20160912-一鸣直播-2017年华杯中年级初赛备考指导

合集下载

华杯赛初赛备考讲义含解析(小学中年级组)

华杯赛初赛备考讲义含解析(小学中年级组)

华杯赛初赛备考讲义含解析(小学中年级组)第一节几何精讲考点概述几何考点一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形)二、割补法计算面积;三、等积变换;四、周长的计算;(基本公式、平移法、标向法)五、角度的计算;(多边形内角和、外角和、角度的综合计算)六、勾股定理与弦图;七、立体几何认知.(展开图、三视图)真题精讲例题1. 如右图,一张长方形的纸片,长20 厘米,宽16 厘米.如果从这张纸上剪下一个长10 厘米,宽5 厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米(2010 年15 届)(A)72 (B)82 (C)92 (D)102【答案】C.【解答】因为要求剪下的这个长方形至少有一条边在原长方形的边上,所以可以分以下三种情况讨论:(1)小长方形的两条边都在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16) ×2 = 72(厘米).(2)只有小长方形的长边在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16)×2 + 5×2 = 82(厘米).(3)只有小长方形的短边在原长方形的边上,如下图:、此时,剩下纸片的周长为:(20+16) ×2 + 10×2 = 92(厘米).所以剩下图形的周长最大是92 厘米.故选C.例题2. 九个同样的直角三角形卡片,拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.(2013 年18 届)【答案】54.【解答】图中每个直角三角形,除直角外,还有两个锐角,一大一小,汇集在中心的是7 个小角和2 个大角.注意:大角+小角= 90︒,而在中心的9 个角之和为360︒,即7 个小角+2 个大角= 360︒,即:5 个小角+(2 个大角+2 个小角)= 360︒.所以:5 个小角+ 180︒= 360︒,即:5 个小角= 180︒,一个小角= 36︒,较大锐角= 90︒- 36︒= 54︒.练习1. 北京时间16 时,小龙从镜子里看到挂在身后墙上的4 个钟表(如下图),其中最接近16 时的是().(2012 年17 届)(A)(B)(C)(D)【答案】D.【解答】注意镜子里面和实际情况是左右对称的,因此A 实际是20 点5 分,B 实际是19 点50 分,C 实际是16 点10 分,D 实际是15 点55 分,因此选D.练习2. 把一块长90 厘米,宽42 厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出块,这种剪法剪成的所有正方形纸片的周长之和是厘米.(2012 年17 届)【答案】105;2520.【解答】要想全部剪成正方形,那么正方形的边长必须满足:是90 和42 的公约数(中年级表述:90 和42 除以边长能够除尽).那么满足条件的边长有1、2、3、6,要让正方形尽量少,那么边长尽量大,为6,这个时候长被分成了90÷6=15 格,宽被分成了42÷6=7 格,所以最少能剪出15×7=105 块.每块正方形的周长是6×4=24 厘米,所以所有正方形周长和为24×105=2520 厘米.练习3. 如右图,一个正方形被分成了4 个相同的长方形,每个长方形的周长都是20 厘米.则这个正方形的面积是()平方厘米.(2013 年18 届)【答案】64.【解答】设每个长方形的宽为a,则长为4a,得到等式:(4a+a)⨯ 2 =20 .可知:a =2,4a = 8.所以,正方形的面积为8×8=64(平方厘米).练习4. 如下图,将长度为9 的线段AB 九等分,那么图中所有线段的长度的总和是.(2013 年18 届)【答案】165.【解答】以A 点为线段左端点的线段长之和为:S1=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ;从A 点算起第二个点为线段左端点的线段长之和为:S2=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 ;……从A 点算起第八个点为线段左端点的线段长之和为:S8=1+ 2 ;从A 点算起第九个点为线段左端点的线段长之和为S9=1 .于是:S =S1 +S2+S3+ +S9= 9 ⨯1 + 8 ⨯ 2 + 7 ⨯3 + 6 ⨯ 4 + 5 ⨯5 + 4 ⨯ 6 + 3 ⨯ 7 + 2 ⨯8+1⨯9 =165例题3. 现有一个正方形和一个长方形,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.(2014 年19 届)(A)2(B)8(C)12(D)4【答案】D.【解答】根据题意,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2 厘米,那么,就要求长方形的两条长总长增加8 厘米,也就是每一条长比正方形的边长多4 厘米.例题4. 右图中的正方形的边长为10,则阴影部分的面积为()(A)56 (B)44 (C)32 (D)78(2014 年19 届)【答案】A.【解答】用竖直线和水平线将正方形分割为如左图所示的多个长方形,中间长方形的面积是4 ⨯ 3 = 12 ,所以,阴影部分的面积为(10 ⨯10 -12) ÷ 2 +12 = 56 .所以,选A.练习5. 如图1 所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是.(2006 年11 届)DNA【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.1 AB C 2 D练习6. 正方形 ABCD 与正方形 CEFG 水平放置组成如图所示的组合图形,已知该组合图形的周长是 56厘米,DG 长 2 厘米,那么,图中阴影三角形的面积是平方厘米.AD GFBC E【答案】8.【解答一】如下图所示, AI = AH = BJ = DG = 2 厘米,而六条小正方形的边长之和是:32 - ( A I + AH + BJ + DG ) = 24 ,每条小正方形的边长是 24 ÷ 6 = 4 厘米,那么,小正方形的面积是4 ⨯ 4 = 16 平方厘米,根据三角形的等积变换可知,阴影三角形的面积是小正方形面积的一半,即 16 ÷ 2 = 8 平方厘米.A IDHGFBJ C E【解答二】将大正方形的一条边(▲)与小正方形的一条边(△)看成一组,那么,每组的长是(32 - 2) ÷ 3 = 10 厘米,而大小正方形的边长之差是 2 厘米,根据和差公式可得,大正方形的边长是 6厘米,小正方形的边长是 4 厘米,进而可求,阴影三角形的面积是 8 平方厘米.A▲DG△F▲△B▲ C △ E练习7. 如图,在一个正方体的表面上写着 1 至 6 这 6 个自然数,并且 13 对着 4,2 对着 5,3 对着 6.现在将正方体的一些棱剪开,使它的表面12展开图如下右图所示.如果只知道 1 和 2 所在的面,那么 6 写在字母的位置上.【答案】A .【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,展开图中的形状,黑色两个面在合上后也是相对的,所以1 和C 相对,C=4,B 和2 相对,B=5,那么A 要么是3 要么是6,现在观察1、A、B 这三个面,它们折叠时,如果把1 放正面,A 放上面,那么B 就在右侧,为2,矛盾,因此当1 放正面时,A 应该在下面,为6.练习8. 如图一个小正方形和4 个周长为32 cm 的相同的长方形拼成一个大正方形,那么大正方形的面积是cm2 .【答案】256.【解答】注意到,大正方形的边长刚好是长方形的长+宽,为16,所以面积等于16×16=256 平方厘米.第二节应用题精讲考点概述应用题考点一、常考应用题类型1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.小虎在19×19 的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45 枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了()枚棋子.(2012 年17 届)(A)285 (B)171 (C)95 (D)57【答案】A【解析】加上45 枚棋子之后,还能摆成一边不变的较大的长方形的实心点阵,说明不变的这条边上的棋子数能整除45,要使总棋子数尽量多,则这条边要尽量大,最大为15,所以最多用了15 19=285 枚棋子.例2.幼儿园的老师给班里的小朋友送来55 个苹果,114 块饼干, 83 块巧克力.每样都平均分发完毕后,还剩3 个苹果,10 块饼干,5 块巧克力.这个班最多有位小朋友.(2013 年18 届)【答案】26【解析】可以列出除55 余3 的自然数:55÷4=13……3;55÷13=4……3;55÷26=2……3;55÷52=1……3;然后列出除114 余10 的自然数:114÷13=8……10;114÷26=4……10;114÷52=2……10;114÷104=1……10;再列出除83 余5 的自然数:83÷13=6……5;83÷26=3……5;83÷39=2……5;83÷78=1……5;其中,符合条件的最大的除数是26,所以,这个班最多有26 位小朋友.练习1.两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值().(2014 年19 届)(A)83 (B)99 (C)96 (D)98【答案】B【解析】由条件“其中一个是另一个的两倍”可知:所求的和是某个正整数的3 倍,要求小于100,故这两个正整数的和是99.练习2.三堆小球共有2012 颗,如果从每堆取走相同数目的小球以后,第二堆还剩下17 颗小球,并且第一堆剩下的小球数是第三堆剩下的2 倍,那么第三堆原有颗小球.(2012 年17 届)【答案】665【解析】设此时第三堆有1 份小球,则如果一开始就从第一堆放1 份小球到第三堆,并且从第二堆扔掉17 个小球,那么此时三堆小球的个数相同,都是(2012 -17)÷ 3=665 个,而在上述过程中,第三堆小球数目并未发生变化,所以第三堆原有665 个小球.例3.张老师每周的周一、周六和周日都跑步锻炼20 分钟,而其余日期每日都跳绳20 分钟.某月他总共跑步5 小时,那么这个月的第10 天是().(2013 年18 届)(A)周日(B)周六(C)周二(D)周一【答案】D【解析】每周张老师跑步1 小时,所以这个月的后28 天总共跑步了4 小时,说明这个月共有31 天,并且前3 天跑了1 个小时,所以前3 天只能是周六、周日、周一,所以这个月第10 天是周一,选D.例4.新生开学后去远郊步行拉练,到达A 地时比原计划时间10 点10 分晚了6 分钟,到达C 地时比原计划时间13 点10 分早了6 分钟,A、C 之间恰有一点B 是按照原计划时间到达的,那么到达B 点的时间是().(2014 年19 届)(A)11 点35 分(B)12 点5 分(C)11 点40 分(D)12 点20 分【答案】C【解析】从10 点10 分到13 点10 分共有3 个小时,误差时间共有12 分钟,即每小时要调整4 分钟,调整6 分钟的时候即是到达B 点的时间.调整6 分钟需要1 个半小时,即1 小时30 分钟,所以到达B 点的时间是11 点40 分.练习5.体育馆正在进行乒乓球单打、双打比赛,双打比赛的运动员比单打的运动员多4 名,比赛的乒乓球台共有13 张,那么双打比赛的运动员有名.(2012 年17 届)【答案】20【解析】因为一张球台可供2 名单打运动员、或4 名双打运动员进行比赛,所以由‘双打比赛的运动员比单打的运动员多4 名’可知,双打比赛用了1 份多一个1 个球台,单打比赛用了2 份球台,从而双打比赛用了5 个球台,单打比赛用了8 个球台,故双打比赛有20 名运动员.练习6.麦当劳的某种汉堡每个10 元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡.已知东东和朋友需要买9 个汉堡,那么他们至少需要花元钱.【答案】60【解析】20 元可以买3 个,买9 个需要花60 元.练习7.小张早晨8 点整从甲地出发去乙地,速度是每小时60 千米.早晨9 点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12 点整与小王同时到达甲地.那么两人相遇时距离甲地千米.【答案】96【解析】小张4 小时走了一个来回,所以单程需要2 小时,所以甲乙相距120 千米,这段路小王花了3 小时,所以小王的速度为40 千米/小时.9 点时,两人相距60 千米,在60 ÷(60+40)=0.6 小时后两人相遇,此时距离甲地1.6 ⨯ 60=96 千米.课后练习1. 魔法学校运来很多魔法球,总重量多达5 吨,一颗魔法球重4 千克,现在有10 名学员使用魔法给这些魔法球涂色,每人每6 分钟可以给5 颗魔法球涂色,那么他们涂完所有魔法球最少要用分钟.【答案】150【解析】总共有5000 ÷4=1250 个魔法球,所以总共需要1250 ⨯ 6 ÷ 5 ÷10=150 分钟.2. 某校三年级和四年级各有两个班.三年级一班比三年级二班多4 人,四年级一班比四年级二班少5 人,三年级比四年级少17 人,那么三年级一班比四年级二班少人.【答案】9【解析】让三年级二班增加4 人,四年级一班增加5 人,则相同的两个年级的两个班人数相同了,且此时三年级比四年级少17 + 5 - 4=18 人,平均每个班少9 人,而三年级一班和四年级二班人数均未发生变化,所以三年级一班比四年级二班少9 人.3. 2010 名学生从前往后排成一列,按下面的规则报数:如果某个同学报的数是一位数,后面的同学就要报出这个数与8 的和;如果某个同学报的数是两位数,后面的同学就要报出这个数的个位数与7 的和.现在让第一个同学报1,那么最后一个同学报的数是.【答案】13【解析】从第一名同学开始,依次报数为:1、9、17、14、11、8、16、13、10、7、15、12、9、17、……,从而从第二名同学开始,报数以11 为周期,而2009 ÷11=182 7 ,所以最后一个同学报的数为13.4. 骆驼有两种:背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼.单峰骆驼比较高大,四肢较长,在沙漠中能走能跑;双峰骆驼四肢粗短,更适合在沙砾和雪地上行走.有一群骆驼有23 个驼峰,60 只脚,那么双峰驼有匹.【答案】8【解析】共有60 ÷ 4=15 匹骆驼,23 个驼峰,而多出的驼峰都是双峰驼多的,所以有23 -15=8 匹双峰驼.6. 红星小学组织学生参加队列演练,一开始只有40 个男生参加,后来调整队伍,每次调整减少3 个男生,增加2 个女生,那么调整次后男生女生人数就相等了.【答案】8【解析】最开始男女人数相差40 个,每次调整可以让人数差减少5 个,所以8 次调整后,男女人数就相等了.7. 甲,乙,丙三人锯同样粗细的木棍,分别领取8 米、10 米、6 米长的木棍,要求都按2 米的规格锯开.劳动结束后,甲、乙、丙分别锯了24、25、27 段,那么锯木棍次数最多的比次数最少的多锯次.【答案】2【解析】8 米、10 米、6 米长的木棍分别可以被锯成4、5、3 段,并且分别需要锯3、4、2 次,甲、乙、丙分别锯了6、5、9 根木棍,所以分别锯了18、20、18 次,最多比最少的多锯2 次.8. 一堆糖果有50 块,小明和小亮玩游戏.小明每赢一次拿5 块糖,然后吃掉4 块,将剩下的1 块放到自己的口袋里;小亮每赢一次也拿5 块糖,然后吃掉3 块,将剩下的2 块放到自己的口袋里.游戏结束时,糖刚好被拿完,这时小亮口袋里的糖数恰好是小明口袋里的糖数的3 倍,那么两人一共吃掉了块糖.【答案】34【解析】两人都是一次拿5 块,所以总共进行了10 次游戏,而小亮的糖数是小明的3 倍,说明小明每赢2 次,小亮就要赢3 次,所以说明小明总共赢了4 次,小亮赢了6 次,总吃掉了4 ⨯ 4+6 ⨯ 3=34 块糖.第三节数字谜、计数、组合精讲考点概述数字谜考点:1. 填竖式问题的一些方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.2. 填横式问题:横式中的填空格和字母破译问题;熟练应用尾数分折、首位估算、分情况试算等方法;对于较复杂的题目,从约束条件较多、可能性较少的算式入手;某些横式问题,可以转化为竖式问题再求解.3. 幻方与数阵图、数独问题:掌握幻方的概念,了解三、四阶幻方的构造;解决具有与幻方类似性质的数阵图问题;进一步掌握重数的运用,填充较复杂的数阵图;利用重数计算处理数阵图中的最值问题.计数考点:1. 枚举法(分类、有序)2. 加乘原理(加法,分类;乘法,分步)组合考点:1. 各种与数字计算有关的最值问题.在枚举试算的过程中,注意寻找出大小变化的规律,并尝试分析其内在原因;学会用比较、调整的方法寻找最值情况.2. 逻辑推理:(1)一句话不是真话,就是假话.这在逻辑学中被称为排中律.(2)在应用假设法分析问题时,要考虑全面.既要考虑到所假设的条件成立的情况,还要考虑到条件不成立的情况.(3)对于条件复杂的逻辑推理问题,通常状况下都可以通过列表法分析.真题精讲例1.右图的计数器三个档上各有10 个算珠,将每档算珠分成上下两部分,按数位得到两个三位数,要求上面的三位数的数字不同,且是下面三位数的倍数,那么满足题意的上面的三位数是.(2012 年17 届)【答案】925【解析】由题意,知这两个三位数的和为1110,而上面是下面的倍数,可能为1 倍、2 倍、……,最多为9 倍,从而和为下面三位数的最少2 倍,最多10 倍,而1110 只有除以2、3、5、6、10 能除得尽,得到下面三位数可能为555、370、222、185、111,经过检验,可知只有185 满足要求,此时上面的三位数为925.练习1.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立时,贺+新+春=().(2012 年17 届)(A)24 (B)22 (C)20 (D)18【答案】D放鞭炮+ 迎龙年贺新春【解析】所填入的9 个数字为1、2、……、9,可知加数的数字和之和与和的数字和的总和为45,而最多进位两次(十位、个位),又两整数的和与差奇偶性相同,故加法恰好进位一次,所以可知,和的数字和为18.故选D.练习2.如图所示的两位数加法算式中,已知A +B +C +D = 22 ,则X +Y =().(2012 年17 届)(A)2 (B)4 (C)7 (D)13【答案】B【解析】由竖式可知,恰好进位一次(十位),故加数的数字和比和的数字和多9,从而X +Y = 22 - 9 - 9 = 4 ,故选B.例2.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(2014 年19 届)(A)10 (B)8 (C)12 (D)16【答案】C【解析】甲坐好后,乙共有4 种坐法,其中紧邻甲有2 种坐法,坐定后丁有两种坐法;乙另有2 种坐法不紧邻甲,乙坐定后,丁仅有 1 种坐法,而丙和戊在剩余的 2 个座位中,只有两种选法,故共有(2⨯ 2 +2⨯1) ⨯ 2 =12 不同的围坐方法.例3.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20 根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有个单位边长的正方形.(2014 年19 届)【答案】7【解析】通过以下两步操作,总可以约定第1 行方格个数不大于第2 行方格个数.第一步:总可以左移第一行的方格,使其和第二行方格左端对齐,新的图形所用木棍数量不多于原图形所用木棍的数量,但是移动前后方格数相同,例如见下图.第二步:如果第一行的方格数比第二行的方格数多,可以将多的方格切下,移至第一行上面,增加一行,新的图形所用木棍数量不多于原图形所用木棍的数量,但是方格数相同,如此操作,直到第一行的方格数不大于第二行的方格数.例如见右图.因此,从题目条件可知,图形至少有 2 行方格.由前面的讨论,总可以约定第 1 行方格个数不大于第 2 行方格个数.(1)假设图形有 2 行方格第 1 行有 1 个方格,第 2 行有 6 个方格,所用木棍总数是 22; 第 1 行有 1 个方格,第 2 行有 5 个方格,所用木棍总数是 19; 第 1 行有 2 个方格,第 2 行有 5 个方格,所用木棍总数是 21; 第 1 行有 2 个方格,第 2 行有 4 个方格,所用木棍总数是 18; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 21; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 20; 第 1 行有 4 个方格,第 2 行有 4 个方格,所用木棍总数是 22. (2)假设图形有 3 行方格第 1 行有 1 个方格,第 2 行、第 3 行都各有 3 个方格,所用木棍总数是 20; 第 1 行有 2 个方格,第 2 行、第 3 行都各有 2 个方格,所用木棍总数是 17. (3)假设图形有 4 行方格第 1 行有 1 个方格,第 2 行、第 3 行、第 4 行都各有 2 个方格,所用 木棍总数是 20.根据以上判断,图形不可能有 5 行、6 行、7 行、8 行. 所用木棍总数 20,方格总数是 7.右图是摆出的图形.练习3. 用 8 个 3 和 1 个 0 组成的九位数有若干个,其中除以 4 余 1 的有()个.(2014 年 19 届)(A )5 (B )6 (C )7 (D )8 【答案】B【解析】用 8 个 3 排成一行,中间有 7 个间隔,加上最右边的一个位置,每个位置都可以放置 0,共 有 8 种放法.因为 100 能被 4 整除,故除以 4 余 1 的数的最右边的两位数只能是 33.所以,只有 6 个 位置可以放 0,共有 6 种放法.例4. 牧羊人用 15 段每段长 2 米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是()平方米.(2012 年 17 届)(A )100 (B )108 (C )112 (D )122 【答案】C【解析】假设长有 a 段篱笆,宽有 b 段篱笆,由条件可知 a + 2b = 15 ,而希望面积越大,即 a ⨯ b 越大, 也就是 a ⨯ 2b 越大,由于两数和一定差小积大,那么可知 a = 7 , 2b = 8 时,面积最大,此时面积为 (7 ⨯ 2) ⨯ (4 ⨯ 2) = 112 .练习4. 小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是().(2013 年18 届)(A)小东(B)小西(C)小南(D)小北【答案】C【解析】若小东说的对,则其他三人都有不对,此时小北说小南说的不对,则是对的,矛盾.若小西说的对,则捡到红领巾的是小南,那么小东也就说对了,与只有一人说对矛盾.若小南说的对,则根据小东的话可以判断捡到红领巾的是小西,此时符合题意.若小北说的对,则小南说的不对,也就意味着小东说的对,矛盾.故选C.练习5.平面上有四个点,任意三个点都不在一条直线上.以这四个点为端点连接六条线段,在所组成的图形中,最少可以形成()个三角形.(2012 年17 届)(A)3 (B)4 (C)6 (D)8【答案】B【解析】(1)有一点在其他三点构成的三角形内,可以形成4 个三角形;(2)任意一点都在另三点构成的三角形外,那么可以形成8 个三角形.故最少可以形成4 个三角形,故选B.练习6.在10□10□10□10□10 的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所成的算式的最大值是().(2012 年17 届)(A)104 (B)109 (C)114 (D)119【答案】B【解析】由于没有括号,故10 ⨯10 = 100 ,10 ÷10 =1,可以认为将100、10、1 由“+”、“-”连接,希望算式结果最大,最大为100 +10 -1 = 109 .原式为10 ⨯10 +10 -10 ÷10 = 109 .故选B.练习7.五个小朋友A、B、C、D 和E 参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5 个编号之和等于35.已知站在E、D、A、C 右边的选手的编号的和分别为13、31、21 和7.那么A、C、E 三名选手编号之和是.(2014 年19 届)【答案】24【解析】由于31>21>13>7,说明A 在D 的右边,E 在A 的右边,C 在E 的右边.由于,站在C 右边的选手的编号和为7,推出B 站在C 的右边.所以,B、C、E、D、A 分别是7、6、8、4、10.A、C、E 三名选手编号之和是24.练习8.用右图的四张含有4 个方格的纸板拼成了右图所示的图形.若在右下图的16 个方格分别填入1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A、B、C、D四个方格中数的平均数是.(2014 年19 届)【答案】4【解析】如图,用M,N,P,Q 标记16 个方格图最下面4 个方格,从而有A +B +M +N =C +D +P +Q =1+3+ 5 + 7 =16 ,又M+N+P+Q=16,所以A+B+C+D=16.右上图是一种满足要求的填法,且A, B,C, D 四个方格中数的平均数是4.课后练习1. 四位数中,数码0 出现次.【答案】2700【解析】分类,出现三个0 的四位数,有9 个,共9⨯3 = 27 个0;出现两个0 的四位数,0 可能出现在百、十;百、个和十个上,其他两位有9⨯9 =81种填法,有3⨯9⨯9 = 243 个,共243⨯ 2 = 486 个0;出现1 个0 的四位数,0 可能出现在百、十、个位上,有3⨯9⨯9⨯9 = 2187 个,共2187 个0;故共27 + 486 + 2187 = 2700 个.2. 从1,2,3,4,5,6,7 中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有种.【答案】7【解析】本题中,“和”必为偶数.按和的不同,分类枚举如下:(1)4 =1+ 3 ,1 组;(2)6 = 2 + 4 =1+ 5 ,2 组;(3)8 = 2 + 6 =1+ 7 = 3 + 5 ,2 组;(4)10 = 4 + 6 = 3 + 7 ,1 组;(5)12 = 2 + 4 + 6 = 5 + 7 ,1 组.共有:1+ 2 + 2 +1+1= 7 组.3. 将10,15,20,30,40 和60 填入右图的圆圈中,使A、B、C 三个小三角形顶点上的3 个数的积都相等.相等的积最大为.【答案】18000【解析】10 = 2 ⨯ 5 ,15 =3⨯ 5 ,20 = 2 ⨯ 2 ⨯ 5 ,30 = 2 ⨯3⨯ 5 ,40 = 2 ⨯ 2 ⨯ 2 ⨯ 5 ,60 = 2 ⨯ 2 ⨯ 3⨯ 5 ,这三个相等的乘积再相乘,等于原来6 个数的乘积再乘上中间三个数,结果是一个立方数,即2、3、5 在乘积中出现的次数是3 的倍数,这6 个数的乘积有9 个2、3 个3、6 个5 相乘,而多乘的三个数,5 一定出现3 次,3 最多出现3 次,只能为15、30、60,此时2 出现也为3 次,此时乘积最大,可以得到这3 个相等的积为3 个5、2 个3、4 个2 相乘,等于18000.而此时第一层、第二层、第三层依次填入40;15、30;20、60、10,满足要求.4. 用3、5、6、18、23 这五个数组成一个四则运算式,得到的非零自然数最小是.【答案】12 41433 2 2 2 2 3 2 1 1 2 3 24 1 4 3 2 4 1 4 33444前句 后句A 对 错B 错 错 C对对【解析】最小的非零自然数为 1,而 6 ÷ 3 - 5 ÷ (23 -18) = 1 ,可以取到 1,故所求最小值为 1.5. 小明在正方形的边上标出若干个点,每条边上恰有 3 个,那么所标出的点最少有()个.(A )12 (B )10 (C )8 (D )6【答案】C【解析】希望所标出的点最少,也就是所标的点被重复计数,那么 4 个顶点上都标上,然后每条边再 标 1 个即可,故最少标 8 个点.3126. 如图, 5 ⨯ 5 的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了 1,2,3,4 各两个,那么,表格中所有数的和是.【答案】66【解析】如图所示,本题只有唯一填法,相加可得和为 66.7. 甲、乙、丙、丁获得了学校创意大赛的前 4 名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”; 丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”. 现在知道,甲、乙、丙、丁分别获得第 A 、B 、C 、D 名,并且他们都是不说慌的好学生,那么四位数 ABCD = .【答案】4213【解析】甲是第 3、4 名之一;丙是第 1 名或 4 名.如果丙是第 4 名,则乙是第 3 名。

2017年第22届华杯赛初赛试题

2017年第22届华杯赛初赛试题

总分第二十二届华罗庚金杯少年邀请赛初赛试题(小学高年级组)(时间2016年12月10日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1.两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.(A )16(B )17(C )18(D )19解析:设这两个有限小数为A 、B ,则7×10=70<AB<8×11=88,很明显,积的整数部分可以是70-87的整数,所以这两个有限小数的积的整数部分有87-70+1=18种。

答案选C 。

2.小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟.某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟.(A )6(B )8(C )10(D )12解析:方法一:单位“1”和假设法,设小明家距学校的路程为“1”,乘地铁的速度为301,乘公交车速度为501,40-6=34分钟,假设全程都做地铁,能走301×34=1517,所以坐公交车用了(1517-1)÷(301-501)=10分钟。

方法二:设数法和假设法,设小明家距学校的路程为[30,50]=150m ,乘地铁的速度为150÷50=3m/min ,乘公交车速度为150÷30=5m/min ,40-6=34分钟,假设全程都做地铁,能走5301×34=170m ,所以坐公交车用了(170-150)÷(5-3)=10分钟。

方法三:时间比和比例。

同一段路程,乘地铁和乘公交车时间比为3:5,全程乘地铁需要30分钟,有一段乘公交车则用40-6=34分钟,所以乘公交车的那段路比乘地铁多用34-30=4分钟,所以坐公交车用了4÷(5-3)×5=10分钟。

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
9. 已知被除数比除数大 78, 并且商是 6, 余数是 3, 求被除数与除数之积. 10. 今年甲、乙俩人年龄的和是 70 岁. 若干年前, 当甲的年龄只有乙现在这么大 时, 乙的年龄恰好是甲年龄的一半. 问: 甲今年多少岁? 11. 有三个连续偶数, 它们的乘积是一个五位数, 该五位数个位是 0, 万位是 2, 十位、百位和千位是三个不同的数字, 那么这三个连续偶数的和是多少? 12. 在等式
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)

第17届华杯赛网上初赛试题(中低年级组)

第17届华杯赛网上初赛试题(中低年级组)

(B)1 月份有 5 个星期三,2 月份也有 5 个星期三
(C)1 月份有 4 个星期三,2 月份也有 4 个星期三
(D)1 月份有 4 个星期三,2 月份有 5 个星期三
第 3 题(选择题)
有大小不同的 4 个数,从中任取 3 个数相加,所得到的和分别是 180、197、208 和 222。那
么,第二小的数所在的和一定不是(
第 17 届华杯赛网上初赛试题(中低年级组)
第 1 题(选择题)
1、如下图,时钟上的表针从(1)转到(2)最少经过了(
)。
(A)2 小时 30 分
(B)2 小时 45 分
(C)3 小时 50 分
(D)3 小时 45 分
第 2 题(选择题)
在 2012 年,1 月 1 日是星期日,并且(
)。
(A)1 月份有 5 个星期三,2 月份只有 4 个星期三
第 8 题(填空题) 将 10、15、20、30、40 和 60 填入右图的圆圈中,使 A,B,C 三个小三角形顶点上的 3 个数 的积都相等。那么相等的积最大为_________。
第 9 题(填空题) 用 3、5、6、18、23 这五个数组成一个四则运算式,得到的非零自然数最小是________。 第 10 题(填空题) 里山镇到省城的高速路全长 189 千米,途径县城。县城离里山镇 54 千米。早上 8:30 一辆客 车从里山镇开往县城,9:15 到达。停留 15 分钟后开往省城,午前 11:00 能够到达。另有一 辆客车于当日早上 9:00 从省城径直开往里山镇。每小时行驶 60 千米。两车相遇时,省城开 往里山镇的客车行驶了________分钟。
)。
(A)180
(B)197
(C)208

2017年华杯赛初赛、决赛、总决赛时间安排

2017年华杯赛初赛、决赛、总决赛时间安排

⼀、参赛办法 1、参赛原则: ⾃愿参赛 2、参赛选⼿组别设置: 根据参赛选⼿所在年级设⽴以下四个组别: 1、⼩学中年级组:2017年9⽉前不⾼于⼩学四年级的学⽣ 2、⼩学⾼年级组:2017年9⽉前不⾼于⼩学六年级的学⽣ 3、初中⼀年级组:2017年9⽉前不⾼于初中⼀年级的学⽣ 4、初中⼆年级组:2017年9⽉前不⾼于初中⼆年级的学⽣ ⼆、赛事安排 1、初赛 时间:2016年12⽉10⽇(星期六)上午10:00 ~ 11:00。

形式:笔试,由“华杯赛”组委会办公室统⼀提供试题。

 2、决赛 时间:2017年3⽉11⽇(星期六)上午10:00 ~ 11:30。

⽐例:从参加初赛选⼿中选拔不超过30%的优胜者进⼊决赛。

形式:笔试,由“华杯赛”组委会办公室统⼀提供试题。

3、总决赛 时间:2017年暑假期间(具体⽇期另⾏通知)。

地点:⼴东省惠州市。

⼈数:10⼈,其中⼩学中年级组2名选⼿,⼩学⾼年级组2名选⼿,初中⼀年组2名选⼿,初中⼆年级组2名选⼿,领队、教练各1名。

形式:笔试和⼝试。

成绩:分个⼈成绩和团体成绩 1、个⼈成绩: 两次笔试成绩的总和。

⼩学中年级组、⼩学⾼年级组、初中⼀年级组、初中⼆年级组分别选拔个⼈⾦、银、铜牌获得者。

获得2017年“华杯赛”冬令营和夏令营⼀等奖选⼿分别进⼊相应组别参加⽐赛,计个⼈成绩。

2、团体成绩: 各代表队⼩学⾼年组、初中⼀年组笔试4名选⼿总分加⼝试成绩,决出团体冠、亚、季军及第四⾄第⼋名;其余代表队按各代表队笔试总成绩取团体第九⾄⼆⼗名。

三、奖励 1、决赛 (1)设个⼈⼀、⼆、三等奖,⽐例不超过本市参加决赛⼈数的36%,其中⼀等奖为不超过参加决赛⼈数的6%,⼆等奖不超过决赛⼈数的12%,三等奖不超过决赛⼈数的18%。

(2)获决赛⼀、⼆等奖选⼿的基层辅导教师荣获“优秀教练员”奖,获决赛三等奖选⼿的基层辅导教师荣获“优秀辅导员”奖。

2、总决赛 (1)设个⼈⾦、银、铜奖牌 获奖⽐例分别为各组参加总决赛⼈数的70%。

2017华杯赛笔试决赛考点分析(专业老师针对性分析)!

2017华杯赛笔试决赛考点分析(专业老师针对性分析)!

2017华杯赛笔试决赛考点分析(专业老师针对性分析)!第22届华杯赛笔试决赛将于3月11日开始,现在对于华杯赛笔试决赛的孩子们有福利了,重庆学而思小高年级组老师特对华杯赛笔试决赛考点做了详细分析。

速往下看~考试时间:2017年3月11日(星期六)上午10:00—11:30 小高组试卷类型:通常考卷为B卷针对华杯赛笔试决赛,学而思张毅老师为大家带来最近五年华杯赛常考知识点的详细分析,并大胆的预测今年考试的内容。

一、最近五年华杯赛各题考点题号/年份12 13 14 15 161 提取公因数提取公因数圆与扇形提取公因数分小混合运算2 分数比例周期最小公倍数周长数表—日历3 圆柱侧面积分数计算计数合作分数大小4 和倍问题复合图形的面积时钟问题倍数问题5 抽屉原理韩信点兵分数大小比较位置原理几何求角度6 位置原理弦图树阵图体积工程问题7 立体图形展开图最大公因数不定方程列方程解应用题数论8 数字谜三视图几何图形枚举计数比例模型9 等积变形计算计数因数倍数环形跑道10 染色问题同余球体体积最值问题比例问题11 平方数问题流水行船变速问题设未知数求面积涂色问题12 余数性质数阵图风筝模型余数性质工程问题13 环形跑道计数问题抽屉原理风筝模型数论14立方体染色最小公倍数数字谜数字谜组合注释:1~8为填空,9~14为解答题。

近年小学奥数六大模块占比直观图从近五年题目分配来看,计算永远会出现在比较简单的题目中。

形式为分小混合,提取公因数,而数论总是出现在题号比较大的模块中,因此数论肯定是杯赛的难点,几何与行程都属于中等难度的题目,因此是大家需要多拿分的区域。

由饼图可知,数论和几何直接能占整个杯赛的百分之60左右,因此,要想赢得华杯赛,就必须拿下几何与数论,但是,其他模块也不得不去重视,相比数论与几何的难度而言,其他模块更注重于基础,都比较简单。

二、六大模块中华杯赛常考考点01在计算模块中,华杯赛常考的就是巧算与猛算。

第十七届华杯初赛试卷(小学中年级组笔试版)答案 (1)

第十七届华杯初赛试卷(小学中年级组笔试版)答案 (1)

第十七届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组笔试版)一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的括号内。

)1、在下面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字。

当算式成立时,贺+新+春=()。

A、24B、22C、20D、18【解析】就是一道数字谜的题目,根据规律我们试得,173+286=459,那么“贺新春”相加为18。

2、北京时间16时,小龙从镜子里看到挂在身后墙上的4个钟表(如下图),其中最接近16时的是()。

【解析】从镜中看到的时间与原来钟表中的时间左右对称。

时间分别为:8:05,7:50,4:10,3:50。

3、平面上有四个点,任意三个点都不在一条直线上,以这四个点为端点连接六条线段,在所组成图形中,最少可以形成()个三角形。

A、3B、4C、6D、8【解析】一个三角形中三个顶点,里面有一点,分别和三角形的三个顶点相连,又出现3条线段,一共4个三角形,此时最少。

【详细解答】平面上四个点且任意三个点都不在同一条直线上,连出的6条线段所能组成的图形会是什么呢这个是解题的关键。

老师可以站在组合的高度知道最多也是能连出6条线段。

关键是构图的思路:先画出三个点不在同一条直线上,两两相连能组成一个三角形,再选择第四点的位置,为了保证任意三个点不在同一条直线上,这时只有二种可能性:一是第四个点在此三角形之外,二是第四个点在此三角形之内,除此之外,还有没有第三种情形,不妨让学生们讨论一下。

这种构图方法比起先画好四个点再来连线的好处是明显的,分类很明确,不会遗漏,也不容怀疑。

二个图形一画好就很容易知道最少及最多有多少个三角形。

答案是最少4个,故选B。

注:此题变通一下可以考学生最多能构成多少个三角形。

4、在10□10□10□10□10的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所以的算式的最大值是()。

2017华杯初赛中年级组模拟测试-答案

2017华杯初赛中年级组模拟测试-答案
= (42 + 58) × 137 + 58 + 6 × 3 × 8 = 13700 + 58 + 144 = 13902
考 点
计算 速算与巧算 四则混合运算
8. (10分)如图所示,一个正方体的8个顶点被截取后,弄到一个新的几何体.这 操作与策略 最值问题
3. (10分)刘老师在某一个星期中要去3 次健身馆,但是为了防止运动过量,不能连续两天都去,刘老师一共有 种满 足条件的时间安排. A.
10
种 A
B.
11

C.
12

D.
13

答 案 解 析
共有10种满足条件的时间安排.
考 点
计数 组合 枚举法
6. (10分)用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长 是244厘米,那么平行四边形有 个.
A.
20
B. B
40
C.
60
D.
80
答 案
解 析
每一个平行四边形加一个三角形为一组,周长增加3 × 2 = 6 厘米 ,前后各有2 厘米, 所以共有(244 − 4) ÷ 6 = 40 组,所以有40 组平行四边形加三角形的组合, 所以共有40 个平行四边形.
0
B. A
1
C.
500
D. 不能确定
答 案 解 析
假设甲对:则丙也是对的,矛盾,假设不成立;假设乙对:则丁也是对的,矛盾,假设不成 立;假设丙对:则其他三人的话可以全错,假设可以成立,此时,A先生有0本书;假设丁 对:则其他三人必须全错,看甲、A先生藏书不是500本,看乙、A先生藏书不够1000本,看 丙、A先生藏书至少2000本,出现矛盾,所以假设不成立.所以,丙说的对,A先生实际上没 有书,0本.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档