辅助编程及仿真发展过程
protues编程及运行方法

protues编程及运行方法
Proteus是一款强大的电路仿真软件,它支持多种编程语言,包括汇编、C 和C++等。
以下是使用Proteus进行编程和运行的基本步骤:
1. 打开Proteus软件,创建一个新的工程。
2. 在工程中添加所需的元件和电路。
您可以使用Proteus提供的元件库,也可以自己创建元件。
3. 编写程序代码。
您可以使用汇编、C或C++等语言编写代码,并将代码添加到工程中。
4. 配置仿真参数。
您可以选择仿真速度、仿真精度等参数,并设置输入信号和观察点。
5. 运行仿真。
单击“运行”按钮,Proteus将开始仿真,并在仿真过程中显示结果。
6. 分析仿真结果。
您可以查看仿真波形、数据等,并根据需要调整代码或电路。
需要注意的是,使用Proteus进行编程和运行需要一定的电路和编程基础。
如果您不熟悉电路设计和编程语言,建议先学习相关基础知识。
CAM技术简述及发展

CAM技术简述及发展摘要:CAM技术以计算机及周边设备和系统软件为基础,其特点是将人的创造能力和计算审的高速运算能力、巨大存储能力和逻辑判断能力有审地结合起来CAM技术随着Internet/Intranet网络和并行高性能计算及事务处理的普及,使奢地、协同、虚拟设计及实时仿真技术在CAD/ CAM中得到了广泛应用。
CAD/CAM技术的迅猛发展,软件、硬件水平的进一步完善,为机械提供了强有力的技术支持,为企业的产品设计、制造和生产水平的发展带来了质的飞跃,已经成为现代企业信息化、集成化、网络化的最优选择。
关键词:CAM技术 CAD/CAM 发展趋势发展平台一、CAM简述CAM(computer Aided Manufacturing,计算机辅助制造):利用计算机来进行生产设备管理控制和操作的过程。
它输入信息是零件的工艺路线和工序内容,输出信息是刀具加工时的运动轨迹(刀位文件)和数控程序。
CAM有狭义和广义的两个概念。
CAM的狭义概念指的是从产品设计到加工制造之间的一切生产准备活动,它包括CAPP、NC编程、工时定额的计算、生产计划的制订、资源需求计划的制订等。
这是最初CAM系统的狭义概念。
到今天,CAM的狭义概念甚至更进一步缩小为NC编程的同义词。
CAPP已被作为一个专门的子系统,而工时定额的计算、生产计划的制订、资源需求计划的制订的制订则划分给MRPⅡ/ERP系统来完成。
CAM的广义概念包括的内容则多得多,除了上述CAM狭义定义所包含的所有内容外,它还包括制造活动中与物流有关的所有过程(加工、装配、检验、存贮、输送)的监视、控制和管理。
二、CAM的构成及主要功能目前比较成熟的CAM系统主要以两种形式实现CAM系统集成:一体化的CAD/CAM系统(如:UGII、Euclid、Pro/ENGINEER等)和相对独立的CAM系统。
前者以内部统一的数据格式直接从CAD系统获取产品几何模型,而后者主要通过中性文件从其它CAD系统获取产品几何模型。
数控编程及仿真课程设计

数控编程及仿真课程设计一、课程目标知识目标:1. 掌握数控编程的基本概念、术语和编程规则,理解数控机床的工作原理;2. 学会使用数控仿真软件进行基本操作,并能进行简单的零件编程与仿真加工;3. 了解数控机床的安全操作规程及维护保养知识。
技能目标:1. 能够运用所学知识,独立完成简单的数控编程任务;2. 能够运用数控仿真软件进行零件加工过程的模拟,分析并解决简单的加工问题;3. 能够熟练操作数控机床,进行安全、规范的实际操作。
情感态度价值观目标:1. 培养学生对数控技术及制造业的兴趣,激发其学习热情;2. 培养学生的团队合作精神,提高沟通与协作能力;3. 增强学生的安全意识,使其养成良好的职业素养和环保意识。
课程性质:本课程为实践性较强的专业课,要求学生在理论学习的基础上,注重实践操作。
学生特点:学生处于中等职业学校数控技术应用专业,具备一定的理论基础,动手能力强,对新鲜事物充满好奇心。
教学要求:结合学生特点,注重理论与实践相结合,强调实践操作能力的培养,充分调动学生的主观能动性,提高其解决实际问题的能力。
通过本课程的学习,使学生在掌握基本知识与技能的同时,形成正确的价值观,为今后的职业发展打下坚实基础。
二、教学内容1. 数控编程基本概念:数控机床的分类、数控编程的基本术语及编程步骤;2. 数控编程指令系统:常用数控指令的功能、格式及使用方法;3. 数控编程工艺处理:加工工艺的分析、确定合理的走刀路线及切削参数;4. 数控仿真软件操作:介绍仿真软件的基本功能、操作界面及使用方法;5. 数控机床操作与加工:熟悉数控机床的操作面板、掌握机床的基本操作流程、安全操作规程及维护保养;6. 实践加工案例分析:分析实际加工案例,使学生了解数控编程在实际加工中的应用。
教学大纲安排:第一周:数控编程基本概念及术语;第二周:数控编程指令系统学习;第三周:数控编程工艺处理;第四周:数控仿真软件操作学习;第五周:数控机床操作与加工;第六周:实践加工案例分析及总结。
学习如何进行PLC的模拟仿真和调试

常见模拟仿真软件比较
MATLAB/Simulink
MATLAB/Simulink是MathWorks公司开发的一款工程模拟软件,提供了一套完整的建模、仿真和分析工具,支持多 领域的应用,如控制系统、信号处理、通信等。
LabVIEW
LabVIEW是National Instruments公司开发的一款图形化编程软件,提供了丰富的数据采集、仪器控制和数据分析 工具,同时也支持模拟仿真功能。
03
PLC编程与调试方法论述
编程环境搭建与配置
1 2
选择合适的PLC型号和软件
根据实际需求选择适合的PLC型号和编程软件, 例如Siemens的TIA Portal或Rockwell的 RSLogix5000。
安装编程软件
按照软件安装向导逐步完成软件的安装,包括选 择合适的安装路径、语言、组件等。
根据项目需求,编写PLC控制程序, 包括主程序、子程序、中断程序等。
程序下载与调试
将编写好的程序下载到PLC中,并进 行初步的调试和测试。
调试结果分析
调试过程记录
详细记录调试过程中的操作步 骤、遇到的问题以及解决方法
。
调试结果展示
通过PLC的输入输出信号、内部 变量等,展示调试结果,验证 程序功能的正确性。
问题分析与解决
遇到问题时,要仔细分析问 题的原因,并采取相应的措 施进行解决,例如修改程序 逻辑、调整参数设置等。
04
案例分析:具体项目实践应 用
案例背景描述
项目需求
01
某生产线自动化控制系统,需要实现设备的启动、停止、故障
检测等功能。
PLC选型
02
根据项目需求,选用合适的PLC型号,如Siemens S7-300或
基于ug的数控编程及加工过程仿真

(题 目:基于U G 的数控编程及加工过程仿真英文题目:NC Programming and MachiningProcess Simulation based on UG研究生:青 春学科专业:机械设计及理论指导教师:李 强 教 授二○○七年四月硕士学位论文 分类号: 学校代码: 10128U D C :学 号: 20041061摘 要数控技术是机械加工现代化和军事工业发展的重要基础与关键技术。
应用数控加工可大大提高生产率、稳定加工质量、缩短加工周期、增加生产柔性、实现对各种复杂精密零件的自动化加工,易于在工厂或车间实行计算机管理,使车间设备总数减少、节省人力、改善劳动条件,有利于加快产品的开发和更新换代,提高企业对市场的适应能力并提高企业综合经济效益。
同时,也使机械加工的大量前期准备工作与机械加工过程连为一体,使CAD、CAPP、CAM的一体化成为现实,使机械加工的柔性自动化水平不断提高。
本文以目前国际上先进的“CAD/CAM/CAE”一体化机械工程辅助系统——UG NX为工具,完成了固体火箭发动机喷管阳球体的计算机辅助编程及虚拟加工仿真。
从新加工工艺及高质量数控编程角度出发,探索了一条实现固体火箭发动机喷管阳球体球面高精、高效加工的新方法。
具体内容包括:首先,根据阳球体的结构特点和技术要求,在对其进行了详尽的加工工艺分析之后,确定了球面的加工方法。
然后,利用UG/CAD模块完成了阳球体、毛坯、夹具及机床的几何体的参数化建模。
在此基础上,利用UG/CAM模块进行数控编程,优化了加工路线、刀具轨迹,切削方式等工艺参数,生成了阳球体五坐标加工的高精、高效的NC程序。
通过刀轨检查及时地发现刀具跟零件之间的过切和欠切。
并通过虚拟加工过程仿真提前发现机床各运动部件、夹具及刀具之间的干涉和碰撞,确定干涉碰撞发生的位置和相应的NC程序段,并对先前的设计和NC程序进行修改。
由于UG NX提供了一个基于过程的产品设计环境,使产品开发从设计到加工真正实现了数据的无缝集成,从而极大的促进了设计和生产向自动化和高效化方向发展,提升了企业在国际市场上的竞争力。
CAM CAD考试题

机械CAD/CAM习题第一章 CAD/CAM技术概述选择题1.下述CAD/CAM过程的操作中,属于CAD范畴的为( A )。
CAD范畴几何造型工程分析仿真模拟图形处理A.模拟仿真B.CAPPC.数控加工D.GT2.下述CAD/CAM过程的操作中,属于CAD的范畴的是( D )。
A.CAPP B.CIMSC.FMS D.几何造型3.以下不属于CAD/CAM系统的基本功能的是( D )。
人机交互图形显示存储输入输出A.图形显示功能B. 输入输出功能C. 交互功能D. 网络功能4. 以下不属于输出设备的是( A )A. 操纵杆B. 打印机输入设备:操纵杆光笔数字化仪鼠标键盘C. 绘图机D. 显示器输出设备:绘图仪图形终端打印机硬盘机磁带机5. 以下软件中,( C )是操作系统。
A. Word2000B. Autocad 几何建模工具SOLIDworks/dge pro/e ug-iiC. Windows95D. Pro-E 操纵系统 Windows98 Windows2000 WindowsNT PCDOS6. 计算机辅助制造进行的内容有( C )(工程绘图几何建模计算分析优化设计有限元分析计算机辅助工艺设计数控编程动态仿真计算机辅助测试技术工程数据管理)A. 进行过程控制及数控加工B. CADC. 工程分析D. 机床调整7.应用软件是在操作系统、( C )基础上针对某一专门的应用领域而研制的软件.A. CAD 软件B. CAM软件C. 支撑软件D. 编译系统8.( D )是CAD/CAM系统的核心。
A. 系统软件B. 支撑软件C. 应用软件D. 数据库9.机械CAD/CAM系统中,CAE是指( C )。
A.计算机辅助设计B.计算机辅助制造C.计算机辅助工程分析D.计算机辅助工艺过程设计10.把CAD和CAM的信息连接起来,实现CAD/CAM一体化的关键性中间环节是( C )A. CADB. CAMC. CAPPD. CAE填空题:1.CAD/CAM系统是由: 人、硬件和软件组成。
1什么是仿真

• 控制系统工具箱 • 系统辨识工具箱 • 鲁棒控制工具箱 • 多变量频域设计工具箱 • 分析与校正工具箱 • 神经网络工具箱 • 最优化工具箱 • 模糊控制工具箱等
24
13
0.3 计算机仿真技术的应用
计算机仿真已被广泛应用于各个 领域,它在系统研究中的重要性在于 它不仅经济而且安全可靠。通过仿真 研究可以预测系统的特性以及外界干 扰的影响,从而可以对制订控制方案
和控制决策提供定量依据。 • 工程系统 • 非工程系统
14
一、工程系统
• 如控制系统的设计、分析和研究;电力系 统的可靠性研究;化工流程的模拟;造船、 飞机、导弹等研制过程。
• 50年代初,出现了通用的模拟计算机。 • 50年代末,数字计算机有了很大发展,
加上这时期在微分方程数值解的理论方 面又有很大的发展,所以在几种高级语 言(如FORTRAN,ALGOL等)出现以后, 在50年代末期,数字计算机便在非实时 仿真方面开始得到广泛的应用。
7
• 1958年为满足高速动态系统仿真的要求, 出现了第一台专用的模拟/数字混合计算 机,它是用来解决导弹轨迹的计算问题。
18
四、当前仿真研究的前沿课题
• 主要有仿真与人工智能技术的结合、分布 式仿真与仿真模型的并行处理、图形与动 画仿真、建模环境与仿真支持系统等。
• 控制系统的仿真是一门涉及到控制理论、 计算数学和计算机技术的综合性科学。
19
0.4 控制系统计算机辅助设计 (CAD)的主要内容 及其应用
20
1. 控制系统CAD的主要内容 根据所使用的数学工具,控制系统的分析与设 计方法可以分为如下的两大类:变换法(频域 法)和状态空间法(时域法)。
一、仿真的意义
某型发动机叶片的数控编程和仿真加工

由于叶片的薄壁和复杂曲面特点,加工过程中容 易产生变形。解决方案包括优化装夹方式、采用 小切削力加工、合理安排加工顺序等。
数控编程技术
叶片的复杂曲面形状需要高精度的数控编程技术 。解决方案包括采用专业的CAM软件进行编程、 优化刀具路径、提高编程精度等。
刀具选择与管理
叶片加工需要用到多种刀具,刀具的选择和管理 对加工质量和效率有很大影响。解决方案包括选 用高性能刀具、建立刀具管理系统、定期检查和 更换刀具等。
度、进给量和切削深度等,以提高加工效率和质量。
程序仿真与调试
03
利用仿真软件对程序进行验证和调试,确保程序的正
确性和可行性,减少实际加工中的试切次数和成本。
04
仿真加工技术
仿真软件介绍
01
CATIA
02
UG NX
03
Vericut
一款广泛应用于航空航天领域的三维 CAD/CAM/CAE软件,具有强大的曲 面造型功能和高级数控编程能力,适 用于复杂发动机叶片的设计和仿真。
了加工的成功率和效率。
03
通过本项目的研究,推动了数控编程和仿真加工技术
的发展,为相关领域的技术进步做出了贡献。
未来研究方向展望
01 深入研究更加高效、智能的数控编程算法,进一 步提高发动机叶片的加工精度和效率。
02 将仿真加工技术与实际加工过程更加紧密地结合 ,实现实时仿真和加工过程的优化。
03 探索将本项目的研究成果应用于其他类似零件的 加工,拓展其应用范围和领域。
发展趋势
随着计算机技术和制造技术的不 断发展,数控编程和仿真加工技 术将越来越智能化、自动化和精 细化。
本项目研究目标
研究目标
本项目旨在研究某型发动机叶片的数控编程和仿真加工技术,实现叶片的高精度、高效 率制造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅助编程及仿真发展过程1概述数控自动编程技术受到广泛关注,各国的专家学者都在潜心研究自动编程系统。
数控加工是指在数控机床上按事先编制好的程序,对零件进行自动加工的一种加工工艺方法,零件加工的最终效果直接取决于数控程序编制的效率和准确率。
数控编程是目前提高加工精度、表面加工质量、加工效率以及实现生产自动化最重要的一环,在制造业中有应用广泛。
数控编程分为手工编程和自动编程,对于那些程序量大、轨迹计算复杂的零件,根本不可能采用手工编程,即使能编制出加工程序,其低下的效率亦根本不能满足市场的需求。
受飞速发展的技术革命的巨大冲击,传统的机械设计和制造方式发生了根本性的变化,产品的设计生产周期越来越短,逐渐向小批量、多品种、高精高效加工的方向发展。
特别是随着计算机辅助设计和制造(CAD/CAM)技术的推广和计算机数控加工技术的广泛应用,计算机辅助自动编程势在必行。
计算机辅助编程是根据来自CAD的零件几何信息和来自CAPP的零件工艺信息自动生成数控代码的过程。
而现在CAD/CAM(计算机辅助设计及制造)与PDM(产品数据管理)构成了一个现代制造型企业计算机应用的主干。
对于制造行业,设计,制造水平和产品的质量,成本及生产周期息息相关,人工设计,单件生产这种传统的设计与制造方式已无法适应工业发展的要求,采用CAD/CAM的技术已成为整个制造行业当前和将来技术发展的重点。
2数控编程发展阶段自数控机床问世以来,数控编程经历了两个阶段:数控语言编程和CAD/CAM集成编程。
在数控语言编程阶段,为解决数控加工的编程问题,世界各国研究了上百种语言,其中以50年代美国麻省理工学院开发的一种专门用于机械零件的数控编程语言APT(AutomaticallyProgrammedTool)最具有代表性。
APT编程是把用APT语言编写的程序输入计算机,由内部的编译系统自动生成数控加工指令。
APT语言先后经历了APTII,APTIII,APTIN,APT-AC,APTIV/SS等几个发展阶段,能处理二维、三维及多坐标零件的加工。
APT语言的出现使数控加工编程从面向机床指令的“汇编语言”级上升到面向几何元素和加工方式的高级语言,具有程序编制简单、走刀路径灵活的特点。
但随着计算机技术及CAD技术的快速发展,其不足之处日益表现出来,它受语言描述能力的限制,对用户的要求较高,难以满足设计与制造一体化的要求。
在CAD/CAM集成编程阶段,借助良好的软件开发平台,可充分利用CAD软件的图形编辑功能,将零件图直接绘制在计算机上,并形成图形文件。
然后输入工艺参数并调用数控编程模块,计算机可以自动进行数据处理、生成数控加工程序。
同时可在屏幕上动态显示刀具的走刀轨迹。
这种方法无须操作者输入数据,因此大大减小了人为误差,最大限度地提高了编程的效率和加工的质量。
由于图形编程系统由零件图直接生成数控加工指令,故可直接利用CAD进行零件图的设计。
20世纪80年代在CAD/CAM一体化概念的基础上,逐渐形成了计算机集成制造系统(CIMS)。
与APT语言相比,它有以下几个特点: 其一,这种编程方法是直接面向零件的几何图形,不需进行复杂的数学计算,不需要用具体的语言描述零件的几何形状,具有直观、简便、准确和便于检查的优点;其二,有利于实现CAD/CAM的一体化。
通常的数控自动编程系统是和相应的CAD软件连在一起的一体化软件系统,既可进行计算机辅助设计,又可以直接调用己设计好的图形;其三,这类软件都可在通用计算机上进行,无需专用的编程机,便于推广,是自动编程系统的发展方向。
由于我国在数控编程系统方面起步较晚,虽然作了大量的工作,但相对于发达国家还有很大差距。
在APT语言的基础上,开发了一些同类的语言,但从总体上看,由于资金技术等主客观因素的限制,研制的许多软件缺乏系统性,还有待于进一步完善,才能更好地服务于机械制造加工等行业。
日益增多的复杂零件的出现和高精高效的加工,对数控自动编程系统提出了越来越高的要求,同时为适应高速加工、并行工程、敏捷制造和CIMS等先进制造技术的发展。
目前的几个比较主流的CAD/CAM系统(1)UGII CAD/CAM系统UGII CAD/CAM系统具有丰富的数控加工编程能力,是目前市场上数控加工编程能力最强的CAD/CAM集成系统之一,其功能包括车削加工编程,型芯和型腔铣削加工编程,轴铣削加工编程等(2)Pro/EPro/E是美国PTC公司研制和开发的软件,它开创了三维CAD/CAM参数化的先河,该软件具有基于特征,全参数,全相关和单一数据库的特点,可用于设计和加工复杂的零件Pro/E系统的核心技术具有以下特点:基于特征,全尺寸约束,尺寸驱动设计修改。
Pro/E已广泛应用于模具,工业设计,航天,玩具等行业,并在国际CAD/CAM/CAE市场上占了较大的份额上述CAD/CAM系统编程中,仍需要编程人员过多地干预才能生成数控源程序。
随着CAPP技术的发展,使数控自动编程成为可能。
系统从CAD数据库获取零件的几何信息,从CAPP数据库获取零件加工过程的工艺信息,然后调用NC源程序生成数控源程序,再对源程序进行动态仿真,如果正确无误,则将加工指令送到机床进行加工。
以下所示为自动编程系统的组成。
3数控自动编程发展趋势进入20世纪90年代以后,随着微电子、自动控制和数控加工技术发展日益迅速,数控自动编程和加工技术呈现出一些新的发展趋势,主要表现在以下几个方面。
(1)集成化程度进一步提高集成化是指将数控编程系统和其他计算机辅助设计系统、加工过程控制系统、质量控制系统,如:CAD,CAE,CAPP,CAM等系统集成到一起,形成一个自动化的CIMS系统,以便实现集成系统内部信息的充分利用,提高产品设计制造过程的效率与质量。
(2)智能化程度进一步增强智能化方面的工作刚刚开始,是指把人类的专业知识融入到集成化的系统中,采用人工智能的方法建立各类知识库,包括专家系统、智能库、自学习功能等。
(3)并行化随着计算机技术和网络技术的发展,特别是Internet技术的普及应用,计算机协同工作得到高度重视,新产品的开发要求相关学科的专家协同工作,形成一种新的工作模式一一群组工作,从而缩短产品的开发周期,降低制造成本,提高产品的质量。
4计算机辅助编程的发展和仿真发展密切联系制造业在国民经济中一般都占有最大的比重,自70年代以来,全球性的市场竞争日益激烈,产品消费结构不断向多元化、个性化方向发展,产品的更新期和交货期都在缩短,一些计算机辅助编程技术都得到快速发展。
系统仿真作为一种重要手段,通常可以渗透到它们当中去,并帮助它们实现集成,从而促进了一些先进制造技术的发展。
“仿真”一词译自英语单词“Simulation”,有时也译作“模拟”,是“模仿真实世界”的意思。
1)系统仿真类型介绍在工程技术界,系统仿真是通过对系统模型实验,去研究一个存在或设计中的系统。
现在计算机仿真已成为系统仿真的一个重要分支,系统仿真很大程度上指的就是计算机仿真。
计算机仿真技术的发展与控制工程、系统工程及计算机工程的发展有着密切的联系。
一方面,控制工程、系统工程的发展,促进了仿真技术的广泛应用;另一方面,计算机的出现以及计算机技术的发展,又为仿真技术的发展提供了强大的支撑。
计算机仿真一直作为一种必不可少的工具,在减少损失、节约经费开支、缩短开发周期、提高产品质量等方面发挥着重要的作用。
2)计算机仿真在制造业的应用和发展现状以及趋势在50年代,最引人注目的仿真领域是火炮控制和飞行控制系统;60年代,是火箭和导弹控制系统;70年代是航天、核能和经济管理系统;到80年代,最引人注目的仿真领域就逐步转向了制造系统,并且呈现出一种生机勃勃的局面。
从本质上讲,仿真技术就是建立仿真模型和对模型实验的一种技术。
计算机仿真过程的实现一般都可由计算机高级语言、仿真语言和仿真软件来完成。
典型的仿真软件有仿真环境、仿真语言和程序包3种形式,其功能覆盖是不完全相同的。
从下到上,大体反映了仿真软件的发展过程。
到80年代中后期,开始出现了一体化仿真环境。
现在,面向制造系统的仿真出现了一体化支撑软件,实现了仿真建模、仿真运行、输出分析的集成环境,仿真监控运用了并发执行机制,在数据库管理的基础上实现了模型数据、实验数据、仿真结果的统一管理,人工智能技术也应用在仿真建模、仿真运行和仿真结果的分析中。
此外,广义制造系统仿真器的出现,实现了对某类制造系统的非语言建模、模型数据驱动等功能。
这类典型的一体化仿真软件有TESS,IBIS;广义仿真器有AUTOMODⅡ,FATOR,GEMS,WITNESS等。
计算机仿真技术作为一门新兴的高技术,其方法学建立在计算机能力的基础之上。
随着计算机技术的发展,仿真技术也得到迅速的发展,其应用领域及其作用也越来越大。
尤其在航空、航天、国防及其他大规模复杂系统的研制开发过程中,计算机仿真一直是不可缺少的工具,它在减少损失、节约经费、缩短开发周期、提高产品质量等方面发挥了巨大作用。
在从产品的设计到制造以至测试维护的整个生命周期中,计算机仿真技术贯穿始终(详见表1)。
从发展的历程来看,仿真技术应用的领域从传统的制造领域(生产计划制定、加工、装配、测试)正向产品设计开发和销售领域扩展。
总的来说,先进制造技术的发展,为计算机仿真的应用提供了新的舞台,也提出了更高的要求,目前仿真技术的应用具有以下特点和趋势:1. 仿真技术的应用范围空前的扩大了。
在仿真的对象及目的方面,已由研究制造对象(产品)的动力学特性,运动学特性,研究产品的加工、装配过程,扩大到研究制造系统的设计和运行,并进一步扩大到后勤供应、库存管理、产品开发过程的组织、产品测试等,涉及到制造企业的各个方面;2. 与网络技术结合所带来的仿真的分布性。
仿真的分布性是由制造的分布性决定的。
敏捷制造、虚拟企业等概念本身就有基于网络实现异地协作的含义;3. 与图形和传感器技术相结合,使仿真的交互性大大增强。
并由此形成了拟实制造(VM: Virtual Manufacturing)、虚拟产品开发(VPD: Virtual Product Development)、虚拟测试(VT: Virtual Test)等新概念;4. 仿真技术应用的集成化。
即综合运用仿真技术,形成可运行的产品开发和制造环境。
就仿真技术应用的对象来看,可将制造业中应用的仿真分为四类:面向产品的仿真;面向制造工艺和装备的仿真;面向生产管理的仿真;面向企业其它环节的仿真。
在本文的第三部分中,将从以上四个方面,介绍计算机仿真在制造业中的具体应用。
除此以外,虚拟现实和拟实制造的概念,集中体现了仿真技术应用的分布、交互和集成化趋势,所以简单加以介绍,作为计算机仿真在制造业中应用的展望。