四年级奥数巧算乘法

合集下载

四年级奥数巧算

四年级奥数巧算

四年级奥数巧算一、加法巧算。

1. 凑整法。

- 原理:把两个或多个数结合在一起,使它们的和为整十、整百、整千等,这样计算起来更加简便。

- 例如:计算23 + 49 + 77。

- 我们可以先把23和77凑整,因为23+77 = 100。

- 然后再加上49,即100+49 = 149。

2. 带符号搬家。

- 原理:在没有括号的加法运算中,数和它前面的符号是一个整体,可以改变数的位置,结果不变。

- 例如:计算34+78 - 34。

- 我们可以把-34搬到前面和34先计算,即34 - 34+78。

- 34 - 34 = 0,0+78 = 78。

二、减法巧算。

1. 凑整法。

- 原理:与加法凑整类似,把被减数或减数凑成整十、整百等方便计算的数。

- 例如:计算182 - 98。

- 把98看作100 - 2。

- 则原式变为182-(100 - 2)=182 - 100+2。

- 182 - 100 = 82,82+2 = 84。

2. 减法的性质。

- 原理:a - b - c=a-(b + c),一个数连续减去两个数等于这个数减去这两个数的和。

- 例如:计算256 - 47 - 53。

- 根据减法的性质,原式可变为256-(47 + 53)。

- 47+53 = 100,256 - 100 = 156。

三、乘法巧算。

1. 乘法交换律和结合律。

- 原理。

- 乘法交换律:a×b = b×a,两个数相乘,交换因数的位置,积不变。

- 乘法结合律:(a×b)×c=a×(b×c),三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,积不变。

- 例如:计算25×3×4。

- 根据乘法交换律,把3和4交换位置,得到25×4×3。

- 25×4 = 100,100×3 = 300。

2. 乘法分配律。

小学四年级奥数教程第2讲巧算乘除法

小学四年级奥数教程第2讲巧算乘除法

四年级奥数教程第2讲:巧算乘除法四则运算中巧算的方法有很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。

实际进行乘法、除法以及乘除法混合运算时可利用以下性质进行巧算:1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。

例1:计算:(1)25×5×64×125 (2)56×165÷7÷11随堂练习1:计算:(1)25×96×125 (2)77 777×99 999÷11 111÷11 111例2:计算:(1)4000÷125÷8 (2)9999×2222+3333×3334随堂练习2:计算:(1)60 000÷125÷2÷5÷8 (2)99 999×7+11 111×37例3:计算:218×730+7820×73随堂练习3:计算:(1)375×480-2750×48 (2)2008×2006+2007×2005-2007×2006-2008×2005例4:不用计算结果,请你指出下面哪道题得数大:452×458 453×457随堂练习4:不用计算结果,请你指出下面哪道题得数大A=54 321×12 345 B=54 322×12 344例5:求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)提高练习简算下列各题:(1)75×16 (2)981+5×9810+49×981 (3)1000÷(25÷4)(4)3333×2222÷6666(5)8÷7+9÷7+11÷7 (6)5445÷55(7)1440×976÷488 (8)2009×2011-2008×2012 (9)5÷(7÷11)÷(11÷6)÷(16÷35)。

四年级下册奥数--巧算及简便计算(乘除法)

四年级下册奥数--巧算及简便计算(乘除法)

4×125=500 8×125=1000
练习: 用简便方法进行运算:
(1)125×5×32×5 =125×5×(4 × 8)×5 =(125×8)×5×4×5 =1000×(5×4×5) =1000 ×100 =100000
练习: 用简便方法进行运算:
(2)25×96×125 =25×(4×3×8)×125 =(25×4)×3×(8×125) =100×3×1000 =300000
例题2: 99999×8 ÷11111
=99999 ÷11111 ×8 =9×8 =72
只有乘除法,“抱”着符号搬家
连除运算
例题3:
99999×7777÷11111÷1111
=(99999÷11111)×(7777÷1111)
=9×7
=63
同类型的凑一堆,注意括号前符号
连除运算
例题4:
12000÷125
巧算及简便运算
加减法:
• 互补凑整法 • 尾数清零法 • 基准数法
上节课复习
乘 除法
认识乘除法的运算定律:
乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c
连除的运算定律:a÷b÷c=a÷(b×c)
乘除法的运算定律的推及:
乘法交换律、结合律:a×b×c=b×(a×c) 乘法分配律:a×c+b×c=(a+b)×c
(a-b)×c=a×c-b×c
利用乘除法的这些运算定律,先凑整得10、 100、1000......会使计算更简便。
注意:乘除法运算定律 的运用,要学会等号左 右灵活切换
乘法交换与结合
例题: 25×8×125×4

奥数——巧算乘除法

奥数——巧算乘除法
以可以把前面的式子填出来;余下的0、5、6要 组成一个两位数除以一个一位数得商是12的除法
算式只能是60 ÷ 5。
□ × □= □ 2=□ □ ÷ □
奥数——巧算乘除法
例5 在下列等号左边的每两面三刀个数之间, 添上加号或减号,也可以用括号,使算式成 立。
1 2 3 4 5=1
解: 1 2 3 4 5这五个数之和是15,使几 个数的和是8,减去其于的数(和是7), 于是可想到 1+3+4-(2+5)=1或1+2+5- ( 3+4)=1 即1-2+3+4-5=1或1+2-3-4+5=1
=1÷2×3÷3×4÷4×5÷5×6
=1 ÷2 ×6
=3
奥数——巧算乘除法
随堂练习2
计算: 2 ÷ (4÷ 6) ÷ (6 ÷ 8)÷ (8 ÷ 10)
÷( 10÷ 12)…..÷(98÷100) =2÷4×6÷6×8÷8×10÷10……×9 8÷98×100 =2÷4×100 =50
奥数——巧算乘除法
奥数——巧算乘除法
例1,计算
(1)25 ×5 ×64 ×125
(2)56 × 165÷7÷11
分析:(1)在计算乘、除法时,我们通常 可以运用2 × 5、4 × 25、8 × 125来进行 巧妙的计算! (2)运用除法的性质,带着符号“搬家”。
奥数——巧算乘除法
解:
(1)25 × 5 × 64 × 125 = 25 × 5 × 2 × 4 × 8 × 125 =( 25 × 4)×( 5 ×2 )×(8 ×125) = 100 ×10 ×1000 = 1000 000
奥数——巧算乘除法
分析: (1)题运用性质: a ÷b ÷c= a ÷c ÷b= a ÷ ( b × c) (2)将9999分成3333 ×3就与3333 ×3334出现了相同的因数,可逆用乘 法分配律计算。

四年级奥数教程第2讲:巧算乘除法

四年级奥数教程第2讲:巧算乘除法

四年级奥数教程第2讲:巧算乘除法1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。

例1:计算:(1)25×5×64×125 (2)56×165÷7÷11 解(1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000;(2)56×165÷7÷11=(56÷7)×(165÷11)=8×15=120例2:计算:(1)4000÷125÷8(2)9999×2222+3333×3334解(1)4000÷125÷:8=4000÷(125×8)=4000:1000=4;(2)999×2222+333X3334=33×3×2222+333×3334=33×(666+3334)=3333×10000=3330000随堂练习2:计算:(1)60 000÷125÷2÷5÷8(2)99 999×7+11 111×37(1)原式=60000÷(125×2×5×8)=60000÷(125×8X2×5)=60000÷(1000×10)=60000÷10000=6.原式=1111×9×7+11111×37=11111×(63+37)=11111×100=1111100例3:计算:218×730+7820×73=2180X73+7820×73=(2180+7820)×73=10000×73=730000;解法二218×730+7820×73=218×730+782×730=(218+782)×730=1000×730=730000随堂练习3:计算:(1)375×480-2750×48原式=375×480-275×480=(375-275)×480=100×480=48000例4:不用计算结果,请你指出下面哪道题得数大:452×458 453×457解452×458=452×(457+1)=452×457+452453×457=(452+1)×457=452×457+457显然,452×458<453×457随堂练习4:不用计算结果,请你指出下面哪道题得数大A=54 321×12 345 B=54 322×12 344 A=54321X(12344+1)=54321×12344+54321;B=(54321+1)×12344=54321X12344+12344.8显然,A>B例5:求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)分析观察发现,算式中每个括号里的除数都是下一个括号里的到1被除数,根据运算性质a÷:(b÷c)=a÷b×c,计算时可以消去3,4,5解原式=1÷2×3÷3×4÷:=4×5÷5×6=1÷2×6=3.提高练习一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232;一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001=125125下列计算题中,不能运用这两条规律进行巧算的是( )(A)573×101(B)252×1001(C)101×78(D)872×7×11×13简算下列各题:5445÷55原式=(5500-55)÷55=15500÷55-55÷55=100-1=99.25×77+55×14+15×77=(25+15)×77+55×14=40×77+55×14=40×7×11+14×5×11=(40×7+14×5)×11=(280+70)×11=350×11=3850981+5×9810+49×981=981+50×981+49×981=(1+50+49)×981=100×981=98100.10333×2222÷6666=3333×2×1111÷6666=(3333×2÷:6666)×1111=11111440×976÷488=1440×(976÷488)=1440×2=2880.2014×2016-2013×2017=(2013+1)×2016-2013×(2016+1)=2013×2016+2016一2013×2016-2013=2016-2013=3例4 计算。

小学四年级奥数-快速计算与巧算

小学四年级奥数-快速计算与巧算

小学四年级奥数-快速计算与巧算
本文将为大家介绍快速计算和巧算的方法,帮助孩子们更轻松地研究奥数。

1. 快速计算
(1)乘法口诀法
教孩子们背乘法口诀表是一种简单有效的方法。

而且,掌握了乘法口诀,孩子可以快速计算出乘积,非常实用。

(2)近似数法
孩子们学会了近似数法就可以快速计算整数数值的乘除法,它是有一定逼近意义的计算方法,准确率不高,但速度快。

2. 巧算
巧算是学奥数的一种特色,它是要求我们通过多种解题方法、不同的思路、巧妙的分析和推理,达到运算目的。

(1)巧用交换律和结合律
交换律和结合律是孩子们研究算数时已经学过的概念,但它们在巧算中有着非常重要的应用。

(2)数位分解法
巧妙地进行数位分解,可以更容易地解决问题。

例如,对于一个大的数字,可以拆分成两个适当的数字,这样既方便计算,也能够减少出错的概率。

总之,快速计算和巧算是小学奥数中必不可少的方法。

学好快速计算和巧算,不仅可以提高孩子们的计算速度和准确率,也可以锻炼孩子们的逻辑思维能力和分析能力。

奥数——巧算乘除法

奥数——巧算乘除法
欢迎来到 奥数游乐场
2020/12/13
1
第一页,共42页。
巧算乘除法
乘法交换律:a × b = b ×a 乘法结合律:a ×b × c = a ×(b ×c) 乘法分配律: (a + b) × c = a × c + b ×c
由此可以推出:
① a × b + a × c = a ×(b +c)
② (a-b) ×c = a × c – b ×c
除法的性质: a ÷ b ÷ c = a ÷ c ÷ b = a ÷(b × c)
2020/12/13
2
第二页,共42页。
例1,计算
(1)25 ×5 ×64 ×125 (2)56 × 165÷7÷11
分析:(1)在计算乘、除法时,我们通常可以运用2 × 5、4 × 25、8 × 125来进行巧妙的计算! (2)运用除法的性质,带着符号“搬家”。
(2)因为□=(148-4) ÷8=18, 所以 , 148 ÷18=8 …… 4
2020/12/13
36
第三十六页,共42页。
随堂练习2
(1)213 ÷ □=16 …… 5
13
(2) □ ÷9=30 …… 5
ห้องสมุดไป่ตู้275
2020/12/13
37
第三十七页,共42页。
例4 将数字符0、1、3、4、5、6填入下面的□中,使等式成立,每个空格只填一个数字,并且所填的数字不能
= 2180 ×73 + 7820 ×73
=(2180 + 7820)×73 = 10 000 ×73 = 730 000
解法二 218 ×730 + 7820 ×73
= 218 ×730 + 782 ×730 =(218+782)×730

四年级奥数,乘除法巧算,带答案

四年级奥数,乘除法巧算,带答案

1.。

A.B.C.D.答案:B解析:2.简便计算:。

A.B.C.答案:A解析:加括号时注意除号变乘号。

3.计算:。

A.B.C.答案:C解析:4.计算计算:222×33+889×66=空类2600006600010000011000222×33+889×66=111×2×33+889×66=111×66+889×66=(111+889)×66=1000×66=660005000÷125÷8=空类258105000÷125÷8=5000÷(125×8)=5000÷1000=525×96×125=空类230000003000030000025×96×125=25×(4×3×8)×125=(25×4)×3×(8×125)=100×3×1000=300000125×64×25×5A.B.C.答案:C解析:5.。

A.B.C.D.答案:C解析:6.计算:A.B.C.答案:B解析:7.计算:A.B.100001000001000000125×64×25×5=125×8×8×25×5=125×8×4×2×25×5=(125×8)×(4×25)×(2×5)=1000×100×10=1000000计算:21×32+58×68+32×37=空类2540056005800600021×32+58×68+32×37=(21+37)×32+58×68=58×32+58×68=58×(32+68)=58×100=58008×18×1251800180001800008×18×125=8×125×18=1000×18=1800012000÷125÷1258C.答案:B解析:带着符号交换位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧算乘法整数乘法的速算与巧算,一条最基本的原则就是“凑整”。

要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。

一、记住乘法中常用的几个重要式子
5×2=10,25×4=100,125×8=1000,4×75=300;4×125=500;625×8=5000,625×16=10000。

二、乘法的运算定律
1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
题型1、根据交换律与结合律直接凑整
①19×4×25 ②125×49×8 ③125×(25×8)×4
④4×145×25 ⑤125×19×8 ⑥37×4×25
⑦625⨯(13⨯8)⑧17×4×25⑨25×439×25×4×8
⑩2×4×5×8×25×125(11)456×2×125×25×5×4×8
题型2 分解因数凑整
① 25×48 ②36×25 ③125×72
④56×125 ⑤16×125×50 ⑥25×32×125
⑦80×16×25×125 ⑧ 937×125×25×64×5
3、乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
题型3:直接利用乘法分配律凑整
①②③125×(40+8)
④(100—4)×25 ⑤(40+4)×25 ⑥125×(20—8)
⑦125×(80+8) ⑧125×(80—8)⑨ (40—8)×25
题型4 分解后利用乘法分配律凑整
①37×99 ②234×102 ③46×101
④⑤125×98 ⑥17×999题型5 逆用乘法分配律凑整
①95×71+95×29 ②62×38+38×38 ③175 ×34+175×66
④64×25+35×25+25 ⑤123×235-24×235+235
⑥586×124+29×586-586×53 ⑦ 54×154-45×54-54×9
⑧67×12+67×35+67×52+67 ⑨375×480+6250×48
⑩99999×22222+33333×33334 (11)9999×9999+99999
三、一些特殊的乘法巧算
1、一个数乘以11算法:
22×11=242 222×11=2442 2222×11=244442
“两头一拉,中间相加,满十进一”
2 4 5 6×11=27016
2 7 0 1 6
(1)23×11= (2) 68×11= (3) 235×11= (4)285×11=(5)76×11= (6)98×11= (7)125×11=
(8)837×11= (9)326×11= (10)256×11=
2、“111”型乘法
11×11= 111×111= 1111×1111=例5. 22222××
例6
=44444×(10000+1000+100+10+1)=44444×11111
×
练习:333333333333
3、“101”型乘法
(1)巧算两位数与101相乘。

10101×43 ×56(2)巧算三位数与1001相乘。

×386
4、“同补”速算法
积的末两位是“尾×尾”,前面是“头×(头+1)”。

例1 (1)76×74=(2)31×39=
(3)58×52= (4)90×91=
5、“补同”速算法。

积的末两位数是“尾×尾”,前面是“头×头+尾”。

例2 (1)78×38=(2)43×63=
(3)19×91= (4)58×58=
6、互补概念的推广
当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。

如43与57互补,99与1互补,555与445互补。

在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。

例如,因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。

又如,等都是“同补”型。

当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。

例如,
等都是“补同”型。

在计算多位数的“同补”型乘法时,例1的方法仍然适用。

例3 (1)702×708=?(2)1708×1792=?
解:
(1)
(2)
计算多位数的“同补”型乘法时,将“头×(头+1)”作为乘积的前几位,将两个互补数之积作为乘积的后几位。

注意:互补数如果是n位数,则应占乘积的后2n位,不足的位补“0”。

在计算多位数的“补同”型乘法时,如果“补”与“同”,即“头”与“尾”的位数相同,那么例2的方法仍然适用(见例4);如果“补”与“同”的位数不相同,那么例2的方法不再适用,因为没有简捷实用的方法,所以就不再讨论了。

例4 2865×7265=?
解:
练习:(1)68×62;(2)93×97;(3)27×87;
(4)79×39;(5)42×62;(6)603×607;
(7)693×607;(8)4085×6085。

相关文档
最新文档