentally acquired cross-sectional images of human retina in three perpendicular planes: (a) x-y (B-scan), (b) x-z, and (c) y-z, respectively, where x is in the depth direction, y is perpendicular to x and is in the B-scan plane, z is perpendicular to both x and y directions and is the third dimension. Figure 3 shows the same images after being denoised by the 3D algorithm. For direct comparison, the images in two figures are shown on the same color scale and no pixel thresholding is applied. The background region, where there are no distinct image features, is the upper region in (a) and (b), as well as the middle and right noise region of (c). In obtaining the despeckled results, we have tested a number of combinations of parameters to perform the 3D curvelet transform, and the used values are: the number of scales is 3, and the number of orientations at the second coarsest scale is 16. A common threshold k=0.42 is used at all scales and orientations.(C) 2010 OSA 18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1028#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010Fig. 2. (color online) acquired cross-sectional retina images before denoising at differentplanes: (a) x-y plane (B-scan plane), (b) x-z plane along the vertical solid white line in (a), and(c) the cross-section image in the y-z plane along the horizontal solid white line in (a). Thewhite dotted lines in the figure indicate where the signals in Fig. 5 are shown.Fig. 3. (color online) the same images shown in Fig. 2, but after denoising, and shown on thesame color scale. The black arrow in (b) indicates the photoreceptor inner and outer segmentjunction that is preserved and made more distinct by the despeckling process. The two blackarrows in (c) indicate two yellow features that are preserved and made more distinct by thedespeckling process.Fig. 4. (color online) the cross section signals along the three white dot lines in Fig. 2, before(blue dotted) and after (red solid) denoising. The edge sharpness of the original image is wellpreserved in the denoising process. The denoising process also makes clearer the layeredstructure of the retina, as indicated by the more distinct peak values in the denoised signals.Much of the noise in the images has been reduced, which is most obvious in the background regions. To have a better comparison, Fig. 4 shows a one-dimensional cross-section of the image at the indicated white dotted line in Fig. 2, from images (a), (b) and (c),#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1029respectively. The despeckled signals are much cleaner than the original ones: the strong noise fluctuation in the original signals is attenuated, not only at the places where only noise resides, but also in other parts where noise is superimposed on the signals. And the attenuation of the speckle noise is achieved when the edge sharpness and image features of the original signal are both well preserved, demonstrating the ability of the algorithm in preserving signals while attenuating noise.The despeckling process makes some features of the object more obvious. For example, it is challenging, from the original signals (blue dotted lines) in Fig. 4 (a) and (b), to judge where the layered structure of the retina is, but it is much easier to do so from the denoised signals (red solid lines): the denoised signals, with the noised fluctuation removed, provide more distinct peaks and therefore the locations of the layered structure. This is especially useful for further automatic image analysis, as the less the ambiguity there is, the more accurate the results will be.Often times some image features are not distinct in a single image, but they are continuous across many neighboring images. In 2D despeckling, those weak image features tend to be attenuated with the speckle noise, as their amplitude and therefore transformed coefficients are close to those of noise. They, however, can be better preserved in 3D processing, as a three-dimensional curvelet transform would give relatively large coefficients for those continuous features across images than for randomly appeared speckle noise. An example is the two yellow features indicated by two black arrows in Fig. 3(c). They are easily discernible in the despeckled data, but can be barely observed from the image before despeckling. Another example is the photoreceptor inner and outer segment junction (IS/OS) indicated by the black arrow in Fig. 3(b), which is nicely continuous across images (along the direction of z) and distinct from its neighboring features, but the same feature is less distinct in the image before despeckling.To see this effect more clearly, Fig. 5 shows the same images in Fig. 2 denoised by 2D despeckling algorithm, where the threshold in the 2D algorithm [10] is chosen so that the crosscorrelation between Fig. 5(a) and Fig. 2(a) is the same as the crosscorrelation between Fig. 3(a) and Fig. 2(a). Not only the features indicated by the black arrows are more distinct and continuous in the 3D despeckling results, but also the layers of tissue where the white arrows reside in Fig. 5 are more preserved in the 3D results. The reason for this preservation difference is that these layers of tissue have the signals that are comparable to those of noise, as a result, when only a single image is despeckled in 2D despeckling, their transformed coefficients are close to those of noise and therefore can be attenuated easily. On the other hand, in 3D despeckling, because of the continuous features, the transformed coefficients are larger than those of noise and therefore are preserved better.Fig. 5. (color online) the same images shown in Fig. 2, but after denoising by the 2D curveletalgorithm. The features indicated by the black arrows are preserved and made more distinct bythe despeckling process, but to a less degree than the 3D algorithm. The layers of tissue wherethe white arrows reside are significantly attenuated, while those in 3D are largely preserved.#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1030The improvement of the image quality is also reflected in quality metric numbers. Table 1 lists the results of the quality metrics for three different thresholds of 3D method and one threshold for 2D method, and Fig. 6 shows the trend of SNR and crosscorrelation XCOR for more 3D thresholds. Comparing the original signal to the despeckled signal at threshold k=0.5, the signal to noise ratio is significantly increased by 32.59dB, the contrast to noise ratio is increased by 3.17dB, the sharpness, calculated based on the FWHM of the photoreceptor inner and outer segment junction (IS/OS) from the Fig. 4(b), is improved by 1.55 times, and the smooth region is more smooth after despeckling, with the equivalent number of looks increased by more than 3 times. All those are achieved when the crosscorrelation is 0.914. Although the number 0.914 might not seem ideal, as we have seen from Fig. 2, 3, and 5, the sharpness and features of the original images are still well preserved in the despeckled images.Table 1. Image Quality MetricsOriginal132.95 4.6430.4332.963D, k=0.40.91963.707.3794.3523.043D, k=0.50.91465.547.81102.9221.323D, k=0.60.91265.118.00181.4121.722D, k=0.50.91959.127.87169.6922.76Fig. 6. SNR and Crosscorrelation as a function of different threshold k in the 3D despecklingalgorithm. The algorithm improves the most SNR of 32.59 dB at k=0.5, and thecrosscorrelation between the original image and the despeckled image is 0.914. Thecrosscorrelation does not change much between k=0.6 and k=1.0, which demonstrates thecurvelet transform’s advantage in despeckling, as further explained in the text.With the increase of threshold k, as expected, SNR, CNR and ENL all increase while XCOR decreases. However, the signal to noise ratio does not always increase, instead it reaches the maximum of 65.54dB at k=0.5, then begins to drop to ~60dB at k=1.0, as shown in Fig. 6; the crosscorrelation decreases initially at small k values, and then it does not change significantly for k between 0.6 and 1.0. This is a very interesting phenomenon, as we would think the crosscorrelation should decrease all the time with increasing thresholds. It, however, is explainable and from another perspective, shows the advantage of processing in the curvelet domain; that is, curvelets provide a sparse representation so that most signal energy is concentrated in a limited number of curvelet coefficients, and the curvelet reconstruction error decays rapidly as a function of maximum curvelet coefficients. As a result, although increasing k leads to zeroing of more curvelet coefficients, so long as the threshold is not large enough to attack those limited number of major curvelet coefficients, an almost the same data can still be reconstructed and therefore the crosscorrelation does not vary much. Of course, increasing the threshold further would, eventually, lead to the loss of image features#118852 - $15.00 USD Received 21 Oct 2009; revised 14 Dec 2009; accepted 18 Dec 2009; published 7 Jan 2010 (C) 2010 OSA18 January 2010 / Vol. 18, No. 2 / OPTICS EXPRESS 1031。
电子信息工程专业英语词汇(精华整理版)

电子信息工程专业英语词汇(精华整理版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(电子信息工程专业英语词汇(精华整理版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为电子信息工程专业英语词汇(精华整理版)的全部内容。
transistor n 晶体管diode n 二极管semiconductor n 半导体resistor n 电阻器capacitor n 电容器alternating adj 交互的amplifier n 扩音器,放大器integrated circuit 集成电路linear time invariant systems线性时不变系统voltage n 电压,伏特数tolerance n 公差;宽容;容忍condenser n 电容器;冷凝器dielectric n 绝缘体;电解质electromagnetic adj 电磁的adj 非传导性的deflection n偏斜;偏转;偏差linear device 线性器件the insulation resistance 绝缘电阻anode n 阳极,正极cathode n 阴极breakdown n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中insulator n 绝缘体,绝热器oscilloscope n 示波镜;示波器gain n 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN结MOS(metal-oxide semiconductor)金属氧化物半导体enhancement and exhausted 增强型和耗尽型integrated circuits 集成电路analog n 模拟digital adj 数字的,数位的horizontal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富attenuation n衰减;变薄;稀薄化multimeter n 万用表frequency n 频率,周率the cathode-ray tube 阴极射线管dual—trace oscilloscope 双踪示波器signal generating device 信号发生器peak-to—peak output voltage 输出电压峰峰值sine wave 正弦波triangle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator n 振荡器feedback n 反馈,回应phase n 相,阶段,状态filter n 滤波器,过滤器rectifier n整流器;纠正者band-stop filter 带阻滤波器band-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n十六进制的binary adj 二进制的;二元的octal adj 八进制的domain n 域;领域code n代码,密码,编码v编码the Fourier transform 傅里叶变换Fast Fourier Transform 快速傅里叶变换microcontroller n 微处理器;微控制器assembly language instrucionsn 汇编语言指令chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay contact 继电接触器single instruction programmer单指令编程器dedicated manufacturesprogramming unit 专供制造厂用的编程单元beam n (光线的)束,柱,梁polarize v(使)偏振,(使)极化Cathode Ray Tube(CRT)阴极射线管neuron n神经元;神经细胞fuzzy adj 模糊的Artificial Intelligence Shell人工智能外壳程序Expert Systems 专家系统Artificial Intelligence 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑intelligent agent 智能代理electromagnetic adj 电磁的coaxial adj 同轴的,共轴的microwave n 微波charge v充电,使充电insulator n 绝缘体,绝缘物nonconductive adj非导体的,绝缘的antenna n天线;触角modeling n建模,造型simulation n 仿真;模拟prototype n 原型array n 排队,编队vector n 向量,矢量wavelet n 微波,小浪sine 正弦 cosine 余弦inverse adj倒转的,反转的n反面;相反v倒转high—performance 高精确性,高性能two—dimensional 二维的;缺乏深度的three—dimensional 三维的;立体的;真实的object—oriented programming面向对象的程序设计spectral adj 光谱的attenuation n衰减;变薄;稀释distortion n 失真,扭曲,变形wavelength n 波长refractive adj 折射的ATM 异步传输模式AsynchronousTransfer ModeADSL非对称用户数字线Asymmetricdigital subscriber lineVDSL甚高速数字用户线very highdata rate digital subscriberlineHDSL高速数据用户线 high ratedigital subscriber lineFDMA频分多址(Frequency DivisionMultiple Access)TDMA时分多址(Time DivisionMultiple Access)CDMA同步码分多址方式(CodeDivision Multiple Access)WCDMA宽带码分多址移动通信系统(Wideband Code DivisionMultiple Access)TD—SCDMA(Time DivisionSynchronous Code DivisionMultiple Access)时分同步码分多址SDLC(synchronous data linkcontrol)同步数据链路控制HDLC(high—level data linkcontrol)高级数据链路控制IP/TCP(internet protocol/transfer Control Protocol)网络传输控制协议ITU (InternationalTelecommunication Union)国际电信联盟ISO国际标准化组织(InternationalStandardization Organization);OSI开放式系统互联参考模型(OpenSystem Interconnect)GSM全球移动通信系统(GlobalSystem for Mobile Communications)GPRS通用分组无线业务(GeneralPacket Radio Service)FDD(frequency division duplex)频分双工TDD(time division duplex)时分双工VPI虚路径标识符(Virtual PathIdentifier);ISDN(Integrated ServicesDigital Network)综合业务数字网IDN综合数字网(integrateddigital network)HDTV (high definitiontelevision)高清晰度电视DCT(Discrete Cosine Transform)离散余弦变换VCI(virtual circuit address)虚通路标识MAN城域网Metropolitan areanetworksLAN局域网local area networkWAN广域网wide area network同步时分复用STDM SynchronousTime Division Multiplexing统计时分复用STDM StatisticalTime Division Multiplexing单工传输simplex transmission半双工传输half-duplex transmission全双工传输full-duplex transmission交换矩阵Switching Matrix电路交换 circuit switching分组交换packet switching报文交换message switching奇偶校验parity checking循环冗余校验CRC Cyclic Redundancy Check虚过滤Virtual filter数字滤波digital filtering伪随机比特Quasi Random Bit带宽分配 Bandwidth allocation信源information source信宿destination数字化digitalize数字传输技术Digital transmission technology灰度图像Grey scale images灰度级Grey scale level幅度谱Magnitude spectrum相位谱Phase spectrum频谱frequency spectrum智能设备Smart Device软切换Soft handover硬切换 Hard Handover相干检测Coherent detection边缘检测Edge detection冲突检测collision detection业务集合service integration业务分离/综合service separation/ integration网络集合network integration环形网Ring networks令牌环网Token Ring network网络终端Network Terminal用户终端user terminal用户电路line circuit电路利用率channel utilization (通道利用率)相关性coherence相干解调coherent demodulation数字图像压缩digital image compression图像编码image encoding有损/无损压缩lossy/lossless compression解压decompression呼叫控制Call Control误差控制error control存储程序控制stored program control存储转发方式store-and-forward manner语音\视频传输voice\video transmission视频点播video—on-demand(VOD)会议电视Video Conference有线电视cable television量化quantization吞吐量throughput话务量traffic多径分集Multipath diversity多媒体通信MDM Multimedia Communication多址干扰Multiple Access Interference人机交互man machine interface 交互式会话Conversationalinteraction路由算法Routing Algorithm目标识别Object recognition话音变换Voice transform中继线trunk line传输时延transmission delay远程监控remote monitoring光链路optical link拓扑结构Topology均方根root mean squarewhatsoever=whatever 0switchboard (电话)交换台bipolar (电子)双极的premise (复)房屋,前提cursor (计算机尺的)游标,指导的elapse (时间)经过,消失vaporize (使)蒸发subsystem (系统的)分部,子系统,辅助系统metallic (像)金属的,含金属的,(声音)刺耳的dispatch (迅速)派遣,急件consensus (意见)一致,同意deadline (最后)期限,截止时间tomographic X线体层摄像的alas 唉,哎呀cluster把…集成一束,一组,一簇,一串,一群encyclopedia 百科全书millionfold 百万倍的semiconductor 半导体radius 半径范围,半径,径向射线half-duplex transmission 半双工传输accompaniment 伴随物,附属物reservation 保留,预定quotation 报价单,行情报告,引语memorandum 备忘录redundancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual 本文的,正文的verge 边界variation 变化,变量conversion 变化,转化identity 标识;标志criterion 标准,准则in parallel on 并联到,合并到juxtapose 并置,并列dialing pulse 拨号脉冲wave-guide 波导wavelength division multiplexed波分复用baud rate 波特率playback 播放(录音带,唱片)no greater than 不大于update不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的inevitably 不可避免的inevitable 不可避免的,不可逃避的,必定的segment 部分abrasion 擦伤,磨损deploy 采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect transistors) 场效应管audio recording 唱片ultra—high—frequency(UHF)超高频in excess of 超过in excess of 超过hypertext 超文本ingredient 成分,因素ingredient 成分,组成部分,要素metropolitan—area network(WAN)城域网metropolitan area network(WAN)城域网,城市网络congestion 充满,拥挤,阻塞collision 冲突extractive 抽出;释放出extract 抽取,取出,分离lease 出租,租约,租界期限,租界物pass on 传递,切换transmission 传输facsimile 传真innovative=innovatory 创新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program control(SPC)存储程序控制a large number of 大量的peal 大声响,发出supersede 代替supplant 代替,取代out—of—band signaling 带外信号simplex transmission 单工传输monochromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的conductor 导体hierarchy 等级制度,层次infrastructure 底层结构,基础结构geographic 地理的,地区的geographically 地理上GIS(ground instrumentationsystem) 地面测量系统ground station 地面站earth orbit 地球轨道extraterrestrial 地球外的,地球大气圈外的Land-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromagnetic 电磁的inductive 电感arc 电弧telephony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecommunication 电信,无线电通讯scenario 电影剧本,方案modem pool 调制解调器(存储)池superimposing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制monolithic 独立的,完全统一的aluminize 镀铝strategic 对全局有重要意义的,战略的substantial 多的,大的,实际上的multi-path fading 多径衰落multi—path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light—emitting—diode)发光二极管evolution 发展,展开,渐进feedback 反馈,回授dimension 范围,方向,维,元scenario 方案scenario 方案,电影剧本amplifer 放大器noninvasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed functional plane(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy 分层,层次partition 分成segmentation 分割interface 分界面,接口asunder 分开地,分离地detached 分离的,分开的,孤立的dispense 分配allocate 分配,配给;配给物centigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular 蜂窝状的cellular 蜂窝状的,格形的,多孔的auxiliary storage(also called secondary storage) 辅助存储器decay 腐烂,衰减,衰退negative 负电vicinity 附近,邻近vicinity 附近地区,近处sophisticated 复杂的,高级的,现代化的high-frequency(HF) 高频high definition television 高清晰度电视chromium 铬annotate 给…作注解in terms of 根据,按照disclosure 公布,企业决算公开public network 公用网functionality 功能,功能度mercury 汞resonator 共鸣器resonance 共振whimsical 古怪的,反复无常的administration 管理,经营cursor 光标(显示器),游标,指针optical computer 光计算机photoconductor 光敏电阻optical disks 光盘optically 光学地,光地wide—area networks 广域网specification 规范,说明书silicon 硅the internationaltelecommunication union(ITU) 国际电信联盟excess 过剩obsolete 过时的,废弃的maritime 海事的synthetic 合成的,人造的,综合的synthetic 合成的,综合性的rational 合乎理性的rationalization 合理化streamline 合理化,理顺infrared 红外线的,红外线skepticism 怀疑论ring network 环形网hybrid 混合物counterpart 伙伴,副本,对应物electromechanical 机电的,电动机械的Robot 机器人Robotics 机器人技术,机器人学accumulation 积累infrastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concentrator 集中器,集线器centrex system 集中式用户交换功能系统converge on 集中于,聚集在…上lumped element 集总元件CAI(computer-aided instruction)计算机辅助教学computer—integratedmanufacturing(CIM)计算机集成制造computer mediated communication(CMC)计算机中介通信record 记录register 记录器,寄存器expedite 加快,促进weight 加权accelerate 加速,加快,促进categorize 加以类别,分类in addition 加之,又,另外hypothetical 假设的rigidly 坚硬的,僵硬的compatibility 兼容性,相容性surveillance 监视surveillance 监视retrieval 检索,(可)补救verification 检验simplicity 简单,简明film 胶片,薄膜take over 接管,接任ruggedness 结实threshold 界限,临界值with the aid of 借助于,用,通过wire line 金属线路,有线线路coherent 紧凑的,表达清楚的,粘附的,相干的compact 紧密的approximation 近似undertake 进行,从事transistor 晶体管elaborate 精心制作的,细心完成的,周密安排的vigilant 警戒的,警惕的alcohol 酒精,酒local area networks(LANs)局域网local-area networks(LANs)局域网drama 剧本,戏剧,戏剧的演出focus on 聚集在,集中于,注视insulator 绝缘root mean square 均方根uniform 均匀的open—system-interconnection(OSI)开放系统互连expire 开始无效,满期,终止immunity 抗扰,免除,免疫性take…into account考虑,重视…programmable industrialautomation 可编程工业自动化demountable 可拆卸的tunable 可调的reliable 可靠be likely to 可能,大约,像要videotex video 可视图文电视negligible 可以忽略的aerial 空气的,空中的,无形的,虚幻的;天线broadband 宽(频)带pervasive 扩大的,渗透的tensile 拉力的,张力的romanticism 浪漫精神,浪漫主义discrete 离散,不连续ion 离子force 力量;力stereophonic 立体声的continuum 连续统一体,连续统,闭联集smart 灵巧的;精明的;洒脱的token 令牌on the other hand 另一方面hexagonal 六边形的,六角形的hexagon 六角形,六边形monopoly 垄断,专利video-clip 录像剪辑aluminum 铝pebble 卵石,水晶透镜forum 论坛,讨论会logical relationships 逻辑关系code book 码本pulse code modulation(PCM)脉冲编码调制roam 漫步,漫游bps(bits per second) 每秒钟传输的比特ZIP codes 美国邮区划分的五位编码susceptible(to)敏感的,易受…的analog 模拟,模拟量pattern recognition 模式识别bibliographic 目录的,文献的neodymium 钕the european telecommunicationstandardization institute(ETSI)欧洲电信标准局coordinate 配合的,协调的;使配合,调整ratify 批准,认可bias 偏差;偏置deviate 偏离,与…不同spectrum 频谱come into play 其作用entrepreneurial 企业的heuristic methods 启发式方法play a …role(part)起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的hypothesis 前提front-end 前置,前级potential 潜势的,潜力的intensity 强度coincidence 巧合,吻合,一致scalpel 轻便小刀,解剖刀inventory 清单,报表spherical 球的,球形的distinguish 区别,辨别succumb 屈服,屈从,死global functional plane(GFP) 全局功能平面full-duplex transmission 全双工传输hologram 全息照相,全息图deficiency 缺乏thermonuclear 热核的artifact 人工制品AI(artificial intelligence) 人工智能fusion 熔解,熔化diskettes(also called floppy disk) 软盘sector 扇区entropy 熵uplink 上行链路arsenic 砷neural network 神经网络very-high—frequency(VHF) 甚高频upgrade 升级distortion 失真,畸变identification 识别,鉴定,验明pragmatic 实际的implementation 实施,实现,执行,敷设entity 实体,存在vector quantification 矢量量化mislead 使…误解,给…错误印象,引错vex 使烦恼,使恼火defy 使落空facilitate 使容易,促进retina 视网膜compatible 适合的,兼容的transceiver 收发两用机authorize 授权,委托,允许data security 数据安全性data independence 数据独立data management 数据管理database 数据库database management system(DBMS)数据库管理信息系统database transaction 数据库事务data integrity 数据完整性,数据一致性attenuation 衰减fading 衰落,衰减,消失dual 双的,二重的transient 瞬时的deterministic 宿命的,确定的algorithm 算法dissipation 损耗carbon 碳diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的razor 剃刀,剃go by the name of 通称,普通叫做commucation session 通信会话traffic 通信业务(量)synchronous transmission 同步传输concurrent 同时发生的,共存的simultaneous 同时发生的,同时做的simultaneous 同时发生的,一齐的coaxial 同轴的copper 铜statistical 统计的,统计学的dominate 统治,支配invest in 投资perspective 透视,角度,远景graphics 图示,图解pictorial 图像的coating 涂层,层deduce 推理reasoning strategies 推理策略inference engine 推理机topology 拓扑结构heterodyne 外差法的peripheral 外界的,外部的,周围的gateway 网关hazardous 危险的microwave 微波(的)microprocessor 微处理机,微处理器microelectronic 微电子nuance 微小的差别(色彩等)encompass 围绕,包围,造成,设法做到maintenance 维护;保持;维修satellite communication 卫星通信satellite network 卫星网络transceiver 无线电收发信机radio—relay transmission 无线电中继传输without any doubt 无疑passive satellite 无源卫星sparse 稀少的,稀疏的downlink 下行链路precursor 先驱,前任visualization 显像feasibility 现实性,可行性linearity 线性度constrain 限制,约束,制约considerable 相当的,重要的geo-stationary 相对地面静止by contrast 相反,而,对比起来coorelation 相关性mutual 相互的mutually 相互的,共同的interconnect 相互连接,互连one after the other 相继,依次minicomputer 小型计算机protocol 协议,草案protocol 协议,规约,规程psycho-acoustic 心理(精神)听觉的;传音的channelization 信道化,通信信道选择run length encoding 行程编码groom 修饰,准备virtual ISDN 虚拟ISDNmultitude 许多,大批,大量whirl 旋转preference 选择,喜欢avalanche 雪崩pursue 寻求,从事interrogation 询问dumb 哑的,不说话的,无声的subcategory 亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switching and controlpoints(SSCPs)业务交换控制点service control points(SCPs) 业务控制点service control function(SCF) 业务控制功能in concert 一致,一齐handover 移交,越区切换at a rate of 以……的速率in the form of 以…的形式base on… 以…为基础yttrium 钇(稀有金属,符号Y)asynchronous transmission 异步传输asynchronous 异步的exceptional 异常的,特殊的voice—grade 音频级indium 铟give rise to 引起,使产生cryptic 隐义的,秘密的hard disk 硬盘hard automation 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch exchange)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predominance 优势,显著active satellite 有源卫星in comparison with 与…比较comparable to 与…可比preliminary 预备的,初步的premonition 预感,预兆nucleus 原子核valence 原子价circumference 圆周,周围teleprocessing 远程信息处理,遥控处理perspective 远景,前途constrain 约束,强迫mobile 运动的,流动的,机动的,装在车上的convey 运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯regenerative 再生的improve over 在……基础上改善play important role in 在…中起重要作用in close proximity 在附近,在很近underlying 在下的,基础的in this respect 在这方面entail 遭遇,导致presentation 赠与,图像,呈现,演示narrowband 窄(频)带deploy 展开,使用,推广应用megabit 兆比特germanium 锗positive 正电quadrature 正交orthogonal 正交的quadrature amplitudemodulation(QAM) 正交幅度调制on the right track 正在轨道上sustain 支撑,撑住,维持,持续outgrowh 支派;长出;副产品dominate 支配,统治knowledge representation 知识表示knowledge engineering 知识工程knowledge base 知识库in diameter 直径helicopter 直升飞机acronym 只取首字母的缩写词as long as 只要,如果tutorial 指导教师的,指导的coin 制造(新字符),杜撰fabrication 制造,装配;捏造事实proton 质子intelligence 智能,智力,信息intelligent network 智能网intermediate 中间的nucleus(pl.nuclei) 中心,核心neutrons 中子terminal 终端,终端设备overlay 重叠,覆盖,涂覆highlight 重要的部分,焦点charge 主管,看管;承载dominant 主要的,控制的,最有力的cylinder 柱面expert system 专家系统private network 专用网络transition 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue 追赶,追踪,追求,继续desktop publish 桌面出版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor 自动售货机,厂商naturally 自然的;天生具备的synthesize 综合,合成integrate 综合,使完全ISDN(intergrated servicesdigital network) 综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impedance 阻抗initial 最初的,开始的optimum 最佳条件appear as 作为…出现A Analog 模拟A/D Analog to Digital 模—数转换AAC Advanced Audio Coding高级音频编码ABB Automatic Black Balance 自动黑平衡ABC American Broadcasting Company 美国广播公司Automatic Bass Compensation 自动低音补偿 Automatic BrightnessControl 自动亮度控制ABL Automatic Black Level自动黑电平ABLC Automatic BrightnessLimiter Circuit 自动亮度限制电路ABU Asian BroadcastingUnion 亚洲广播联盟(亚广联ABS American Bureau ofStandard 美国标准局AC Access Conditions 接入条件Audio Center 音频中心ACA Adjacent ChannelAttenuation 邻频道衰减ACC Automatic CenteringControl 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer自动消色器ACP Additive Colour Process加色法ACS Access Control System接入控制系统Advanced CommunicationService 高级通信业务Area Communication System区域通信系统ADC Analog to DigitalConverter 模-数转换器Automatic DegaussirngCircuit 自动消磁电路ADL Acoustic Delay Line 声延迟线ADS Audio DistributionSystem 音频分配系统AE Audio Erasing 音频(声音AEF Automatic EditingFunction 自动编辑功能AES Audio EngineeringSociety 音频工程协会AF Audio Frequency 音频AFA Audio FrequencyAmplifier 音频放大器AFC Automatic FrequencyCoder 音频编码器Automatic Frequency Control自动频率控制AFT Automatic Fine Tuning自动微调Automatic Frequency Track自动频率跟踪Automatic Frequency Trim 自动额率微调AGC Automatic Gain Control自动增益控制AI Artificial Intelligence人工智能ALM Audio—Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Sensor自动音乐传感装置ANC Automatic NoiseCanceller 自动噪声消除器ANT ANTenna 天线AO Analog Output 模拟输出APS Automatic ProgramSearch 自动节目搜索APPS Automatic ProgramPause System 自动节目暂停系统APSS Automatic ProgramSearch System 自动节目搜索系统AR Audio Response 音频响应ARC Automatic RemoteControl 自动遥控ASCII American StandardCode for InformationInterchange 美国信息交换标准AST Automatic ScanningTracking 自动扫描跟踪ATC Automatic TimingControl 自动定时控制Automatic Tone Correction自动音频校正ATM Asynchronous TransferMode 异步传输模式ATF Automatic Track Finding自动寻迹ATS Automatic Test System自动测试系统ATSC Advanced TelevisionSystems Committee (美国高级电视制式委员会)***C Automatic VolumeControl 自动音量控制***R Automatic VoltageRegulator 自动稳压器AWB Automatic White Balance自动白平衡AZC Automatic ZoomingControl 自动变焦控制AZS Automatic Zero Setting自动调零BA Branch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Binary-AnalogConversion 二进制模拟转换BB Black Burst 黑场信号BBC British BroadcastingCorporation 英国广播公司BBI Beijing BroadcastingInstitute 北京广播学院BC Binary Code 二进制码Balanced Current 平衡电流Broadcast Control 广播控制BCT Bandwidth CompressionTechnique 带宽压缩技术BDB Bi-directional Data Bus双向数据总线BER Basic Encoding Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brillouin Fiber Amplifier布里渊光纤放大器BGM Background Music 背景音乐BIOS Basic Input/OutputSystem 基本输入输出系统B—ISDN Broadband—ISDN 宽带综合业务数据网BIU Basic Information Unit基本信息单元Bus Interface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Business ManagementLayer 商务管理层BN Backbone Network 主干网BNT Broadband NetworkTermination 宽带网络终端设备BO Bus Out 总线输出BPG Basic Pulse Generator 基准脉冲发生器BPS Band Pitch Shift 分频段变调节器BSI British Standard Institute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Terminal 分线盒、分组终端British Telecom 英国电信BTA Broadband Terminal Adapter 宽带终端适配器Broadcasting Technology Association (日本BTL Balanced Transformer—Less 桥式推挽放大电路BTS Broadcast Technical Standard 广播技术标准BTU Basic Transmission Unit 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW BandWidth 带宽BWTV Black and White Television 黑白电视CA Conditional Access 条件接收CAC Conditional Access Control 条件接收控制CAL Continuity AcceptLimit 连续性接受极限CAS Conditional Access System 条件接收系统Conditional Access Sub—system 条件接收子系统CATV Cable Television 有线电视,电缆电视Community Antenna Television 共用天线电视C*** Constant Angular Velocity 恒角速度CBC Canadian Broadcasting Corporation 加拿大广播公司CBS Columbia Broadcasting System (美国哥伦比亚广播公司CC Concentric Cable 同轴电缆CCG Chinese Character Generator 中文字幕发生器CCIR International Radio Consultative Committee 国际无线电咨询委员会CCITT International Telegraph and Telephone ConsultativeCommittee 国际电话电报咨询委员会CCR Central Control Room 中心控制室CCTV China Central Television 中国中央电视台Close-Circuit Television 闭路电视CCS Center Central System 中心控制系统CCU Camera Control Unit 摄像机控制器CCW Counter Clock—Wise 反时针方向CD Compact Disc 激光唱片 CDA Current DumpingAmplifier 电流放大器CD—E Compact Disc Erasable可抹式激光唱片CDFM Compact Disc FileManager 光盘文件管理(程序CDPG Compact—Disc PlusGraphic 带有静止图像的CD唱盘CD-ROM Compact Disc—ReadOnly Memory 只读式紧凑光盘CETV China EducationalTelevision 中国教育电视台CF Color Framing 彩色成帧CGA Color Graphics Adapter彩色图形(显示卡CI Common Interface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common Interface 通用接口CIE Chinese Institute ofElectronics 中国电子学会CII China InformationInfrastructure 中国信息基础设施CIF Common IntermediateFormat 通用中间格式CIS Chinese IndustrialStandard 中国工业标准CLV Constant Linear Velocity恒定线速度CM Colour Monitor 彩色监视器CMTS Cable Modem TerminationSystem 线缆调制解调器终端系统CNR Carrier-to—Noise Ratio载噪比CON Console 操纵台Controller 控制器CPB Corporation of PublicBroadcasting (美国公共广播公司CPU Central Processing Unit中央处理单元CRC Cyclic Redundancy Check循环冗余校验CRCC CRI Cyclic RedundancyCheck Code 循环冗余校验码CROM China RadioInternational 中国国际广播电台CRT Control Read Only Memory控制只读存储器CS Cathode—Ray Tube 阴极射线管CSC Communication Satellite通信卫星CSS Color Sub-carrier 彩色副载波Center Storage Server 中央存储服务器Content Scrambling System 内容加扰系统CSU Channel Service Unit 信道业务单元CT Color Temperature 色温CTC Cassette Tape Controller盒式磁带控制器Channel Traffic Control 通道通信量控制Counter Timer Circuit 计数器定时器电路Counter Timer Control 计数器定时器控制CTE Cable TerminationEquipment 线缆终端设备Customer Terminal Equipment用户终端设备CTV Color Television 彩色电视CVD China Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital AudioBroadcasting 数字音频广播DASH Digital AudioStationary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base ManagementSystem 数据库管理系统DBS Direct BroadcastSatellite 直播卫星DCC Digital Compact Cassette数字小型盒带Dynamic Contrast Control 动态对比度控制DCT Digital ComponentTechnology 数字分量技术Discrete Cosine Transform 离散余弦变换DCTV Digital ColorTelevision 数字彩色电视DD Direct Drive 直接驱动DDC Direct Digital Control直接数字控制DDE Dynamic Data Exchange 动态数据交换DDM Data Display Monitor 数据显示监视器DES Data Elementary Stream数据基本码流Data Encryption Standard 美国数据加密标准DF Dispersion Flattened 色散平坦光纤DG Differential Gain 微分增益DI Digital Interface 数字接口DITEC Digital TelevisionCamera 数字电视摄像机DL Delay Line 延时线DLD Dynamic Linear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital MultimediaBroadcasting 数字多媒体广播DMC Dynamic Motion Control动态控制DME Digital Multiple Effect数字多功能特技DMS Digital Mastering System数字主系统DN Data Network 数据网络DNG Digital News Gathering数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输出总线DOCSIS Data Over CableService Interface Specifications有线数据传输业务接口规范DOC Drop Out Compensation 失落补偿DOS Disc Operating System 磁盘操作系统DP Differential Phase 微分相位Data Pulse 数据脉冲DPCM Differential Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasting 数字卫星广播DSC Digital Studio Control 数字演播室控制DSD Dolby Surround Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Down-Stream Key 下游键DSP Digital Signal Processing 数字信号处理Digital Sound Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Technique 数字技术Digital Television 数字电视Data Terminal 数据终端Data Transmission 数据传输DTB Digital Terrestrial Broadcasting 数字地面广播DTBC Digital Time—Base Corrector 数字时基校正器DTC Digital Television Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Television Standard 数字电视标准DVB Digital Video Broadcasting 数字视频广播DVC Digital Video Compression 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Extension Amplifier 延长放大器EB Electron Beam 电子束EBS Emergency Broadcasting System 紧急广播系统EBU European Broadcasting Union 欧洲广播联盟EC Error Correction 误差校正 ECN Emergency Communications Network 应急通信网络ECS European Communication Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electronic Data Exchange 电子数据交换EDF Erbium—Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decision List 编辑点清单EDTV Extended Definition Television 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14调制 EFP Electronic FieldProduction 电子现场节目制作EH Ethernet Hosts 以太网主机EIN Equivalent Input Noise等效输入噪声EIS Electronic InformationSystem 电子信息系统EISA Extended IndustrialStandard Architecture 扩展工业标准总线EL Electro—Luminescent 场致发光EM Error Monitoring 误码监测EN End Node 末端节点ENG Electronic NewsGathering 电子新闻采集EOT End of Tape 带尾EP Edit Point 编辑点Error Protocol 错误协议EPG Electronic Program Guides 电子节目指南EPS Emergency Power Supply应急电源ERP Effective Radiated Power 有效辐射功率ES Elementary Stream 基本码流End System 终端系统ESA European Space Agency 欧洲空间局ETV Education Television 教育电视FA Enhanced Television 增强电视FABM FAS Facial Animation 面部动画FC Fiber Amplifier BoosterModule 光纤放大器增强模块Fiber Access System 光纤接入系统Frequency Changer 变频器FCC Fiber Channel 光纤通道FD Film Composer 电影编辑系统Federal CommunicationsCommission 美国联邦通信委员会FDCT Frequency Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete CosineTransform 离散余弦正变换FE Fiber Distributed DataInterface 分布式光纤数据接口Frequency-Division Multiplexing频分复用FF Fiber Distribution Point光纤分配点FG Front End 前端FH Framing Error 成帧误差FIT Fast Forward 快进FN Frequency Generator 频率发生器FOA Frequency Hopping 跳频FOC Frame—Interline Transfer帧一行间转移Fiber Node 光纤节点Fiber Optic Amplifier 光纤放大器FOM Fiber Optic Cable 光缆FON Fiber Optic Communications光纤通信FOS Fiber Optic Coupler 光纤耦合器FOTC Fiber Optic Modem 光纤调制解调器FS Fiber Optic Net 光纤网Factor of Safety 安全系数Fiber Optic Trunk Cable 光缆干线FT Frame Scan 帧扫描FTP Frame Store 帧存储器FTTB Frame Synchro 帧同步机FTTC France Telecom 法国电信Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi—directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-—BJT双极结型晶体管Boost—Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper降压斩波电路Buck Converter降压变换器Commutation换流Conduction Angle导通角Constant Voltage ConstantFrequency —-CVCF 恒压恒频Continuous Conduction—-CCM(电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cyclo convertor周波变流器DC-AC-DC Converter直交直电路DC Chopping直流斩波DC Chopping Circuit直流斩波电路DC—DC Converter直流-直流变换器Device Commutation器件换流Direct Current Control直接电流控制Discontinuous Conduction mode(电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode快恢复二极管fast revcovery epitaxial diodes快恢复外延二极管fast switching thyristor快速晶闸管。
Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared SpectroscopyC.C.Homes∗Condensed Matter Physics&Materials Science DepartmentBrookhaven National LaboratoryUpton,NY11973May18,2011∗These notes are adapted from a set of informal lectures developed by my thesis advisor,Prof.J.E.Eldridge,Department of Physics&Astronomy,University of British Columbia,Vancouver,B.C., Canada.1Contents1Fourier Transform Spectroscopy31.1Polychromatic source (4)1.1.1Percentage modulation (5)1.2Fourier transform (6)1.3Double-sided interferogram (6)1.3.1Complex Fourier transform (7)1.4Finite integration limits (9)1.4.1The convolution theorem (9)1.4.2Resolution (11)1.5Apodisation (12)1.5.1Resolution revisited (13)1.6Sampling interval (15)1.6.1The Shah function (15)1.7Felgett advantage(“Multiplex”) (18)1.8Relating(S/N)in the interferogram to(S/N)in the spectrum (20)2Instrumentation212.1Self-supporting dielectric beam splitters (21)2.1.1Efficiency of a dielectric beamsplitter with frequency (21)2.1.2Relatingδto¯ν (23)2.2Polarization in Mylar beam splitters (25)A Optical Conductivity2821Fourier Transform SpectroscopySince its inception,most interferometer designs have incorporated some element of a basic Michelson interferometer,shown schematically in Figure1.Both beams have been transmitted once and reflected once as they are divided at the beamsplitter,then reflected at either the movable(M1)orfixed(M2)mirror,andfinally recombined at the beam splitter to proceed to the sample area and the detector.Consider an incoming monochromatic plane wave with an average electricfield am-plitude E m,frequencyωand wave number¯ν(which as units of cm−1):¯ν=1λ=ω2πc(1)(whereλis in cm),incident on the beam splitter(where c is the speed of light)E= Emcos(ωt−2π¯νy).(2) The beam from the mirror M2after leaving the beam splitter in the direction of the condensing unit may be written asE2=rtc Emcos[ωt−2π¯νy1](3)where r is the reflectance(amplitude)of the beam splitter,t is the transmittance,and c is a constant depending on the polarization.Similarly from the other mirror M1,at the same point then we haveE2=rtc Emcos[ωt−2π¯ν(y1+x)](4)where x is the path difference.By superimposing(or superposition),the resultant E is given byER= E1+ E2=2rtc E m cos(ωt−2πy1)cos(π¯νx).(5) The intensity(I)detected is the time average of E2.More strictly E× H(the Poynting vector),but because| E|∝| H|this quantity can be described simply by just| E|,ne-glecting some constant of proportionality(which is not important).The intensity may be written as:I∝4r2t2c2E2m cos2(ωt−2πy1¯ν)cos2(π¯νx)(6) where the time average of thefirst cosine term is just1/2.ThusI∝2I(¯ν)cos2(π¯νx),(7) where I(¯ν)is a constant that depends only upon¯ν.This expression may be simplified toI(x)=I(¯ν)[1+cos(2π¯νx)](8) where I(x)is the interferogram form a monochromatic source.The interferogram for a monochromatic source is shown in Fig.2.3Figure 1:A schematic view of a simple Michelson interferometer.The beam from the source (typically a Hg arc lamp)is collimated and the wavefront is divided at the beam splitter.One arm of the interferometer consists of a fixed mirror,while the other arm contains a moveable mirror.The beams are recombined at the beam splitter after having been reflected once and transmitted once,and then proceed to the sample area and detector.1.1Polychromatic sourceOne of the advantages of the Fourier transform instrument is that many different wave numbers may be looked at simultaneously —all the information is gathered at the same time,and we sort it all out using a Fourier transform later.This decreases the measurement time.As well,we can have much more “thruput”,i.e.higher intensities and larger solid angles.An interferogram for a polychromatic source which consists of frequencies from 0→¯νm is thus:I (x )=¯νm 0I (¯ν)[1+cos(2π¯νx )]d ¯ν= ¯νm 0I (¯ν)d ¯ν+ ¯νm 0I (¯ν)cos(2πx )dx.(9)When x =0thenI (0)=2 ¯νm 0I (¯ν)d ¯ν⇒I (x )=12I (0)+ ¯νm 0I (¯ν)cos(2π¯νx )d ¯ν.(10)4Figure2:The interference pattern for a monochromatic source(such as a laser)as a function of mirror displacement.With many different wave lengths present,the interferogram resembles the diagram in Fig.3,which is symmetrical about x=0for an ideal interferogram.When x=0the interference between all of the frequencies is constructive,resulting in a central maxima.However,for x=∞the frequencies add both constructively and destructively,so that the net contribution due to the integral in Eq.10is simply zero.Thus,I(∞)=12I(0)(11)or more simply,I(0)=2I(∞).This relationship is an important check of the instrument alignment.1.1.1Percentage modulationThe percentage of modulation is defined as[I(0)−I(∞)]I(∞)×100(12)In a well-aligned instrument,the modulation is>85%,and this value should be>95% in the low frequency region.5Figure3:The interference pattern for a polychromatic source about the zero path dif-ference.This curve was generated simply by taking the normalized sum of a number of cosine functions with various frequencies.Note that I(0)=2I(∞).1.2Fourier transformWe have I(x)and now want I(¯ν),i.e.:I(x)−I(∞)= ¯νmI(¯ν)cos(2π¯νx)d¯ν(13)letting¯νm→∞,we can writeI(¯ν)=∞[I(x)−I(∞)]cos(2π¯νx)dx.(14)This procedure involves sampling each position,which can take a long time if the signal is small and the number of frequencies being sampled is large.1.3Double-sided interferogramIf F(x)=I(x)−I(∞),thenF(x)= ¯νmI(¯ν)cos(2π¯νx)d¯ν(15)is symmetric about x=0since cosine is an even function.However,what if the inter-ferogram behaves differently for−x and+x;i.e.you have not sampled at the true zero path difference.6Loss of symmetry can be represented by an additional phase factor:F(x)= ¯νmI(¯ν)cos[2π¯νx−φ]d¯ν(16)= ¯νmI(¯ν)cosφcos(2π¯νx)d¯ν+¯νmI(¯ν)sinφsin(2π¯νx)d¯ν.(17)What we would like to do is tofind a method to be able to deal with the problem of not being at the true zero path difference.For this,we use the complex Fourier transform.1.3.1Complex Fourier transformThe complex Fourier transform is defined in the following way:g(¯ν)=∞−∞f(x)e2πi¯νx dx=∞−∞f(x)cos(2π¯νx)dx+i∞−∞f(x)sin(2π¯νx)dx.(18)The inverse transform is given byf(x)=∞−∞g(¯ν)e−2πi¯νx d¯ν=∞−∞g(¯ν)cos(2π¯νx)d¯ν−i∞−∞g(¯ν)sin(2π¯νx)d¯ν.(19)If f(x)is even,[f(x)=f(−x)]theng(¯ν)=∞−∞f(x)cos(2π¯νx)dx=2∞f(x)cos(2π¯νx)dx.(20) This is referred to as a cosine transform.Likewise,if f(x)is odd,theng(¯ν)=i∞−∞f(x)sin(2π¯νx)dx=2i∞f(x)sin(2π¯νx)dx,(21)7is a sine transform.Thus,we writeg(¯ν)=C(¯ν)+iS(¯ν).(22) Returning to the problem of the interferogram,let F(x)≡f(x),[which is I(x)−I(∞)].thenC(¯ν1)= ¯νmI(¯ν)cosφ∞−∞cos(2π¯νx)cos(2π¯ν1x)dxd¯ν+¯νmI(¯ν)sinφ∞−∞sin(2π¯νx)sin(2π¯ν1x)dxd¯ν.(23)Now,∞−∞cos(2π¯νx)cos(2π¯ν1)x)dx=12∞−∞e2πi(¯ν+¯ν1)x+e2πi(¯ν−¯ν1)xdx=12[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)].(24)whereδis the Diracδfunction.Note that the sine terms go to zero in the integral when the limits are from−∞→∞.This is of the formδ(¯ν+L)=∞−∞e2πi(¯ν+L)x dx(25)In the expression for C(¯ν1)we have the product of a sine and a cosine in the interior of the second integral.However,as the sine is a odd function,then its value over the range−∞→∞will be zero.Thus,we can write C(¯ν1)asC(¯ν1)=12¯νmI(¯ν)cosφ[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)]d¯ν⇒C(¯ν1)=I(¯ν12cosφ;I(−¯ν1)=0.(26) since I(¯ν)=0for all¯ν>¯νm and for all¯ν<0.Similarly,S(¯ν1)=I(¯ν1)2sinφ.(27)Thus|g(¯ν1)|=C2(¯ν1)+S2(¯ν1)1/2=12I(¯ν1)(sin2φ+cos2φ)1/2=I(¯ν1) 28so that finallyI (¯ν1)=2|g (¯ν1)|=2 C 2(¯ν1)+S 2(¯ν1) 1/2(28)Thus,the phase error introduced by not sampling symmetrically and the asymmetry in the interferometer is eliminated by taking the the two-sided interferogram and performing a complex fast Fourier transform.Disadvantages:a factor of two in the data collection time,because the interferogram must be two sided.1.4Finite integration limitsIn practice the interferogram is from −x max to +x max ,not −∞to ∞.To examine the effect,consider the monochromatic wave in an ideal interferometer.From Eqs.6or 13(neglecting the constant offset)we getF (x )=I (¯ν1)cos(2π¯ν1x )(29)where F (x )is just the structure.We can do the finite transform over the finite range,which may be written as:∞−∞I (¯ν1)cos(2π¯ν1x )e 2πi ¯νx rect(x )dx (30)which is to say that instead of putting limits on the integral,we use the rectangular function defined by:rect(x )= 1|x |<x max 0|x |>x max1.4.1The convolution theoremThe Fourier transform of the product of two functions,i.e.f (x )and g (x )is the con-volution of their individual Fourier transforms F (y )and G (y ),where the convolution is defined by F ∗G =∞−∞G (u )F (y −u )du (31)9Figure4:The function sinc(θ)for the rectangular aperture function. The Fourier transform of rect(x)is then∞−∞rect(x)e2πi¯νx dx=xm−x me2πi¯νx dx=xm−x m[cos(2π¯νx)+i sin(2π¯νx)]dx=sin(2π¯νx)2π¯ν−i cos(2π¯νx)2π¯νxm−x m=2sin(2π¯νx m)2π¯ν=2x msin(2π¯νx m)2π¯νx m=2x m sinc(2π¯νx m).(32)This function is shown in Fig.4.The Fourier transform of the structure F(x)due to the monochromatic source is:∞−∞I(¯ν1)cos(2π¯ν1x)e2πi¯νx dx=12∞−∞I(¯ν1)e2πi¯νx+e−2πi¯ν1xe2πi¯ν1x dx=12∞−∞I(¯ν1)e2πi(¯ν+¯ν1)x+e2πi(¯ν−¯ν1)xdx=12I(¯ν1)[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)](33)This function is simply two delta functions located at±¯ν1.We usually discard the the negative frequency as it is unphysical,thus we are simply left with the frequency¯ν1of the monochromatic source.10Figure5:The convolution of the delta function from a single monochromatic source at ±¯ν1and a rectangular aperture function.While the response from the negative side extends into the positive region,it is usually very small and it is ignored.Note that the Fourier transform of the rectangular aperture function is called the instrumental line shape(ILS).The convolution theorem of two transforms is then:∞−∞2x m sinc(2πux m)12I(¯ν)[δ(¯ν+¯ν1+u)+δ(¯ν−¯ν1+u)]du=I(¯ν1)x m{sinc[2π(¯ν+¯ν1)x m]+sinc[2π(¯ν−¯ν1)x m]}(34) which is shown in Figure5.The total from the negative side extends into the positive region,but is usually very small and ignored.Thus:I(¯ν)=I(¯ν1)x m sinc[2π(¯ν−¯ν1)x m].(35) The function2x m sinc(2π¯νx m)is called the instrumental line shape(ILS)or the spec-tral window.I(¯ν)=I(¯ν1)∗ILS.(36) 1.4.2ResolutionClearly,the ILS has a given width for a monochromatic line.Jacquinot defined the resolution as the distance between thefirst two zeros on either side of the peak,which is shown in Figure6for a sinc function.Thus,δ¯ν=1x m.(37)11Figure6:Thefirst two zeros of a sinc function,which occur at¯ν1±1/2x m.(Note that this delta function is not the Dirac delta function.)Thus,the resolution depends on the length of the scan,i.e.if the mirror scan is5cm(which is x m/2),then x m=10cm,⇒δ¯ν=0.1cm−1.1.5ApodisationThe“side lobes”or“feet”of the sinc function drop off22%below zero,which is clearly unacceptable.The problem is in choosing the aperture.The sharp edges produced by the rectangular function introduce this ringing in the spectrum.Thus,what we need is a gentler aperture function.The imposition of such a function is called apodisation.The most common apodisation function is the triangular aperture,which is defined as:tri(x)=0|x|≥x m1−|x|/x m|x|<x mHowever,there are still discontinuities in tri(x)at x=0and at x=±x m.The Fourier transform of tri(x)isF.T.[tri(x)]=∞−∞tri(x)e2πi¯νx dx=xm−x m1−|x|x me2πi¯νx dx=xm−x mcos(2π¯νx)dx+ixm−x msin(2π¯νx)dx−1x mxm−x m|x|cos(2π¯νx)dx−ix mxm−x m|x|sin(2π¯νx)dx(38)12since sin(2π¯νx)and|x|sin(2π¯νx)are odd functions,then the integrals are identically zero,and thus Eq.38reduces to two terms:=2sin(2π¯νx m)2π¯ν−2x mxmx cos(2π¯νx)dxFrom a general calculus theorem,recall thatba f(x)g(x)dx=f(x)xg(y)dyba−ba∂f(x)∂xxg(y)dydxthen Eq.38becomes=2sin(2π¯νx m)2π¯ν−2x mx sin(2π¯νx)2π¯νxm−xmsin(2π¯νx)2π¯νdx=2sin(2π¯νx m)2π¯ν−2x mx m sin(2π¯νx m)2π¯ν+cos(2π¯νx)(2π¯ν)2xm=−2x mcos(2π¯νx m)−1(2π¯ν)2=2x m2sin2(π¯νx m)(2π¯ν)2=x m sin2(π¯νx m) (π¯νx m)2=x m sinc2(π¯νx m)(39)The Fourier transform of tri(x)is shown in Fig.7.Notice the absence of negative side lobes,the small size of thefirst positive lobes and the increase in the line width.Once again,a monochromatic line¯νwould give a spectrum given byI(¯ν)=I(¯ν1)∗ILS=I(¯ν1)x m sinc2(π¯νx m).(40) 1.5.1Resolution revisitedIf we used the previous definition of resolution,the we would now haveδ¯ν=2 x mHowever,one normally adopts the Rayleigh criterion when attempting to resolve two close lines,which is obtained when when thefirst zero of one line falls upon the maximum of13Figure 7:A comparison of the Fourier transforms of the rectangular and triangular aperture functions,sinc(2θ)and sinc 2(θ)respectively.Note that the Fourier transform of the triangular aperture function has much smaller side lobes,but is broader than the Fourier transform of the rectangular aperture.the other line.When this condition is achieved,the dip between the two lines represents 22%of their maxima.(It should be noted that this assumes that the lines are of equal widths and strengths.)Thus,once again we have that the resolution is given byδ¯ν=1x m.There are many different kinds of apodisation functions,having a varying widths and side lobes.A function that has commonly been used is the Happ-Genzel functionW (x )=0.54+0.46cos πx x m.(41)The Fourier transform of the Happ-Genzel function isF .T .[W (x )]=sin(2π¯νx m )2π 1.08¯ν+0.46x m /w −¯ν−0.46x m /2+¯ν .(42)A comparison of the Triangular and Happ-Genzel apodisation functions is shown in Figure 8.While the full width at half maximum for the two functions is about the same,the side lobes are almost totally absent in the Happ-Genzel function.In general,we will be using either three or four-term Blackwood-Harris apodisation functions,which have slightly narrower line shapes and very small side lobes.14Figure 8:A comparison of the Fourier transforms of the Triangular and Happ-Genzel aperture functions.Note that the side lobes of the Happ-Genzel function are much smaller than those of the triangular apodisation function.1.6Sampling intervalThe data has to bee digitized for the Cooley-Tukey fast Fourier transform algorithm in equal increments of path difference Δx .In many early instruments,the data was collected by a “step and integrate”ter instruments,such as the Bruker IFS113,adopted a “rapid scan”technique where the infrared radiation is modulated (typically in the kHz frequency range),and many interferograms are taken and averaged.This technique is generally superior to the step-and-integrate method.The disadvantage of digitizing data in equal increments is the loss of symmetry in the interferogram if the zero-path difference is not sampled and the subsequent inability to detect spurious noise.1.6.1The Shah functionThe sampled interferogram F s (x )is related to the complete interferogram F c (x )=[I (x )−I (∞)]c by:F s (x )= x ΔxF c (x )(43)where (x )is a “combing”function,or Shah function defined by(x )=∞−∞δ(x −n )(44)where δ(x −n )is a Dirac delta function,and n is an integer.Thus,from Eq.44the Shah function allows only non-zero value for integers (both positive and negative).Thus,in15Eq.43the Shah function will allow non-zero value forx=0,±Δx,±2Δx,···,±nΔx,···Before proceeding,consider some of the properties of the Shah function.It is periodic (since the limits run from−∞to∞)(x+m)= (x).(45) We may also derive a scaling rule for the Shah function.Suppose one has(ax)=∞n=−∞δ(ax−n)(46)we would like to change the variable from ax−n to x−n/a.If we consider thefitting property of the delta function,then∞−∞δx−naf(x)dx=fna(47)and∞−∞δ(ax−n)f(x)dx=1|a|∞−∞δ(y)fy+nady=1|a|fna;y=ax−n.(48)Comparing Eqs.47and48one hasδ(ax−n)=1|a|δx−na(49)thus(ax)=1|a|∞n=−∞δx−na.(50)We need to know what the effect of the Fourier transform is upon the Shah function.F.T.[ (ax)]=1|a|∞n=−∞∞−∞δx−nae2πi¯νx dx(51)using the sifting property of theδfunction gives thatF.T.[ (ax)]=1|a|∞n=−∞e2πi¯νn/a(52)=1|a|∞−∞cos2π¯νan+i∞−∞sin2π¯νan.(53) 16In the cosine summation,whenever¯ν/a=an integer value,the cosines will add randomly to zero.However,when¯ν/a=an integer,then we get an infinite number of unities adding together.This is the definition of aδfunction.Therefore,F.T.[ (ax)]=1|a|∞n=−∞δ¯νa−n(54)andF.T.[ (ax)]=1|a|¯νa.(55)The Fourier transform of the Shah function is another Shah function that is reciprocal to thefirst.Returning to the spectrumI s(¯ν)=F.T.[F s(x)](56) andI c(¯ν)=F.T.[F c(x)](57)thenI s(¯ν)=F.T.xΔxF c(x)[from(48)](58)=F.T.xΔx∗I c(¯ν)(59)=Δx (¯νΔx)∗I c(¯ν)[from(61)](60)=Δx∞n=−∞δ(¯νΔx−n)∗I c(¯ν)[from(49)](61)=∞n=−∞δ¯ν−nΔx∗I c(¯ν)[from(55)](62)=∞n=−∞I c¯ν−nΔx(63)so that wefinally arrive atI s(¯ν)=∞n=−∞I c(¯ν−nΔ¯ν)(64)whereΔ¯ν=1Δx.(65)17Table1:The minimum sampling interval required to prevent aliasing for the wave number range from0→¯νmax in a Michelson interferometer.¯νmax(cm−1)Δx(μm)2000 2.51000550010250201254062.580Thus,when transforming the sampled interferogram,we get an infinite number of com-plete spectra,each starting at nΔ¯ν.The transformed spectra are actually the sum of the spectra for the positive frequencies and those of the negative frequencies from an adja-cent spectra.Incorrect choices of a sampling frequency can lead to large contributions to distortions of the spectra.This is called“aliasing”or“false energies”.In order to avoid this,one must makeΔ¯νlarge enough so that the maximum frequency contribution of the positive¯νspectrum does not overlap with the negative¯νspectrum.This may be accomplished by requiring thatΔ¯ν≥2¯νmax(66)orΔx≤12¯νmax.(67)In term of wave number regions,this results in the following conditions:Another way of seeing the condition thatΔx≤1/2¯νmax is thatΔx≤λmin/2,which means that one must sample at least every twice in every cycle of the smallest wave length of radiation in the interferogram(this is just the Nyquist frequency from information theory).Having chosen¯νmax,and found the appropriateΔx,one must make certain that there is no radiation with¯ν>¯νmax by the use of opticalfilters.The theory and results ere are the same as found in x-ray and electron diffraction in solids,where atoms are discrete, regularly spaced points.1.7Felgett advantage(“Multiplex”)Felgett submitted his dissertation to Cambridge in1951,and was thefirst person to transform interferograms numerically.Shortly after this,Jacquinot stated his throughput advantage.The Felgett advantage is realized in the following way—suppose one is18Figure 9:An arbitrary spectrum over an interval ¯ν1and ¯ν2(Δ¯ν)to be measured with resolution δ¯ν.interested in measuring a spectrum of width Δ¯νbetween ¯ν1and ¯ν2with resolution δ¯ν,as shown in Fig.9.The number of “elements”,M is then given by:M =Δ¯νδ¯ν.(68)If a grating or a prism instrument is being used,then each small band of width δ¯ν,or element,is observed individually and for a time T/M ,there T is the observed time for the entire spectrum.In the infrared region the noise is due mainly to thermal and current contributions;it is independent of signal level.This is not the case in the visible region,where the uncertainty comes primarily from photon noise (the noise from the random counting of photons,which is simply proportion to the square root of the number of photons).In the infrared region,the noise,N ,is then proportional to T/M in an element of width δ¯ν.It follows that: S N GRT ∝(T/M ) T/M= T/M (69)For an interferometer,however,the signal from all of the elements is received at the same time,thus the signal in an element is ∝T .Again,if the noise is random and independent of signal level then the noise ∝√T .Thus,the signal to noise in an interferometer is: S N INT ∝T √T=√T (70)The Felgett advantage of an interferometer over a grating instrument is then:(S/N )INT (S/N )GRT =√T T/M=√M.(71)19For instance,for Δ¯νfrom 200to 1000cm −1with a resolution of 1cm −1,a S/N advantage of √800∼28is realized;if a run takes 1hour with the interferometer,an equivalent runon a grating instrument would have taken 800hours!However,it should be noted that this advantage is lost in the visible region.1.8Relating (S/N)in the interferogram to (S/N)in the spec-trumAssume that the interferometer gives an interferogram that is composed of a noiseless interferogram plus random detector noise;the noise will be evident in the tails of the interferogram where the signal modulations are small.The RMS noise is given by:σN =N (x )2(72)which can be estimated by looking at the interferogram.The (S/N )IFG can be defined (and measured)as S N IFG =I (0)−I (∞)σN(73)How will this transform into (S/N )of the interferometer spectrum whereS N SPT ∝T 1/2(74)in an element of width δ¯ν.However,the interferogram contains all M elements simulta-neously,thus the signal is proportional to MT and the noise is proportional to √MT .Thus,the signal-to-noise in the interferogram isS N IFG ∝MT √MT=√MT (75)Thus,the (S/N)in the spectrum divided by the (S/N)in the interferogram isS N SPT / S N IFG =T 1/2(MT )1/2=1M 1/2= δ¯νΔ¯ν(76)with a low-pass filter,Δ¯ν=¯νmax ,thusδ¯νΔ¯ν= Resolution ¯νmax.(77)20If ¯νmax =1000cm −1with a resolution of δ¯ν=10cm −1,then S N SPT / S N IFG = 101000=110thus,1%noise in the interferogram yields 10%noise in the spectrum.For the measure-ment of a reasonably narrow vibration in the terahertz range,if ¯νmax =60cm −1with a resolution of δ¯ν=0.1cm −1,then S N SPT / S N IFG = 1600=125if 10%noise is acceptable in the spectrum,then we need a signal-to-noise of 250for the interferogram.2Instrumentation 2.1Self-supporting dielectric beam splittersMost beam splitters are mylar (polyethylene teraphalate)of various thicknesses;3μm (12G),6μm (25G),12μm (50G),up to 100μm (400G).Other beamsplitter materials,such as polycarbonate my also be used,in addition to wire-grid beam splitters.The transmitted radiation through the interferometer depends on the product of the reflected intensity R 0,and the transmitted intensity T 0.The intensity from each beam reaching the detector,neglecting the modulation from the optical path difference in the two arms of the interferometer is simply R 0T 0,yielding a total of 2R 0T 0.From R 0+T 0=1,then one can optimize the signal reaching the detector,and find a maximum efficiency when R 0=T 0=0.5(one half of the signal returns to the source).It should be noted that some instruments such as the lamellar grating interferometer return nothing and are 100%efficient.We will define the relative efficiency (RE)of our beam splitter as:R .E .=2R 0T 0(2R 0T 0)ideal =4R 0T 0(78)Unfortunately,the relative efficiency is often considerably less than unity due to R 0<0.5,R 0and T 0depend on the polarization,and the relative efficiency depends on frequency.2.1.1Efficiency of a dielectric beamsplitter with frequencyThe variation of efficiency with ¯νis known as “interference fringes”,“channeled spectra”,“dielectric resonances”,of “Fabry-Perot fringes”.Consider the plane waves incident on a non-absorbing,parallel-sided sheet of dielectric of thickness d ,with amplitude a .We define the following amplitude coefficients:21Figure10:The reflected and transmitted rays at the front and back surfaces of a thin non-absorbing dielectricfilm of thickness d and refractive index n in air.t transmission from air to dielectrict transmission from dielectric to airr reflection at the dielectric to air interfacer reflection at the air to dielectric interfaceThis is shown schematically in Fig.10.The transmitted amplitude will therefore be given by:Ae iθ=att +att r2e iδ+att r4e i2δ+···,(79) whereδis the change in the phase between two adjacent emerging rays.From the Stokes relationtt =1−r2(80) this expression can be rewritten asAe iθ=a(1−r2)(1+re iδ+r4e i2δ+···)(81)which sums toAe iθ=a(1−r2)1−r2e iδ.(82)The transmitted intensity is T0=A2=Ae iθAe−iθ.ThusT0=a2(1−r2)2(1−r2e iδ)(1−r2e−iδ)=a2(1−r2)21+r4−r2(e iδ+e−iδ)=(1−r2)21+[2r/(1−r2)]2sin2(δ/2)(83)22Figure11:Upper panel:the variation of R0(solid line)and T0(dotted line)with the phase differenceδfor r=0.41(R=0.16);note that R0+T0=1.Lower panel:the variation of R0T0withδ.Using the trigonometric identity cosδ=1−2sin2(δ/2)and R=rr∗,then T0and R0canbe written as:T0=(1−R)21+R2−2R cosδ(84)andR0=2R2(1−cosδ)1+R2−2R cosδ.(85)The variation of R0and T0withδis shown in Fig.13.This is the familiar Fabry-Perot fringe pattern,normally called channeled spectra when one encounters it due to afilter or a window,etc.,with parallel faces somewhere in the optical path.One chooses the thickness of the beamsplitter material so that the wavenumber region of interest is in thefirst lobe.2.1.2Relatingδto¯νFor an angle of incidenceθ=45◦,the optical path difference between emerging rays in a film of thickness d with refractive index n is2ny−z=2ny−2x cos(45◦);here x=d tanφ23。
生物物理化学英语词汇

生物物理化学英语词汇生物物理化学英语词汇生物物理化学英语词汇生物物理学biophysics分子生物物理学molecular biophysics生物物理化学biophysical chemistry分子动力学molecular dynamics柔性flexibility指生物大分子,如蛋白多肽链和磷脂脂肪酸链活动程度的大小。
如需转载,请注明来自:fane『翻译中国』序参数order parameter一级结构primary structure二级结构secondary structure三级结构tertiary structure四级结构quaternary structure螺旋结构helical structureα螺旋α-helixβ折叠β-pleated sheet蛋白质二级结构中的一种构象,其多肽链在空间的走向发生180°的转变。
链间氢键interchain hydrogen bond链内氢键intrachain hydrogen bondβ转角β-bend, β-turn蛋白质折叠protein folding解折叠unfolding解旋unwinding内旋转internal rotation三股螺旋triple helix, triplex螺旋度helicity分子肺molecular lung血红蛋白随氧的得失,其四级结构和亚基间距离发生显著变化,这种一张一合的情况与肺的呼吸类似,可理解为分子肺。
双螺旋duplex, double helix碱基堆积base stacking扭结kink水结构water structure结合水bound water生物能学bioenergetics[离子]近层水primary water离子与水作用,使分子沿着离子造成的电场排列,在离子周围形成结合较紧密、有序性较高的水层。
全反构型all transconfiguration扭曲构象guache conformation寻靶作用targetting二色性dichroism荧光团fluorophore荧光标记fluorescence labelling荧光探剂fluorescence probe荧光偏振fluorescence polarization荧光寿命fluorescence lifetime活性氧active oxygen超氧阴离子superoxide anion笼形结构cage structure非极性分子与水分子相互作用,使水的有序性加强;非极性分子在水中形成空穴,这种非极性分子周围的水分子形成笼形样结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Coherent Two-Dimensional Fourier Transform InfraredSpectroscopyM.Khalil,N.Demirdöven and A.TokmakoffDepartment of Chemistry,Massachusetts Institute of Technology,Cambridge,MA02139Telephone:(617)-253-4503,Fax:(617)-253-7030,E-mail:tokmakof@Abstract:Purely absorptive two-dimensional(2D)infrared vibrational spectra are obtained byadding together rephasing and non-rephasing2D spectra.The modulation of cross-peaks andemergence of new peaks are demonstrated as a function of the mixing period.2000Optical Society of AmericaOCIS codes:(300.6340)Spectroscopy,infrared;(300.6530)Spectroscopy,ultrafastTwo-dimensional(2D)infrared(IR)vibrational spectroscopy has recently been employed to study the structure and correlated dynamics of strongly coupled C≡O vibrations in metal dicarbonyl compounds and to determine the structure of small peptides in solution[1-5].Femtosecond heterodyne-detected third-order mid-infrared responses obtained as a function of an initial preparation period and a final detection period are Fourier transformed to give a 2D IR rmation on transient and evolving molecular structures is encoded in the position,amplitude, and shape of cross peaks in the2D IR spectrum.From a practical perspective,the use of this method requires the ability to obtain intuitive and physically relevant spectra with purely absorptive lineshapes.This study demonstrates the technique of2D Fourier transform(FT)IR spectroscopy using two different third-order non-linear signals to obtain purely absorptive features in the2D vibrational spectrum of the carbonyl stretches of dicarbonylacetylacetonato rhodium(I)(RDC)dissolved in hexane.The method is then used to explore the effects of relaxation on the various features in the2D vibrational spectra by introducing a variable mixing period.2D FT IR spectroscopy uses three field-matter interactions with the three input fields E a(k a),E b(k b)and E c(k c) arranged in a box-car geometry to generate a third-order non-linear polarization in the phase-matched directionk s=−k a+k b+k c.Two different signals are obtained at k s which differ only in the time ordering of the k a and k b pulses:S I=−k1+k2+k3(rephasing)and S II=+k1−k2+k3(non-rephasing).This technique is experimentally realized using a five-beam IR interferometer with90fs pulses centered at4.9µm.The incoming IR beam is split into4equal parts,three of which are used as input beams while the fourth beam is further split into a tracer and a local oscillator(LO).The tracer beam is sent along the path of the signal and is blocked during data collection. After the sample,the signal beam is spatially and temporally overlapped with the LO and dispersed in a monochrometer onto a64channel MCT detector.Rephasing and non-rephasing heterodyned signals are collected as a function ofτ1(delay between the first two pulses)for a particular mixing period,τ2(delay between the second and third pulses)by moving retroreflectors mounted on stepper-controlled translation stages.To determine the timing between pulses a and b to withinλ/10,the pulses are recombined after the sample and dispersed in a second monochrometer.Interference fringes collected as the timing between the two pulses is varied are used to calibrate theτ1axis.Fourier transforming along the correctedτ1axis leads to symmetric features in the resulting2D spectra.It is known from NMR,that collecting only the rephasing or the non-rephasing signals yields lineshapes that have mixed-phase character resulting in both absorptive and dispersive features in the real part of the2D spectrum. Pure absorptive lineshapes can be obtained by adding together the rephasing and non-rephasing2D spectra.Figure 1shows the rephasing and non-rephasing spectra with the phase-twisted lineshapes and their addition yielding pure absorptive features.The sum of the two responses shows eight features arising from the various ladder diagrams contributing to the third-order signals for this six-level system.We see that the diagonal and the cross-peaks consist of two features with opposite signs,separating the dynamics of the ground and first excited states.To correct for the phase mismatch between the signal and the LO fields arising due to pathlength differences,we phase the spectra by fitting the projection of the2D absorption spectrum alongω3to a dispersed pump-probe signal taken with the tracer as the probe under the same conditions[6].Figure2demonstrates the effect of a finiteτ2mixing time on the2D rephasing spectra.The first two panels show the modulation of the cross-peak intensity as a function ofτ2.We see that the intensity of the cross-peak reaches the maximum in Fig.2(a)whenτ2=nπ/2ωas where n is an even integer andωas is the frequency splitting between the symmetric and asymmetric carbonyl stretches.The cross-peaks disappear when n is an odd integer as shown in Fig.2(b).The third panel obtained whenτ2=7050fs indicates the emergence of four new features as a200020502100-ω1/2πc (cm -1)200020502100200020502100(c)(b)(a)-ω1/2πc (cm -1)ωsωaωa ωs ωsωa ωa ωsω3/2πc (c m -1)200020502100ω1/2πc (cm -1)Fig.1.Real part of 2D IR vibrational spectra at τ2=0(a)S I (b)S II and (c)S I +S II .result of various coherent and incoherent population relaxation processes occurring during the mixing time.This results in the diagonal and cross-peaks splitting into three features instead of the usual two features obtained at smaller values of τ2.A systematic study of the 2D rephasing and non-rephasing spectra as a function of τ2allows us to map out the complete dynamics of this multi-level system including the effects of solvent-induced relaxation and populationrelaxation.ωs ωaω3/2πc (c m -1)-ω1/2πc (cm -1)Fig.2.Absolute value 2D IR rephasing spectra as a function of a variable mixing time.(a)τ2=470fs (b)τ2=705fs(c)τ2=7050fs.1.O.Golonzka,M.Khalil,N.Demirdöven,and A.Tokmakoff,“Coupling and orientation between anharmonic vibrations characterized by two-dimensional infrared vibrational spectroscopy,”J.Chem.Phys.,115,10814-10828(2001).2.N.Demirdöven,M.Khalil,O.Golonzka,and A.Tokmakoff,“Correlation effects in two-dimensional vibrational spectroscopy of coupled vibrations,”J.Phys.Chem.A,105,8025-8030(2001).3.D.E.Thompson,K.A.Merchant and M.D.Fayer,“Two-dimensional ultrafast infrared vibrational echo studies of solute-solvent interactionsand dynamics,”J.Chem.Phys.,115,317-330(2001).4.M.T.Zanni,S.Gnanakaran,J.Stenger,and R.M.Hochstrasser,“Heterodyned two-dimensional infrared spectroscopy of solvent-dependent conformations of acetylproline-NH2,”J.Phys.Chem.B,105,6520-6535(2001).5.S.Woutersen,and P.Hamm,“Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,”J.Phys.Chem.B,104,11316-11320(2000).6.J.D.Hybl,A.Albrecht Ferro and D.M.Jonas,“Two-dimensional Fourier transform electronic spectroscopy,”J.Chem.Phys.,115,6606-6622(2001).。