部编版人教初中数学九年级上册《24.2.1点和圆的位置关系 同步检测题(含答案解析)》最新精品优秀
九年级数学上册 (24.2.1 点和圆的位置关系) 同步达标训练习题(含答案)

达标训练基础·巩固·达标1.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P( ) A.在⊙A 内 B.在⊙A 上 C.在⊙A 外 D.提示:本题两种方法,既可以画图,也可以计算A P 的长.∵A P=()()204248352222==+-+-<5,所以点P 在圆内.答案:A2.圆心为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A( )A.甲圆内B.乙圆外C.甲圆外,乙圆内D.提示:点A 在两圆组成的圆环内.答案:C3.已知⊙O 的半径为3.6 cm ,线段OA =257 cm ,则点A 与⊙O 的位置关系是( )A.A 点在⊙OB.A 点在⊙OC.A 点在⊙OD.提示:用“点到圆心的距离d 与半径r 的大小关系”来判定点与圆的位置关系.答案:C4.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O( )A.点P 在⊙OB.点P 在⊙OC.点P 在⊙OD.点P 在⊙O 上或⊙O提示:比较O P 与半径r 的关系.∵O P=5=22422+,O P 2=20. ∵r 2=25,∴O P <r.∴点P 在⊙O 内.答案:A5.在△ABC 中,∠C =90°,AC =BC =4 cm ,D 是AB 边的中点,以C 为圆心,4 cm 长为半径作圆,则A 、B 、C 、D 四点中在圆内的有( ) A.1 B.2 C.3 D.4提示:如右图,连接CD .∵D 为AB 的中点,∴CD =21AB .∵AB =24BC AC 22=+,∴CD =22<4.∵AC =BC =4C 和点D 在以C 为圆心,4 cm的圆的内部.答案:B6.已知a 、b 、c 是△ABC 三边长,外接圆的圆心在△ABC ( )A.a =15,b =12,c =1 B.a =5,b =12,c =12C.a =5,b =12,c =13D.a =5,b =12,c =14 提示:只有直角三角形的外心在边上(斜边中点).答案:C7.在R t △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,则它的外心与顶点C ( ) A.5cm B.6 cmC.7 cmD.8 cm提示:AB =2286 =10,它的外心是斜边中点,外心与顶点C 的距离是斜边的中线长为21AB =5 cm. 答案:A8.点A 在以O 为圆心,3 cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是_________.提示:根据点和圆的位置关系判定.答案:0≤d <39.如图24-2-5,在△ABC 中,∠ACB =90°,AC =2 cm ,BC =4 cm ,CM 为中线,以C 为圆心,5 cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有_________,在圆上的有________,在圆内的有__________.图24-2-5提示:AB =25 cm ,C M=5 cm.答案:点B 点M 点A 、C10.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.提示:利用点与圆的位置关系,由点到圆心距离与半径的大小比较.解:(1)当d=4 cm 时,∵d <r ,∴点P 在圆内.(2)当d=5 cm 时,∵d=r ,∴点P 在圆上.(3)当d=6 cm 时,∵d >r ,∴点P 在圆外.综合·应用·创新11.(经典回放)阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.图24-2-6①中的三角形被一个圆所覆盖,图24-2-6②中的四边形被两个圆所覆盖.图24-2-6(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________cm (2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是________cm ;(3)边长为2 cm ,1 cm 的矩形被两个半径都为r 的图所覆盖,r 的最小值是_________cm ,这两个圆的圆心距是____________cm .提示:图形被圆覆盖,圆一定大于图形的外接圆,它的最小半径就是外接圆半径.解:(1)正方形的外接圆半径,是对角线的一半,因此r 的最小值是22 cm.(2)等边三角形的外接圆半径是其高的23,故r 的最小值是33 cm. (3)r 的最小值是22 c m ,圆心距是1 cm.答案:(1)22 (2)33 (3)22 1 12.已知R t △ABC 的两直角边为a 和b ,且a 、b 是方程x 2-3x +1=0的两根,求R t △ABC积.提示:由a 、b 是直角三角形的两直角边,所以可求出斜边是22b a +,这样就得外接圆半径.根据直角三角形的外心是斜边中点,因此,其外接圆直径就是直角三角形的斜边.解:设Rt △ABC 的斜边为c ,∵a 、b 为方程x 2-3x +1=0∴a +b=3ab=1.由勾股定理,得c 2=a 2+b 2=(a +b )2-2ab=9-2=7.∴△ABC 的外接圆面积S=π·22⎪⎭⎫ ⎝⎛c =π∏=⨯∏=∏=47744422c c . 回顾·热身·展望13.(湖南常德模拟)有一个未知圆心的圆形工件(如图24-2-7).现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.图24-2-7提示:因为三角板有一个角是直角,所以可利用直角画90°的圆周角,由此可得直径,再画一个90°的圆周角,也能得到一直径,两直径的交点为圆心.答案:画法:(1)用三角板的直角画圆周角∠BDC =90°,∠EF H=90(2)连接BC 、E H ,它们交于点O .BC 为直径,点O 为圆心.14.(经典回放)电脑CP U 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄圆形片,叫“晶圆片” .现在为了生产某种CP U 芯片,需要长、宽都是1 cm 的正方形小硅片若干,如图24-2-8所示.如果晶圆片的直径为10.05 cm ,问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由.图24-2-8答案:可以切割出66个小正方形.方法一:(1)我们把10个小正方形排成一排,看成一个的矩形,这个矩形刚好能放入直径为10.05 m.题图中矩形ABCD .∵AB =1,BC =10,∴对角线AC 2=100+1=101<(10.05)2.(2)我们在矩形ABCD 的上方和下方可以分别放入9个小正方形.∵新加入的两排小正方形连同ABCD 的一部分可看成矩形EF GH矩形EF GH 的长为9,高为3,对角线E G 2=92+32=81+9<(10.05)2,但是新加入的这两排小正方形不能每排10个,因为:102+32=100+9>(10.05)2.(3)同理,∵82+52=64+25<(10.05)2,92+52=81+25=106>(10.05)2,∴可以在矩形EF GH 的上面和下面分别再排下8个小正方形,那么现在小正方形已有了5层.(4)再在原来的基础上,上下再加一层,共7层,新矩形的高可以看成是7,那么新加入的这两排,每排可以是7个,但不能是8个.∵72+72=49+49=98<(10.05)2,82+72=64+49=113>(10.05)2.(5)在第7层的基础上,上下再加一层,新矩形的高可以看成是9,这两层每排可以是4个,但不能是5个.∵42+92=16+81=97<(10.05)2,52+92=25+81=106>(10.05)2.现在总共排了9层,高度达到了9,上下各剩下约0.5 cm ABCD置不能调整,故再也放不下一个小正方形了.所以10+2×9+2×8+2×7+2×4=66(个).。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案

人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
人教版九年级上《24.2.1点和圆的位置关系》同步练习(含答案)

2018-2019学年度人教版数学九年级上册同步练习24.2.1点和圆的位置关系.选择题(共16小题)1 •已知。
O 的半径为5,若OP=6,则点P 与。
O 的位置关系是()A. 点P 在。
O 内B .点P 在。
O 外 C.点P 在。
O 上 D .无法判断2. 在平面直角坐标系中,圆心为坐标原点,。
O 的半径为5,则点P (- 3, 4) 与。
O 的位置关系是( ) A. 点P 在。
O 外 B .点P 在。
O 上 C •点P 在。
O 内 D .无法确定3. 平面内有一点P 到圆上最远的距离是6,最近的距离是2,则圆的半径是( )A. 2 B . 4 C. 2 或 4 D . 84. 如图,在矩形ABCD 中,AB=4, AD=3,以顶点D 为圆心作半径为x 的圆,若 要求另外三个顶点A 、B C 中至少有一个点在圆内,且至少有一个点在圆外,5. 如图,AB 是半圆O 的直径,点D 在半圆O 上,AB=2_ 一,AD=10, C 是弧BD上的一个动点,连接 AC,过D 点作DH 丄AC 于H ,连接BH,在点C 移动的过 程中,BH 的最小值是( )A . 5B . 6 C. 7 D . 86. 如图,在平面直角坐标系中,。
A 的半径为1,圆心A 在函数y=x 的图象上运 动,下列各点不可能落入O A 的内部的是( )3< r v 5 C. 3< r <5 D . r >4 B .7. 下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧 相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补•其中错误的结论有(8. 下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的 弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是(9. 如图,已知点平面直角坐标系内三点 O P 经过点A 、B C,则点P 的坐标为() C.( 4,亍) D .( 4,)10•如图所示,△ ABC 内接于。
初中数学人教版九年级上册24.2《点和圆、直线和圆的位置关系》测试(附答案)

初中数学人教版九年级上册24.2《点和圆、直线和圆的位置关系》测试(附答案)一、选择题1、如图,BM与⊙O相切于点B.若∠MBA=140°,则∠ACB的度数为( )A.40° B.50° C.60° D.70°2、如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30° B.45° C.60° D.40°3、如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°4、如图,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )A.3 cm B.4 cm C.6 cm D.8 cm5、如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.106、.如图,PA是⊙O的切线,切点为A,OP=4,∠APO=30°,则⊙O的半径为( )A.1 B. C.2 D.47、如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.58、在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB 的位置关系是()A.相交 B.相切 C.相离 D.不能确定9、如图,⊙O截△ABC的三条边所得的弦长相等,则下列说法正确的是()A.点O是△ABC的内心 B.点O是△ABC的外心C.△ABC是正三角形 D.△ABC是等腰三角形10、如图,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至C,过点C作直线OA的垂线记为l,则下列说法正确的是( )A.当BC等于0.5时,l与⊙O相离B.当BC等于2时,l与⊙O相切C.当BC等于1时,l与⊙O相交D.当BC不为1时,l与⊙O不相切11、如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论:①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题12、如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点.若∠P=40°,则∠D的度数为.13、如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A.若∠MAB=30°,则∠B=°.14、如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等,⊙O与BC相切于点C,与AC相交于点E,则CE的长为 cm.15、如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.16、下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;③三角形的外心到三角形三边的距离相等.其中正确的是.(填序号)三、简答题17、已知圆心O到直线m的距离为d,⊙O的半径为r.(1)当d,r是方程x2-9x+20=0的两根时,判断直线m与⊙O的位置关系?(2)当d,r是方程x2-4x+p=0的两根时,直线m与⊙O相切,求p的值.18、如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:A B是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.19、如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF;(1)判断AF与⊙O的位置关系并说明理由.(2)若⊙O的半径为4,AF=3,求AC的长.20、如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.21、如图,在△ABC中,∠C=90°,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D.(1)求证:⊙O与BC相切;(2)当AC=3,BC=6时,求⊙O的半径.22、如图,AB是⊙O的弦,点C是在过点B的切线上,且OC⊥OA,OC交AB于点P.(1)判断△CBP的形状,并说明理由;(2)若⊙O的半径为6,AP=,求BC的长.23、已知△ABC中,BC=5,以BC为直径的⊙O交AB边于点D.(Ⅰ)如图①,若AC与⊙O相切,且AC=BC,求BD的长;(Ⅱ)如图②,若∠A=45°,且AB=7,求BD的长.24、已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过点D作⊙O的切线PD.(Ⅰ)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(Ⅱ)如图②,若PD∥AB,求弦AD的长.参考答案一、选择题1、A2、A3、C4、C5、D6、C7、B8、A9、A 10、D 11、D二、填空题12、115°13、60°14、315、5;提示:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm.16、②三、简答题17、解:(1)解方程x2-9x+20=0,得d=5,r=4或d=4,r=5.当d=5,r=4时,d>r,此时直线m与⊙O相离.当d=4,r=5时,d<r,此时直线m与⊙O相交.(2)当直线m与⊙O相切时,d=r,(x1-x2)2=0=(x1+x2)2-4x1x2,即16-4p=0,解得p=4.18、(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∴AB为圆O的直径.(2)DE与⊙O相切,理由为:证明:连接OD.∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线.∴OD∥AC.∵DE⊥AC,∴DE⊥OD.∵OD为圆的半径,∴DE与⊙O相切.(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形.∴AB=AC=BC=6.设AC与⊙O交于点F,连接BF,∵AB为⊙O的直径,∴∠AFB=∠DEC=90°.∴AF=CF=3,DE∥BF.∵D为BC中点,∴E为CF中点,即DE为△BCF中位线.在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF===3.∴DE=BF=.19、解:(1)AF是⊙O的切线.理由如下:如图,连接OC.∵AB是⊙O直径,∴∠BCA=90°.∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3.∴OF⊥AC,∵OC=OB,∴∠B=∠1.∴∠3=∠2,又OA=OC,OF=OF,∴△OAF≌△OCF.∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°.∴∠OAF=90°,即FA⊥OA,∴AF是⊙O的切线.(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5.∵OF⊥AC,∴AC=2AE.∵S△OAF=AF•OA=OF•AE,∴3×4=5×AE,解得AE=.∴AC=2AE=.20、【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.21、【解答】证明:(1)过点O作OF⊥BC,垂足为F,连接OD,∵AC是圆的切线,∴OD⊥AC,又∵OC为∠ACB的平分线,∴OF=OD,即OF是⊙O的半径,∴BC与⊙0相切;(2)S△ABC=S△AOC+S△BOC,即AC×BC=AC×OD+BC×OF,∵OF=OD=r,∴r(AC+BC)=18,解得:r=2.即⊙O的半径为2.22、(1)∵OC⊥OA,∴∠AOC=90°,∴∠A+∠APO=90°∵BC切⊙O于点B,∴∠OBC=90°,∴∠OBA+∠CBP=90°∵OA=OB,∴∠A=∠OBA,∴∠APO=∠CBP………3分∵∠APO=∠CPB,∴∠CPB=∠CBP,∴CP=CB………5分(2)∵OC⊥OA,∴OP=设BC=x,∴OC=x+2,∵∴………8分∴x=8,∴BC=16………10分23、解:(Ⅰ) 连接CD,如解图①,∵AC与⊙O相切,BC是⊙O的直径,∴∠BDC=90°,∠ACB=90°.∵AC=BC=5,∴AB===5,∴BD=AB=;(Ⅱ)连接CD,如解图②,∵BC是⊙O的直径,∴∠BDC=90°,∵∠A=45°,∴∠ACD=45°=∠A,∴DA=DC.设BD=x,则CD=AD=7-x.在Rt△BDC中,x2+(7-x)2=52,解得x1=3,x2=4,∴BD的长为3或4.图①图②24、解:(Ⅰ)∵AB是⊙O的直径,∴∠ACB=90°,∴AC==8,∵PD、PC是⊙O的切线,∴PD=PC,∠APC=∠APD,在△APC和△APD中,,∴△APC≌△APD,∴AD=AC=8;(Ⅱ)如解图,连接OD、BD,∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,AD2+BD2=AB2,∴2AD2=102,∴AD=5.。
人教版九年级数学上册24.2.1: 点和圆的位置关系 精练题(含答案)

点和圆的位置关系精练题1.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .答案:点P 在⊙O 内.2.⊙O 的半径为5,圆心的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A .点P 在圆内B .点P 在圆外C .点P 在圆上D .点P 在⊙O 内或在⊙O 外答案:A .3.如图,在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法确定BA答案:A .4.下列条件:①已知半径;②过矩形四边的中点;③过已知直线l 上两点和直线l 外一点;④过双曲线6y x=第一象限图像上三点,其中只能确定一个圆的是 ( )A .①②B .②③C .③④D .②④答案:C .5.下列命题是假命题的是 ( )A .三角形的外心到三角形各顶点的距离相等B .三角形的外心到三边的距离相等C .三角形的外心一定在三角形一边的中垂线上D .三角形任意两边的中垂线的交点是这个三角形的外心答案:B .6.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为( )A .2a b +B .2a b -C .2a b +或2a b - D .a b +或a b - 答案:C .7.已知矩形ABCD 的边AB =15,BC =20,以B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是( )A .r >15B .15<r <20C .15<r <25D .20<r <25 答案:C .8.用反证法证明一个命题时,第一步很重要,请写出下列命题证明时的第一步假设:⑴三角形中至少有一个角不小于60°.第一步假设为 .⑵梯形的对角线不能互相平分.第一步假设为 .⑶三角形中至多只有一个角为钝角.第一步假设为 .答案⑴三角形中三个角都小于60° ⑵梯形的对角线互相平分 ⑶三角形中至少有两个角为钝角9.若O 为△ABC 的外心,且 ∠BOC =60°,则∠BAC = .分析:本题没有给出图形,根据题意可画出符合题意的图形,可以看出,三角形的顶点A 可能在优弧BC 上,此时∠BAC =12BOC ∠=30°;也可能在劣弧BC 上,此时∠BAC =11(360)(36060)15022BOC ︒-∠=︒-︒=︒.答案:30°或150°10.用圆规、直尺作图,不写作法,但要保留作图痕迹.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面,请你补全这个输水管道的圆形截面.答案:略11.如图,△ABC 中,BD ,CE 是△ABC 的高,试说明B ,C ,D ,E 四点在同一个圆上.ABC D E解:如图,取BC 的中点O ,连接OD ,OE , O ED C BA则OB =OC =12BC . 又因为BD ,CE 是△ABC 的高,所以OE =OD =12BC =OB =OC . 所以B ,C ,D ,E 四点在以O 为圆心,OB 为半径的圆上.12.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,∠A =30°,AC =3,以C为圆心,为半径画⊙C ,指出点A ,B ,D 与⊙C 的位置关系.若要使⊙C 经过点D ,则这个圆的半径应为多长?D CBA解:由∠ACB =90°,∠A =30°,AC =3,可求得BCAB=CD =32,由已知得r BC =r ,CA >r ,CD <r .所以点A在⊙C外,点B在⊙C上,点D在⊙C内.因为要使⊙C经过点D,所以当r=CD=1.5时,⊙C经过点D.13.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD与点D,过点D作DE∥AC交AB于点E,求证:点E是过A,B,D三点的圆的圆心.ED CBA解答:因为点D在∠BAC的平分线上,所以∠1=∠2,A32 1BCDE又因为DE∥AC,所以∠2=∠3,所以∠1=∠3,所以AE=DE.又因为BD⊥AD于点D,所以∠ADB=90°.所以∠EBD+∠1=∠EDB+∠3=90°.所以∠EBD=∠EDB.所以BE=DE.所以AE=BE=DE.因为过A,B,D三点确定一个圆,又∠ADB=90°,所以AB是A,B,D所在圆的直径.所以点E是A,B,D所在圆的圆心.14.如图,直线AB⊥CD于点O,线段PQ=a(定值),现在让线段PQ的两个端点Q、P分别在直线AB、CD上任意滑动,试探求线段PQ的中点M一定在什么图形上移动,写出你探求的结果,并在图上画出来.解:因为AB⊥CD,M为PQ的中点,所以OM=12 PQ.又因为PQ=a为定值,所以OM=12a为定值.线段PQ的中点M在以O为圆心,12a为半径的圆上.15.如图,公路MN和公路PQ在P点交汇,且∠QPN=30°,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少?解:如图,过A作AB⊥MN于B,因为AP=160,∠APB=30°所以AB=80.因为80<100,所以学校会受到影响.DC B A QP NM设MN 上有点C 、D ,且AC =AD =100,则拖拉机在CD 之间时学校受到影响,在R t △ABC 中,AC =100,AB =80,则BC =60.同理BD =60,所以CD =120.180km/h=5m/s120÷5=24(秒)答:学校会受到影响,影响时间为24秒16.在等腰△ABC 中,B 、C 为定点,且AC =AB ,D 为BC 的中点,以BC 为直径作⊙D .问:⑴∠A 等于多少度时,点A 在⊙D 上?⑵∠A 等于多少度时,点A 在⊙D 内部?⑶∠A 等于多少度时,点A 在⊙D 外部?解:A 2A 1D CB A⑴因为点A 在⊙D 上,且AD 为BC 的中线,AB =AC ,所以AD ⊥BC ,所以BD =DC =AD ,所以∠BAD =12∠BAC =45°.所以∠BAC =90°.即∠BAC=90°时,点A在⊙D上.⑵因为点A1在⊙D内,所以∠B A1D>∠BAD.所以∠B A1C>∠BAC,即∠B A1C>90°.所以当∠B A1C的度数大于90°且小于180°时,点A在⊙D内部.⑶与⑵类似,当顶点A的度数大于0°且小于90°时,点A在⊙D外部.。
24.2.1 点和圆的位置关系 人教版数学九年级上册同步练习(含答案)

24.2.1点和圆的位置关系1.⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上2.已知点A是数轴上一定点,点B是数轴上一动点,点A表示的实数为«Skip Record If...»,点B所表示的实数为«Skip Record If...»,作以A为圆心,«Skip Record If...»为半径的⊙A,若点«Skip Record If...»在⊙A外,则«Skip Record If...»的值可能是(). A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»3.如图,已知«Skip Record If...»是«Skip Record If...»的外心,«Skip Record If...»,«Skip Record If...»分别是«Skip Record If...»,«Skip Record If...»的中点,连接«Skip Record If...»,«Skip Record If...»,分别交«Skip Record If...»于点«Skip Record If...»,«Skip Record If...».若«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,则«Skip Record If...»的面积为()A.72B.96C.120D.1444.九个相同的等边三角形如图所示,已知点O是一个三角形的外心,则这个三角形是()A.△ABC B.△ABE C.△ABD D.△«Skip Record If...»ACE5.如图,平面直角坐标系中,点A是y轴正半轴上任意一点,B(-3,0),C(4,0),则当点A在y轴上运动时,△ABC的外心不可能在()A.第三象限B.第一象限C.第四象限D.x轴上6.点«Skip Record If...»是非圆上一点,若点«Skip Record If...»到«Skip Record If...»上的点的最小距离是«Skip Record If...»,最大距离是«Skip Record If...»,则«Skip Record If...»的半径是______.7.直角三角形的两直角边长分别为8和6,则此三角形的外接圆半径是_____.8.在如图所示的平面直角坐标系中,△ABC的顶点坐标分别为A(0,3),B(1,0),C(3,2),仅用无刻度的直尺在给出的网格中画图(画图用实线表示),并回答题目中的问题(1)在图1中画出△ABC关于点D成中心对称的图形;(2)在图2中作出△ABC的外接圆的圆心M(保留作图痕迹);(3)△ABC外接圆的圆心M的坐标为 .9.已知«Skip Record If...»,«Skip Record If...».按下列要求用直尺和圆规作图.(保留作图痕迹,不写作法)(1)在图①中求作一点«Skip Record If...»,使«Skip Record If...»,且«Skip Record If...»、«Skip Record If...»在直线«Skip Record If...»异侧;(2)在图②中求作一点«Skip Record If...»,使«Skip Record If...»,且«Skip Record If...»、«Skip Record If...»在直线«Skip Record If...»同侧.10.如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,证明点C在圆O上;11.如图,在«Skip Record If...»中,«Skip Record If...»,点«Skip Record If...»为«Skip Record If...»的中点.(1)以点«Skip Record If...»为圆心,4为半径作«Skip Record If...»,则点«Skip Record If...»分别与«Skip Record If...»有怎样的位置关系?(2)若以点«Skip Record If...»为圆心作«Skip Record If...»,使«Skip Record If...»三点中至少有一点在«Skip Record If...»内,且至少有一点在«Skip Record If...»外,求«Skip Record If...»的半径的取值范围.12.如图,在等腰△ABC中,AB=AC,⊙O是△ABC的外接圆,S△ABC=32,BC=8.(1)求出⊙O的半径r.(2)求S△ABO.13.已知AB是«Skip Record If...»的弦,点C为圆上一点.(1)用直尺与圆规作«Skip Record If...»;(2)作以AB为底边的圆内接等腰三角形;(3)若已知圆的半径«Skip Record If...»,求所作等腰三角形底边上的高.14.如图,∠BCD=90°,BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.(1)判断:∠ABC ∠PDC(填“>”或“=”或“<”);(2)猜想△ACE的形状,并说明理由;(3)若△ABC的外心在其内部(不含边界),直接写出α的取值范围.15.已知线段AB=4 cm,以3 cm长为半径作圆,使它经过点A.B,能作几个这样的?请作出符合要求的图.参考答案1.D【分析】根据⊙O的半径为R和点P到圆心O的距离为d之间的关系,对点与圆的位置关系进行判断即可.【详解】解:∵d≥R,∴点P在⊙O上或点P在⊙O外.故选D.【点拨】本题考查了点与圆的位置关系,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r点P在圆内⇔d<r.解题关键是熟记点和圆的位置关系与圆的半径和点到圆心的距离的关系.2.A【分析】根据点与圆的位置关系计算即可;【详解】∵B在«Skip Record If...»外,∴AB>2,∴«Skip Record If...»>2,∴b>«Skip Record If...»或b<«Skip Record If...»,∴b可能是-1.故选A.【点拨】本题主要考查了点与圆的位置关系,准确分析计算是解题的关键.3.B【分析】连接AF,AD,AE,BE,CE,根据三角形外心的定义,可得PE垂直平分AB,QE垂直平分AC,进而求得AF,DF,AD的长度,可知△AD F是直角三角形,即可求出△ABC的面积.如图,连接AF,AD,AE,BE,CE,∵点E是△ABC的外心,∴A E=B E=C E,∴△AB E,△AC E是等腰三角形,∵点P、Q分别是AB.AC的中点,∴PE⊥AB,Q E⊥AC,∴PE垂直平分AB,QE垂直平分AC,∴A F=B F=10,AD=CD=8,在△AD F中,∵«Skip Record If...»,∴△AD F是直角三角形,∠AD F=90°,∴S△ABC= «Skip Record If...»,故选:B.【点拨】本题考查三角形外心的定义,勾股定理逆定理等知识点,解题的关键是得到△AD F是直角三角形.4.C【分析】根据三角形的外心和等边三角形的性质解答;【详解】∵外心为三角形三边中垂线的交点,且钝角三角形的外心在三角形的外部,∴点«Skip Record If...»是«Skip Record If...»的外心.故答案选C.本题主要考查了等边三角形的性质和三角形外接圆的圆心,准确分析判断是解题的关键.5.A【分析】根据三角形的外心O是三角形外接圆的圆心,即是三边垂直平分线的交点,由B.C坐标可知,边BC的垂直平分线在y轴的右侧,结合三角形的形状判断即可.【详解】解:∵B(-3,0),C(4,0),∴边BC的垂直平分线在y轴的右侧,∴三角形的外心O在不可能在第二象限或第三象限,故A错误;当△ABC为锐角三角形时,三角形的外心O在三角形内部,并在第一象限,故B正确;当△ABC为钝角三角形时,三角形的外心O在三角形外部,并在第四象限,故C正确;当△ABC为直角三角形时,三角形的外心O在三角形斜边中点处,即在x轴上,故D正确,故选:A.【点拨】本题考查三角形的外心定义,解答的关键是熟知三角形的外心位置与三角形的形状关系,当三角形为锐角三角形时,三角形的外心O在三角形内部;当三角形为钝角三角形时,三角形的外心O在三角形外部;当三角形为直角三角形时,三角形的外心O在三角形斜边中点处.6.«Skip Record If...»或«Skip Record If...»【分析】分点«Skip Record If...»在«Skip Record If...»外和«Skip Record If...»内两种情况分析;设«Skip Record If...»的半径为«Skip Record If...»,根据圆的性质列一元一次方程并求解,即可得到答案.【详解】设«Skip Record If...»的半径为«Skip Record If...»当点«Skip Record If...»在«Skip Record If...»外时,根据题意得:«Skip Record If...»∴«Skip Record If...»当点«Skip Record If...»在«Skip Record If...»内时,根据题意得:«Skip Record If...»∴«Skip Record If...»故答案为:«Skip Record If...»或«Skip Record If...».【点拨】本题考查了圆、一元一次方程的知识;解题的关键是熟练掌握圆的性质,从而完成求解.7.5.【分析】根据勾股定理可得斜边是10,再根据其外接圆的半径是斜边的一半,即可得出其外接圆的半径.【详解】∵直角边长分别为6和8,∴斜边=«Skip Record If...»=10,∴这个直角三角形的外接圆的半径为10÷2=5.故答案为:5【点拨】本题考查了三角形的外接圆,知道直角三角形外接圆的直径是斜边的长是解题关键.8.(1)见解析;(2)见解析;(3)«Skip Record If...»【分析】(1)分别作出点A.B.C关于点D的对称点A'、B'、C',再顺次连接即可;(2)找出AB边和BC边的垂直平分线即可;(3)分别求出直线AD和直线EF的解析式,联立即可求得M的坐标;【详解】解:(1)如图,△A'B'C′为所求;(2)如图,取格点E.F、D,连接EF和AD相交于点M;∵AE∥BF,∴∠AEN=∠BFN,∵AE=BF,∠ANE=∠BNF,∴△AEN≌△BFN,∴AN=BN,∵«Skip Record If...»,«Skip Record If...»,∴«Skip Record If...»,«Skip Record If...»,∴«Skip Record If...»,∴∠BNF=90°,∴EF垂直平分AB,根据正方形的性质可得:AD垂直平分BC,∴点M为△ABC的外接圆的圆心;(3)设直线AD的解析式为y=kx+b,则有«Skip Record If...»;解得:«Skip Record If...»;∴直线AD的解析式为y=-x+3,设直线EF的解析式为y=mx+n,则有«Skip Record If...»;解得:«Skip Record If...»;∴直线AD的解析式为«Skip Record If...»,∴«Skip Record If...»;解得:«Skip Record If...»∴«Skip Record If...»【点拨】本题考查作图-复杂作图,坐标与图形性质,中心对称,三角形的外心、一次函数与一元一次方程组等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.9.(1)见解析;(2)见解析.【分析】(1)分别以B,C为圆心,BA为半径画弧,两弧交于点P,连接BP,PC即可;(2)作△ABC的外接圆,在优弧BC上任意取一点P,连接BP,PC即可.【详解】(1)如图①,«Skip Record If...»即为所求;(2)如图②,«Skip Record If...»即为所求.【点拨】本题考查了作图-复杂作图,等腰三角形的性质,三角形的外接圆,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.证明见解析【分析】连接CO;由勾股定理求出AC,利用勾股定理的逆定理证明△ACD是直角三角形,得出∠A CD=90°;再根据斜边上中线的性质和圆的对称性分析,即可完成证明.【详解】如图,连接CO∵AB=6,BC=8,∠B=90°,∴«Skip Record If...»∵CD=24,AD=26∴«Skip Record If...»∴△ACD是直角三角形,∴∠ACD=90°∵AD为⊙O的直径∴AO=OD∴OC为Rt△ACD斜边上的中线∴«Skip Record If...»∴点C在圆O上.【点拨】本题考查了圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、勾股定理及其逆定理、直角三角形斜边中线的性质,从而完成求解.11.(1)«Skip Record If...»在圆上,点«Skip Record If...»在圆外,点«Skip Record If...»在圆内(2)«Skip Record If...»【分析】(1)根据点与圆的位置关系判定方法,比较AC,C M,BC与AC的大小关系即可得出答案;(2)利用分界点当A.B.M三点中至少有一点在⊙C内时,以及当至少有一点在⊙C外时,分别求出即可.【详解】(1)∵在△ABC中,∠C=90°,AC=4,BC=5,AB的中点为点M,«Skip Record If...»,«Skip Record If...»,∵以点C为圆心,4为半径作⊙C,∴AC=4,则A在圆上,∵«Skip Record If...»,则M在圆内,BC=5>4,则B在圆外;(2)以点«Skip Record If...»为圆心作«Skip Record If...»,使«Skip Record If...»三点中至少有一点在«Skip Record If...»内时,«Skip Record If...»;当至少有一点在«Skip Record If...»外时,«Skip Record If...»,故«Skip Record If...»的半径«Skip Record If...»的取值范围为:«Skip Record If...».【点拨】本题主要考查了点与圆的位置关系,正确根据点到圆心距离d与半径r的关系,d>r,在圆外,d=r,在圆上,d<r,在圆内判断是解题关键.12.(1)⊙O半径为5;(2)10【分析】(1)连接OC,根据已知条件得到AO在BC中垂线上,延长AO交BC于点D,则D是BC 中点,AD⊥BC,根据勾股定理即可得到结论;(2)由(1)得AD=8,BD=4,由勾股定理得到«Skip Record If...»,过O作OH⊥AB于H,根据三角形的面积公式即可得到结论.【详解】解:(1)连接OC,∵AB=AC,OB=OC,∴AO在BC中垂线上,延长AO交BC于点D,则D是BC中点,AD⊥BC,∵«Skip Record If...»∴AD=8,∵OD=8﹣r,BO=r,BD=«Skip Record If...»BC=4,在R t△OBD中,r2=(8﹣r)2+42,解得:r=5,∴⊙O半径为5;(2)由(1)得AD=8,BD=4,∴«Skip Record If...»过O作OH⊥AB于H,∴BH=«Skip Record If...»AB=2«Skip Record If...» ,∴«Skip Record If...»∴«Skip Record If...»【点拨】本题考查了三角形的外接圆与外心、等腰三角形的性质,垂径定理,掌握圆的性质、正确的作出辅助线、是解题的关键.13.(1)见解析;(2)见解析;(3)8或2【分析】(1)连接AC,分别作AB.AC的中垂线,交点即为圆心O,然后以O为圆心,OA为半径作圆即可;(2)AB的中垂线与⊙O交点分别为E1.E2,△ABE1与△ABE2均为以AB为底的圆的内接等腰三角形;(3)由R=5,AB=8,根据勾股定理易得AB对应的弦心距为3,进而得到h=5+3=8或h=5-3=2.【详解】解:(1)如图所示,连接AC,分别作AB.AC的中垂线,交点即为圆心O,然后以O为圆心,OA为半径作圆即可;(2)如图所示,若AB的中垂线与⊙O交点分别为E1.E2,则△ABE1与△ABE2均为以AB为底的圆的内接等腰三角形;(3)由圆的半径R=5,AB=8,由勾股定理可得AB对应的弦心距为3,∴△ABE1中,h=5+3=8;△ABE2中,h=5-3=2.【点拨】本题主要考查了等腰三角形的性质,三角形的外接圆与外心的运用,解决问题时注意:找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个.14.(1)=;(2)△ACE是等腰直角三角形,理由见解析;(3)45°<α<90°【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可推知△ACE是等腰直角三角形;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【详解】解:(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC.故答案是:=;(2)△ACE是等腰直角三角形,理由如下:∵∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD.由(1)知:∠ABC=∠PDC,又∵BC=DC,∴△ABC≌△EDC(AAS),∴AC=CE.又∵∠ACE=90°,∴△ACE是等腰直角三角形;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点拨】本题考查的是圆的综合运用,涉及到三角形全等、三角形外心等基本知识,难度不大.15.作图见解析.【解析】试题分析:由所作圆过点A.B,可知,圆心到A.B的距离相等,由此可知,圆心在线段AB的垂直平分线上,且到点A的距离等于3 cm,这样先作AB的垂直平分线,再以点A为圆心,3 cm为半径作弧与AB的垂直平分线相交,则交点为所求圆的圆心,这样就可作出所求圆了.试题解析:这样的圆能画2个.作AB的垂直平分线l,再以点A为圆心,3 cm为半径作圆交l于O1和O2,然后分别以O1和O2为圆心,以3 cm为半径作圆,如图:则⊙O1和⊙O2为所求圆.。
人教版 九年级上册24.2点和圆、直线和圆的位置关系同步检测(有答案)

一、单选题
1.平面内,若⊙O的半径为3,OP=2,则点P在()
A.⊙O内B.⊙O上C.⊙O外D.以上都有可能
2.已知圆 的半径为 ,点 到直线 的距离为 , 、 是方程 的两根,当直线 与圆 相切时, 的值是().
A.3B.4C.5D.无法确定
3.三角形的外心是指什么线的交点?( )
(2)若AE=4,∠A=30°,求图中由BD、BE、弧DE围成阴影部分面积.
25.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD=3
(1)求证:直线CE是⊙O的切线;
(2)求⊙O的半径;
(3)求弦AD的长.
26.如图,已知AB是O的直径,点C,D在⊙O上,点E在O外,∠EAC=∠D=60∘,BC=6.求劣弧AC的长.
A.(0,-2)B.(0,-3)C.(-3,0)或(0,-2)D.(-3,0)
11.如图2,在平面直角坐标系中,点 的坐标为(1,4)、(5,4)、(1、 ),则 外接圆的圆心坐标是
A.(2,3)B.(3,2)C.(1,3)D.(3,1)
12.如图, 是 的内接三角形,下列选项中,能使过点A的直线EF与 相切于点A的条件是()
A. B.
C.AC是 直径D. 且
二、填空题
13.如图,⊙O与四边形ABCD各边都相切.若AB=5,BC=6,CD=4,则AD长为___.
14.已知⊙O的半径为5cm,若OP=3cm,那么点P与⊙O的位置关系是:点P在⊙O___________.
15.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.
A.三边中线B.三内角的平分线
人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)

人教版九年级数学上册《24.2 点和圆、直线和圆的位置关系》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.点I是△ABC的外心,则点I是△ABC的()A.三条垂直平分线交点B.三条角平分线交点C.三条中线交点D.三条高的交点2.用反证法证明命题“在△ABC中,若AB≠BC,则∠A≠∠C”时,首先应假设()A.∠A=∠B B.AB=BC C.∠B=∠C D.∠A=∠C3.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个4.⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定5.如图,为的直径,与相切于点,交的延长线于点,且.若,则半径长为()A.2 B.3 C.D.6.在△ABC中∠C=90°,AC=4,AB=5,以点C为圆心,R为半径作圆.若⊙C与边AB只有一个公共点,则R的取值范围是()A.R=12B.3⩽R⩽45C.0<R<3或R>4D.3<R⩽4或R=1257.如图,AB切于⊙O点B,延长AO交⊙O于点C,连接BC,若∠A=40°,则∠C=()A.20°B.25°C.40°D.50°8.如图,已知等腰△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=4√5,CE=8,则⊙O的半径是()A.92B.5 C.6 D.152二、填空题9.已知A为⊙O外一点,若点A到⊙O上的点的最短距离为2,最长距离为4,则⊙O的半径为.10.⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是.11.已知Rt△ABC中∠C=90°,AC=5,BC=12,则△ABC的外接圆半径是.12.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =°13.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF =3,则△ABC的面积是.三、解答题14.如图,AD,BD是⊙O的弦AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点CD=2,求证:AC是⊙O的切线.15.如图,已知PA,PB分别与⊙O相切于点A,B,C为⊙O上一点.若∠P=70°,求∠C的大小.16.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=28°,求∠C的度数;(2)若AC=2√3,CE=2,求⊙O半径的长.17.如图,已知内接于的延长线交于点,交于点,交的切线于点,且.(1)求证:;(2)求证:平分.参考答案1.A2.D3.D4.A5.B6.D7.B8.B9.110.相交11.13212.6513.614.证明:连接AB∵AD⊥BD,且BD=2AD=8∴AB为直径,AB2=82+42=80∵CD=2,AD=4∴AC2=22+42=20∵CD=2,BD=8∴BC2=102=100∴AC2+AB2=CB2∴∠BAC=90°∴AC是⊙O的切线.15.解:连接OA、OB∵PA,PB分别与⊙O相切于点A,B∴∠OAP=∠OBP=90°∵∠P=70°∴∠AOB=360°-∠OAP-∠OBP-∠P=110°∠AOB=55°.∴∠C= 1216.(1)解:如图,连接OA∵∠ADE=28°∴∠AOC=2∠ADE=56°∵AC切⊙O于点A∴∠OAC=90°∴在△AOC中(2)解:设OA=OE=r在Rt△OAC中,由勾股定理得:OA2+AC2=OC2即r2+(2√3)2=(r+2)2解得:r=2答:⊙O半径的长是2.17.(1)证明:是的切线即.是的直径..即.(2)证明:与都是所对的圆周角..由(1)知平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言:
该同步检测题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步检测题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步检测题)
24.2.1 点和圆的位置关系
测试时间
:30分钟
一、选择题
1.(2018广东广州花都期末)☉O的半径为5 cm,点A到圆心O的距离OA=4 cm,则点A与圆O的位置关系为( )
A.点A在圆上
B.点A在圆内
C.点A在圆外
D.无法确定
2.(2018北京门头沟期末)已知△ABC中,AC=3,CB=4,以点C为圆心,r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( )
A.r>3
B.r≥4
C.3<r≤4
D.3≤r≤4
3.若等腰直角三角形的外接圆半径的长为2,则等腰直角三角形的直角边长为( )
A.2
B.2-2
C.2-
D.-1
二、填空题
4.(2017上海普陀一模)已知点P在半径为5的☉O外,如果设OP=x,那么x 的取值范围是.
5.(2018江苏徐州睢宁月考)正方形ABCD的边长为2 cm,以A为圆心,2 cm 为半径作☉A,则点B在☉A;点C在☉A;点D在☉A.
6.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,BC=DC=3,∴BD=6,如果BC=DC=3,那么△ABC和△ACD的外心距是.
1。