2011年江苏省南京市中考数学试卷(解析版)
2005-2011年江苏省南京市中考数学试卷及答案(7套)

泰州市二○○五年初中毕业、升学统一考试数学试题(考试时间:120分钟,满分:150分)请注意:1.本试卷分第一部分选择题和第二部分非选择题.2.考生答卷前,必须将自己的姓名、考试号、座位号用黑色或蓝色钢笔或圆珠笔填写在试卷和答题卡的相应位置,再用2B 铅笔将考试号、科目填涂在答题卡上相应的小框内.第一部分 选择题(共36分)请注意:考生必须将所选答案的字母标号用2B 铅笔填涂到答题卡上相应的题号内,答在试卷上无效.一、选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共36分) 1.-15的绝对值是 A .-15 B .15C .5D .-52.下列运算正确的是A .a 2+a3=a 5;B .(-2x)3=-2x3 ;C .(a -b)(-a +b)=-a 2-2ab -b 2 ;D .2832= 3.南京长江三桥是世界上第一座弧线形钢塔斜拉桥.全长15600m ,用科学记数法表示为A .1.56×104mB .15.6×103 mC .0.156×104mD .1.6×104m 4.如图所示的正四棱锥的俯视图是5.不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是A .1个B .2个C .3个D .4个6.两圆的半径R 、r 分别是方程x 2-3x +2=0的两根,且圆心距d =3,则两圆的位置关AD系为A .外切B .内切C .外离D .相交7.一根蜡烛经凸透镜成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f.若u =12㎝,f =3㎝,则v 的值为 A .8㎝ B .6㎝ C .4㎝ D .2㎝8.用折纸的方法,可以直接剪出一个正五边形(如下图).方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等份,并沿五等份的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于A .108°B .90°C .72°D .60°9.一人乘雪橇沿坡比13s (米)与时间t (秒) 间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为A .72 mB .3.36 m D .310.某工厂为了选拔1名车工参加加工直径为10mm 的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S 2甲、S 2乙的大小A .S 2甲>S乙 B .S甲=S乙 C .S 甲<S 乙 D .S 甲≤S 2乙11.如图,梯形ABCD 中,AD//BC ,BD 为对角线,中位线EF 交BD 于O 点,若FO -EO=3,则BC -AD 等于A .4B .6C .8D .10 12.下列说法正确的是A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大.B .为了了解泰州火车站某一天中通过的列车车辆数,可采用普查的方式进行.D OBA D CE F D 第12题OC .彩票中奖的机会是1%,买100张一定会中奖.D .泰州市某中学学生小亮,对他所在的住宅小区的家庭进行调查,发现拥有空调的家庭占65%,于是他得出泰州市拥有空调家庭的百分比为65%的结论.第二部分 非选择题(共114分)请注意:考生必须..将答案直接做在试卷上 二、填空题(每题3分,共24分)13.写出一个图象分布在二、四象限内的反比例函数解析式 .14.在边长为3㎝、4㎝、5㎝的三角形白铁皮上剪下一个最大的圆,此圆的半径为____㎝.15.如下图是由边长为a 和b 的两个正方形组成,通过用不同的方法,计算下图中阴影部分的面积,可以验证的一个公式是 . 16.九年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如下图所示,则成绩良好的学生人数占全班人数的百分比是 %.17.如下图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= . 18.如下图,圆锥底面圆的直径为6cm ,高为4cm ,则它的全面积为 cm 2(结果保留π).第15题 第16题 第17题 第18题19.如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 根.……20.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号).第20题1条 2条 3条 108︒及格40︒ 不及格50︒优秀良好…… a aa -b b b三、解答下列各题:(21、22、23每题9分,共27分)21.计算:-12005-(1+0.5)×3-1÷(-2)2+(cos60°-4 3 )022.先化简,再求值:(11x y x y+-+)÷22xyx y-,其中x23.如图,AB切⊙O于点B,OA交⊙O于C点,过C作DC⊥OA交AB于D,且BD:AD=1:2.(1)求∠A的正切值;(3分)(2)若OC =1,求AB及BC的长.(6分)AABAB 光线24.高为12.6米的教学楼ED 前有一棵大树AB (如图1).(1)某一时刻测得大树AB 、教学楼ED 在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB 的高度.(3分)(2)用皮尺、高为h 米的测角仪,请你设计另.一种..测量大树AB 高度的方案,要求: ①在图2上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m 、n …表示,角度用希腊字母α、β …表示);(3分)②根据你所画的示意图和标注的数据,计算大树AB 高度(用字母表示).(3分) 图1 图225.学校门口经常有小贩搞摸奖活动.某小贩在一只黑色的口袋里装有只有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球.搅拌均匀后,每2元摸1个球.奖品的情况标注在球上(如下图)(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(4分)(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?(5分)六、(本题满分10分)26.右图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景观灯.若把拱桥的截面图放在平面直角坐标系中(如下图).(1)求抛物线的解析式.(6分)(2)求两盏景观灯之间的水平距离.(4分)10m?七、(本题满分10分)24.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(3分)(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10∶7∶3,那么作为人事主管,你应该录用哪一位应聘者?为什么?(4分)(3)在(2)的条件下,你对落聘者有何建议?(3分)八、(本题满分12分)28.教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y (升)与放水时间x (分钟)的函数关系如图所示:(1)求出饮水机的存水量y (升)与放水时间x (分钟)(x ≥2)的函数关系式;(4分)(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(4分) (3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水? (4分)y (升)1817 x (分钟)8212 O九、(本题满分13分)29.图1是边长分别为4 3 和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连结AD、BE,CE的延长线交AB于F(图2);探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(4分)(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.(5分)(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°=(图4);探究:在图4中,线段C′N·E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N·E′M的值,如果有变化,请你说明理由.(4分)E′图1 CB AD′图2FEDCA图2QPRACF图3图3B (C/)(C/泰州市二○○五年初中毕业、升学统一考试数学试题参考答案及评分标准第一部分 选择题(共36分)一、选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共36分)1.B 2.D 3.A 4.D 5.C 6.A 7.C 8.B 9.C 10.A 11.B 12.B第二部分 非选择题(共114分)二、填空题(每题3分,共24分) 13.y=-1x(答案不唯一) 14.1㎝ 15.(a -b )(a +b )=a 2-b 2或a 2-b 2=(a -b )(a +b )16.45 17.8 18.24π 19.6n +2 20.(0,4433三、解答下列各题(第21题8分,第22、23题每题9分,共26分)21.解:原式=-1-32×13÷4+1 ……………………………………………4分=-32×13×14…………………………………………………………6分=-18………………………………………………………………8分 22.解:原式= 2x x 2-y 2 ÷ xyx 2-y 2 ……………………………………………4分= 2xx 2-y 2 × x 2-y 2xy ……………………………………………5分= 2y …………………………………………………………… 7分当y 时,2y =9分23.解:(1)(方法一)∵DC ⊥OA ,OC 为半径.∴DC 为⊙O 的切线………1分∵AB 为⊙O 的切线 ∴DC=DB …………………2分在Rt △ACD 中∵ sinA=DC AD,BD :AD=1:2 ∴sinA=12 ∴∠A=30° ∴3分 (方法二) ∵DC ⊥OA ,OC 为半径.∴DC 为⊙O 的切线………1分∵AB 为⊙O 的切线 ∴DC=DB …………………2分∵BD:AD=1:2,∴ CD :AD=1:2∴设CD= k AD=2k ∴∴tanA=DC AC3分 (2)连结OB∵AB 是⊙O 的切线 ∴OB ⊥AB ………………………………4分在Rt △AOB 中 ∵ tanA=OB ABOB=1 ∴36分 ∵∠A=30° ∴∠O=60°………………………………………7分∴BC 的长=00601180π⨯⨯=3π………………………………………9分 四、24.解:连结AC 、EF(1)∵太阳光线是平行线∴AC ∥EF ∴∠ACB=∠EFD∵∠ABC=∠EDF=90°∴△ABC ∽△EDF ……………………………1分 ∴AB BC ED DF = ∴ 2.412.67.2AB = ∴AB=4.2……………………2分 答:大树AB 的高是4.2米.………………………………………3分(2)(方法一)…………………………6分如图MG=BN=mAG=m tan α ∴AB=(m tan α+h )米 ………………………9分(方法二)…………………………6分 A B M NG α h m A B G M N E F h β α m∴ AG =cot cot m βα- ∴AB=cot cot m βα-+h …………………9分 或AB=tan tan tan tan m αβαβ-+h (不加测角仪的高扣2分,其他测量方法,只要正确均可得分)五、25.(1)∵白球的个数为50-1-2-10=37……………………………………2分 ∴摸不到奖的概率是:3750…………………………………………………4分 (2)获得10元的奖品只有一种可能即同时摸出两个黄球………………………6分 ∴获得10元奖品的概率是:12549⨯=11225 ………………………………9分 六、26. 解:(1)抛物线的顶点坐标为(5,5),与y 轴交点坐标是(0,1)…2分设抛物线的解析式是y=a(x -5)2+5 …………………………………3分把(0,1)代入y=a(x -5)2+5得a=-425 …………………………………5分 ∴y=-425(x -5)2+5(0≤x ≤10)…………………………………………6分 (2)由已知得两景观灯的纵坐标都是4………………………………………7分 ∴4=-425(x -5)2+5 ∴ 425(x -5)2=1 ∴x 1=152 x 2=52………9分 ∴ 两景观灯间的距离为5米. ………………………………………10分七、27.解:(1)专业知识方面3人得分极差是18-14=4………………………1分工作经验方面3人得分的众数是15……………………………2分 在仪表形象方面丙最有优势……………………………………3分(2)甲得分:14×1020+17×720+12×320=29520 ……………………4分乙得分:18×1020+15×720+11×320=31820………………………5分 丙得分:16×1020+15×720+14×320=30720………………………6分 ∴应录用乙……………………………………………………………7分(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在专业知识,和工作经验 ……………10分(对甲、丙而言只要从三方面讲都适当给分)八、28.(1)设存水量y 与放水时间x 的解析式为y=kx +b ………………………1分 把(2,17)、(12,8)代入y=kx +b 得172812k b k b =+⎧⎨=+⎩解得k=-910,b=945…………………………………3分 y=-910x +945(2≤x ≤1889)………………………………………4分 (2)由图可得每个同学接水量是0.25升………………………………………5分 则前22个同学需接水0.25×22=5.5升存水量y=18-5.5=12.5升 ………………………………………………6分∴12.5=-910x +945∴x=7……………………………………………7分 ∴前22个同学接水共需7分钟. (3)当x=10时 存水量y=-910×10+945=495 ……………………………9分 用去水18-495=8.2升……………………………………………………10分 8.2÷0.25=32.8∴课间10分钟最多有32人及时接完水.………………………………12分或 设课间10分钟最多有z 人及时接完水由题意可得 0.25z ≤8.2 z ≤32.8九、29. (1)BE=AD ………………………………………………………………1分证明:∵△ABC 与△DCE 是等边三角形∴∠ACB=∠DCE=60° CA=CB ,CE=CD …………………………………2分∴∠BCE=∠ACD ∴△BCE ≌△ACD …………………………………3分∴ BE=AD ………………………………………………………………4分(也可用旋转方法证明BE=AD )(2) 如图在△CQT 中 ∵∠TCQ=30° ∠RQT=60° ∴∠QTC=30° ∴∠QTC=∠TCQ ∴QT=QC=x ∴ RT=3-x ……………………………………5分∵∠RTS +∠R=90° ∴∠RST=90°………………………………………6分∴32(3-x)2=(3-x)2(0≤x ≤3) …………10分 (不证明∠RST=90°扣2分,不写自变量取值范围扣1分) (3)C ′N ·E ′M 的值不变 ………………………………………………11分 证明:∵∠ACC ′=60°∴∠MCE ′+∠NCC ′=120° ∵∠CNC ′+∠NCC ′=120° ∴∠MCE ′=∠CNC ′ ………………12分 Q PR AB C F 图3T S∵∠E′=∠C′∴△E′MC∽△C′CN∴////E M E CC C C N∴C′N·E′M=C′C·E′C=32×32=94…………14分。
最新南京数学试题及答案优秀名师资料

2011南京数学试题及答案历届中考数学试题,2011中考数学试题2011江苏省南京市中考数学试卷-解析版一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1、9 的值等于( )A、3B、,3C、?3D、32、下列运算正确的是( ) 235236 A、a+a=a B、a•a=a 32236 C、a)=a +a=aD、(a3、在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为2%,则该市65岁及以上人口用科学记数法表示约为( ) 6456 A、0.736×10人 B、7.36×10人 C、7.36×10人 D、7.36×10人、为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查(下列抽取学生的方法最合适4的是( )A、随机抽取该校一个班级的学生B、随机抽取该校一个年级的学生C、随机抽取该校一部分男生D、分别从该校初一初二初三年级中各随机抽取10%的学生 5、如图是一个三棱柱(下列图形中,能通过折叠围成一个三棱柱的是( )A、 B、C、 D、考点:展开图折叠成几何体。
6、如图,在平面直角坐标系中,?P的圆心是(2,a)(a,2),半径为2,函数y=x的图象被?P截得的弦AB的长为23 ,则a的值是( )A、22B、2+2C、23D、2+3分析:过P点作PE?AB于E,过P点作PC?x轴于C,交AB于D,连接PO,PA(分别求出PD、DC,相加即可(解答:解:过P点作PE?AB于E,过P点作PC?x轴于C,交AB于D,连接PO,PA( ?AE=AB=3 ,PA=2,22PE=2-(3) =1(PD=2 (??P的圆心是(2,a),?DC=2,?a=PD+DC=2+2 (故选B(点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键(注意函数y=x与x轴的夹角是45?(二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7、,2的相反数是 2 (8、如图,过正五边形ABCDE的顶点A作直线l?CD,则?1= 36? ( 考点:平行线的性质;多边形内角与外角。
江苏省南京市中考数学试题解析

江苏省南京市2011年初中毕业生学业考试数学一、选择题(本大题共6小题,每小题2分,共12分) 1A .3B .-3C .±3D .【答案】A .【考点】算术平方根。
【分析】利用算术平方根的定义,直接得出结果 2.下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8 【答案】C .【考点】指数运算法则。
【分析】a 3÷a 2=a= a 3-2= a3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为 A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 【答案】C .【考点】科学记数法。
【分析】利用科学记数法的定义,直接得出结果:8000000×9.2%=736000=7.36×105.4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A .随机抽取该校一个班级的学生B .随机抽取该校一个年级的学生C .随机抽取该校一部分男生D .分别从该校初一、初二、初三年级中各班随机抽取10%的学生 【答案】D .【考点】随机抽样样本的抽取。
【分析】D 是最合适的.5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】B .【考点】图形的展开与折叠。
【分析】只有B 才能通过折叠围成只有一个底的三棱柱.6.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2, 函数y =x 的图象被⊙P 的弦AB的长为a 的值是A. B.2 C.D.2 【答案】B .【考点】弦心距, 四点共圆,300和450直角三角形.【分析】连结PA,PB ,过点P 作PE ⊥AB 于E, 作PF ⊥X 轴于F,交AB 于G,A .B .CD .在 Rt PAE ∆中,2 1.AE PA PE ==⇒=,,,,,PE AB PF OF P O F E ⊥⊥∴ 四点共圆045EPG EPG GOF ∆∠=∠= 在中PG ⇒= 2.FGO FG OG a PG FG ∆== 在中|因此=+二、填空题(本大题共10小题,每小题2分,共20分) 7.-2的相反数是________. 【答案】2.【考点】相反数。
2011年南京市中考数学试卷

南京市2011年初中毕业生学业考试一、选择题(共6小题;共30分)1. 的值等于A. B. C. D.2. 下列运算正确的是A. B. C. D.3. 在第六次全国人口普查中,南京市常住人口约为万人,其中岁及以上人口占,则该市岁及以上人口用科学记数法表示约为A. 人B. 人C. 人D. 人4. 为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是A. 随机抽取该校一个班级的学生B. 随机抽取该校一个年级的学生C. 随机抽取该校一部分男生D. 分别从该校初一、初二、初三年级中各随机抽取的学生5. 如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是A. B.C. D.6. 如图,在平面直角坐标系中,的圆心是,半径为,函数的图象被截得的弦的长为,则的值是A. B. C. D.二、填空题(共10小题;共50分)7. 的相反数是.8. 如图,过正五边形的顶点作直线,则.9. 计算:.10. 等腰梯形的腰长为,它的周长是,则它的中位线长为.11. 如图,以为圆心,任意长为半径画弧,与射线交于点,再以为圆心,长为半径画弧,两弧交于点,画射线,则的值等于.12. 如图,菱形的边长是,是的中点,且,则菱形的面积为.13. 如图,海边立有两座灯塔,,暗礁分布在经过,两点的弓形(弓形的弧是的一部分)区域内,.为了避免触礁,轮船与,的张角的最大值为.14. 如图,,分别是正方形的边,上的点,,连接,.将绕正方形的中心按逆时针方向旋转到,旋转角为(),则.15. 设函数与的图象的交点坐标为,则的值为.16. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为,,,,接着甲报,乙报,按此规律,后一位同学报出的数比前一位同学报出的数大.当报到的数是时,报数结束;②若报出的数为的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为.三、解答题(共8小题;共104分)17. 解不等式组并写出不等式组的整数解.18. 计算:.19. 解方程.20. 某校部分男生分组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的,所以第二组的平均成绩不可能提高个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.21. 从名男生和名女生中随机抽取 2014 年南京青奥会志愿者.求下列事件的概率:(1)抽取名,恰好是女生;(2)抽取名,恰好是名男生和名女生.22. 已知函数(是常数).(1)求证:不论为何值,该函数的图象都经过轴上的一个定点;(2)若该函数的图象与轴只有一个交点,求的值.23. 如图,某数学课外活动小组测量电视塔的高度.他们借助一个高度为的建筑物进行测量,在点处测得塔顶的仰角为,在点处测得的仰角为(,,三点在一条直线上).求电视塔的高度.(参考数据:,,)24. 如图1,为内一点,连接,,,在,和中,如果存在一个三角形与相似,那么就称为的自相似点.(1)如图2,已知中,,,是上的中线,过点作,垂足为.试说明是的自相似点;(2)在中,.(i)如图 3,利用尺规作出的自相似点(写出作法并保留作图痕迹);(ii)若的内心是该三角形的自相似点,求该三角形三个内角的度数.答案第一部分1. A2. C3. C 【解析】因为万,所以首先确定为,再根据的位数为位可得,所以用科学记数法表示为.4. D 【解析】根据抽查的特点,对照每个选项的具体内容可得,答案选择D.这是因为分别从该校初一、初二、初三年级中各班随机抽取的学生,能够确保每位学生都有被抽到的可能,从而保证了抽查的全面性和随机性.5. B【解析】动手操作用纸片去折,看能不能折成三棱柱,观察就能得出答案选择 B.本题也可以直接发挥空间想象能力,通过观察所给四个选项中的展开图,得出答案.6. B 【解析】作,轴,垂足分别为,,交于点,连接.可得.根据勾股定理可得.因为的圆心是,所以,当时,,所以,所以,所以,所以,所以,所以,所以,所以.第二部分7.8.【解析】如图,连接.因为五边形是正五边形,所以,,所以.又因为,,所以,根据两直线平行,内错角相等可得.9.【解析】.10.11.【解析】根据作图过程可知,所以三角形是等边三角形,所以,所以.12.【解析】因为在菱形中,所以.因为是中点,所以.又因为,所以,所以菱形的面积为.13.【解析】首先根据题意确定张角的最大值的情况是点正好在圆周上.根据同弧所对的圆周角等于圆心角的一半,可得弧所对的圆周角为.再根据圆外角小于圆周角可得为了避免触礁,轮船与,的张角的最大值为.14.15.【解析】因为函数与的图象的交点坐标为,所以,,所以,.故.16.【解析】本题难度中等,考查学生探究数的规律的能力.根据①可知:甲报到的数除以余数为,即为,,,,.再根据②若报出的数为的倍数,则报该数的同学需拍手一次,所以甲同学需要拍手的次数为.第三部分17. 解不等式,得解不等式,得所以,不等式组的解集是.不等式组的整数解是,,.18.19. 移项,得配方,得由此可得20. (1)训练后第一组平均成绩比训练前增长的百分数是.(2)我不同意小明的观点,因为第二组的平均成绩增加(个).(3)我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21. (1)抽取名,恰好是女生的概率是.(2)分别用男、男、男、女、女表示这位同学.从中任意抽取名,所有可能出现的结果有(男,男),(男,男),(男,女),(男,女),(男,男),(男,女),(男,女),(男,女),(男,女),(女,女),共有种,它们出现的可能性相同.所有的结果中,满足抽取名,恰好是名男生和名女生(记为事件)的结果有种,所以.22. (1)当时,.所以不论为何值,函数的图象都经过轴上的一个定点.(2)(i)当时,函数的图象与轴只有一个交点;(ii)当时,若函数的图象与轴只有一个交点,则方程有两个相等的实数根.所以,.综上,若函数的图象与轴只有一个交点,则的值为或.23. 在中,,.在中,,.在中,,..答:电视塔的高度约为.24. (1)在中,,是上的中线,...,...是的自相似点.(2)(i)如图所示,作法如下:①在内,作;②在内,作,交于点.则为的自相似点.(ii)连接,.是的内心,,.为的自相似点,.,,.,..该三角形三个内角的度数分别为,,.。
2011江苏南京中考数学

南京市2011年初中毕业生学业考试数 学数学注意事项:1. 本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上) 1.(2011江苏南京,1,2分A .3B .-3C .±3D .【答案】A2.(2011江苏南京,2,2分)下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8 【答案】C3.(2011江苏南京,3,2分)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为 A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 【答案】C4.(2011江苏南京,4,2分)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是 A .随机抽取该校一个班级的学生 B .随机抽取该校一个年级的学生 C .随机抽取该校一部分男生D .分别从该校初一、初二、初三年级中各班随机抽取10%的学生 【答案】D5.(2011江苏南京,5,2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】BA .B .CD .(第5题)6.(2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB的长为a 的值是 A.B.2+C.D.2【答案】B二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2011江苏南京,7,2分)-2的相反数是________. 【答案】28.(2011江苏南京,8,2分)如图,过正五边形ABCDE 的顶点A 作直线l ∥CD ,则∠1=____________.【答案】369.(2011江苏南京,9,2分)计算1)(2=_______________.10.(2011江苏南京,10,2分)等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝. 【答案】611.(2011江苏南京,11,2分)如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于_________.(第8题)l【答案】1212.(2011江苏南京,12,2分)如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.【答案】13.(2011江苏南京,13,2分)如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°.【答案】40 14.(2011江苏南京,14,2分)如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a=______.(第14题)A BC DF(第13题)(第12题)A(第11题)BA MO【答案】9015.(2011江苏南京,15,2分)设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 【答案】12-16.(2011江苏南京,16,2分)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________. 【答案】4三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2011江苏南京,17,6分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥>,并写出不等式组的整数解.【答案】解:解不等式①得:1x ≥-解不等式②得:2x <所以,不等式组的解集是12x -≤<. 不等式组的整数解是1-,0,1.18.(2011江苏南京,18,6分)计算221()a ba b a b b a-÷-+-【答案】221)a ba b a b b a-÷-+-解:( ()()()()a a b b a b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦()()b b aa b a b b -=⋅+-1a b=-+ 19.(2011江苏南京,19,6分)解方程x 2-4x +1=0【答案】解法一:移项,得241x x -=-. 配方,得24414x x -+=-+,2(2)3x -=由此可得2x -=12x =22x =解法二:1,4, 1.a b c ==-=224(4)411120b ac -=--⨯⨯=>,422x ==12x =22x =.20.(2011江苏南京,20,7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数; ⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点. 【答案】解:⑴训练后第一组平均成绩比训练前增长的百分数是53100%3-⨯≈67%. ⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.(2011江苏南京,21,7分)如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .⑴求证:△ABF ≌△ECF ⑵若∠AFC=2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.①训练后第二组男生引体向上增加个数分布统计图增加85个②(第20题)【答案】证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF. ∵EC=DC, ∴AB=EC . 在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC , ∴⊿ABF ≌⊿ECF . (2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF . ∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC . ∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴FA=FB . ∴FA=FE=FB=FC, ∴AE=BC .∴口ABEC 是矩形. 解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形. ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE . 又∵∠AFC=2∠D ,∴∠AFC=2∠BCE , ∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD . 又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°. ∴口ABEC 是矩形.22.(2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式; ②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?【答案】解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.BD(第21题)(第22题)所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ). 23.(2011江苏南京,23,7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生; ⑵抽取2名,恰好是1名男生和1名女生.【答案】解:⑴抽取1名,恰好是女生的概率是25. ⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=63105=.24.(2011江苏南京,24,7分)(7分)已知函数y=mx 2-6x +1(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值.【答案】解:⑴当x=0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1). ⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9.25.(2011江苏南京,25,7分)如图,某数学课外活动小组测量电视塔AB 的高度,他们借助一个高度为30m 的建筑物CD 进行测量,在点C 处塔顶B 的仰角为45°,在点E 处测得B 的仰角为37°(B 、D 、E 三点在一条直线上).求电视塔的高度h . (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:在Rt ECD ∆中,tan DEC ∠=DCEC. ∴EC =tan DC DEC ∠≈30400.75=(m ).在Rt BAC ∆中,∠BCA =45°,∴BA CA =在Rt BAE ∆中,tan BEA ∠=BA EA .∴0.7540hh =+.∴120h =(m ).答:电视塔高度约为120m .26.(2011江苏南京,26,8分)如图,在Rt △ABC 中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t=1.2时,判断直线AB 与⊙P 的位置关系,并说明理由; ⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.【答案】解:⑴直线AB 与⊙P 相切.如图,过点P 作PD ⊥AB, 垂足为D . 在Rt △ABC 中,∠ACB =90°,∵AC=6cm ,BC=8cm ,∴10AB cm ==.∵P 为BC 的中点,∴PB=4cm . ∵∠PDB =∠ACB =90°,∠PBD =∠ABC .∴△PBD ∽△ABC . ∴PD PB AC AB =,即4610PD =,∴PD =2.4(cm) . 当 1.2t =时,2 2.4PQ t ==(cm)Bh (第25题)(第26题)∴PD PQ =,即圆心P 到直线AB 的距离等于⊙P 的半径. ∴直线AB 与⊙P 相切.⑵ ∠ACB =90°,∴AB 为△ABC 的外切圆的直径.∴152OB AB cm ==. 连接OP .∵P 为BC 的中点,∴132OP AC cm ==. ∵点P 在⊙O 内部,∴⊙P 与⊙O 只能内切. ∴523t -=或253t -=,∴t =1或4. ∴⊙P 与⊙O 相切时,t 的值为1或4.27.(2011江苏南京,27,9分)如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB=90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.【答案】解:⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴12CD AB =,∴CD=BD .∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°,∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点. ⑵①作图略. 作法如下:(i )在∠ABC 内,作∠CBD =∠A ; (ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC .∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A .∵∠A+∠ABC+∠ACB =180°. ∴∠A+2∠A+4∠A =180°.BBB CC C①②③(第27题)∴1807A ∠=.∴该三角形三个内角的度数分别为1807、3607、7207.28.(2011江苏南京,28,11分)问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质. ① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质; ③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题11 ⑵用上述方法解决“问题情境”中的问题,直接写出答案.【答案】解:⑴①174,103,52,2,52,103,174. 函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x=+(0)x >的最小值为2. ③1y x x=+=22+=22+-=22+=0,即1x =时,函数1y x x =+(0)x >的最小值为2. ⑵。
2011年南京中考数学试题及答案word版

2011年南京中考数学试题及答案word版一、选择题(共6小题;共30分)1. 的值等于A. B. C. D.2. 下列运算正确的是A. B. C. D.3. 在第六次全国人口普查中,南京市常住人口约为万人,其中岁及以上人口占.则该市岁及以上人口用科学记数法表示约为A. 人B. 人C. 人D. 人4. 为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A. 随机抽取该校一个班级的学生B. 随机抽取该校一个年级的学生C. 随机抽取该校一部分男生D. 分别从该校初一、初二、初三年级中各班随机抽取的学生5. 如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是A. B.C. D.6. 如图,在平面直角坐标系中,的圆心是>,半径为,函数的图象被截得的弦的长为的值是A. B. C. D.二、填空题(共10小题;共50分)7. 的相反数是______.8. 如图,过正五边形的顶点作直线,则 ______.9. 计算 ______.10. 等腰梯形的腰长为,它的周长是,则它的中位线长为______ .11. 如图,以为圆心,任意长为半径画弧,与射线交于点,再以为圆心,长为半径画弧,两弧交于点,画射线,则的值等于______.12. 如图,菱形的边长是,是中点,且,则菱形的面积为______.13. 如图,海边有两座灯塔,,暗礁分布在经过,两点的弓形(弓形的弧是的一部分)区域内,,为了避免触礁,轮船与,的张角的最大值为______ .14. 如图,,分别是正方形的边,上的点,,连接,,将绕正方形的中心按逆时针方向转到,旋转角为,则 ______.15. 设函数与的图象的交点坐标为,则的值为______ .16. 甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为,,,,接着甲报,乙报按此规律,后一位同学报出的数比前一位同学报出的数大,当报到的数是时,报数结束;②若报出的数为的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为______.三、解答题(共12小题;共156分)17. 解不等式组并写出不等式组的整数解.18. 计算.19. 解方程.20. 某校部分男生分组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的,所以第二组的平均数不可能提高个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.21. 如图,将平行四边形的边延长到点,使,连接,交于点.(1)求证:.(2)若,连接,.求证:四边形是矩形.22. 小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的倍,小颖在小亮出发后才乘上缆车,缆车的平均速度为.设小亮出发后行走的路程为.图中的折线表示小亮在整个行走过程中与的函数关系.(1)小亮行走的总路程是______ ,他途中休息了______ ;(2)①当时,求与的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?23. 从名男生和名女生中随机抽取 2014 年南京青奥会志愿者.求下列事件的概率:(1)抽取名,恰好是女生;(2)抽取名,恰好是名男生和名女生.24. 已知函数(是常数).(1)求证:不论为何值,该函数的图象都经过轴上的一个定点;(2)若该函数的图象与轴只有一个交点,求的值.25. 如图,某数学课外活动小组测量电视塔的高度,他们借助一个高度为的建筑物进行测量,在点处塔顶的仰角为,在点处测得的仰角为(,,三点在一条直线上),求电视塔的高度.(参考数据:,,)26. 如图,在中,,,,为的中点.动点从点出发,沿射线方向以的速度运动,以为圆心,长为半径作圆.设点运动的时间为.(1)当时,判断直线与的位置关系,并说明理由;(2)已知为的外接圆,若与相切,求的值.27. 如图①,为内一点,连接,,,在,和中,如果存在一个三角形与相似,那么就称为的自相似点.(1)如图②,已知中,,,是上的中线,过点作,垂足为,试说明是的自相似点.(2)在中,.①如图③,利用尺规作出的自相似点(写出作法并保留作图痕迹);②若的内心是该三角形的自相似点,求该三角形三个内角的度数.28. 问题情境已知矩形的面积为(为常数,),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为,周长为,则与的函数关系式为.(1)探索研究(1)我们可以借鉴以前研究函数的经验,先探索函数的图象性质.①填写下表,画出函数的图象;的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.(2)解决问题用上述方法解决“问题情境”中的问题,直接写出答案.答案第一部分1. A2. C3. C4. D5. B6. B第二部分7.8.9.10.11.12.13.14.15.16.第三部分17. 解不等式得:解不等式得:所以,不等式组的解集是不等式组的整数解是,,.18.19. 解法一:移项,得配方,得由此可得20. (1)训练后第一组平均成绩比训练前增长的百分数是.(2)不同意小明的观点,因为第二组的平均成绩增加(个).(3)本题答案不唯一,我认为第一组训练效果最好;训练后每组的平均成绩比训练前增长的百分数分别为:第一组:,第二组:,第三组:,训练后第一组平均成绩比训练前增长的百分数最大,所以第一组的训练效果最好.21. (1)四边形是平行四边形,,..,.在和中,,,,.(2)解法一:,,四边形是平行四边形.,.四边形是平行四边形,,又,.,..,.平行四边形是矩形.22. (1);(2)①当时,设与的函数关系式为.根据题意,当时,;当,.所以解得所以,与的函数关系式为.②缆车到山顶的路线长为,缆车到达终点所需时间为.小颖到达缆车终点时,小亮行走的时间为.把代入,得.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是.23. (1)抽取名,恰好是女生的概率是.(2)分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共种,它们出现的可能性相同,所有结果中,满足抽取名,恰好是名男生和名女生(记为事件)的结果共种,所以.24. (1)当时, .所以不论为何值,函数的图象经过轴上的一个定点.(2)①当时,函数的图象与轴只有一个交点;②当时,若函数的图象与轴只有一个交点,则方程有两个相等的实数根,所以,.综上,若函数的图象与轴只有一个交点,则的值为或.25. 在中,..在中,,.在中,,..答:电视塔高度约为.26. (1)直线与相切.如图,过点作,垂足为.中,,,,.为的中点,.,..,即,.当时,.,即圆心到直线的距离等于的半径.直线与相切.(2),为的外切圆的直径..连接.为的中点,.点在内部,与只能内切.或,或.与相切时,的值为或.27. (1)在中,,是上的中线,所以,所以.所以.因为,所以,所以.所以.所以是的自相似点.(2)①作图略.作法如下:(i)在内,作;(ii)在内,作,交于点.则为的自相似点.②连接,.因为为的内心,所以,.因为为的自相似点,所以.所以,,.因为.所以.所以,所以该三角形三个内角的度数分别为,,.28. (1)①;;;;;;.函数的图象如图.时,随增大而减小;当时,随增大而增大;当时函数的最小值为.③当,即时,函数的最小值为.(2)当该矩形的长为时,它的周长最小,最小值为.第11页(共11 页)。
江苏省2011年中考数学试题(13份含有解析)-7

盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2 B .- 12C .2D .12【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是A .x 2+ x 3= x 5B .x 4·x 2= x 6 C .x 6÷x 2 = x 3D .( x 2)3 = x 8【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离A B CD【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴ 两圆相交。
6.对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
2005-2011年江苏省南京市中考数学试卷及答案(7套)

浙江省2011年初中毕业生学业考试(金华卷) 数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 参考公式:方差公式()()()[]2222121x x x x x x nS n -++-+-=. 卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12 C .-2和12- D .12和2 2.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( ▲ )A .6B .5C .4D .33.下列各式能用完全平方公式进行分解因式的是( ▲ )A .x 2+ 1B .x 2+2x -1C .x 2+x +1D .x 2+4x +44.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A .+2B .-3C .+3D .+45.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( ▲ )A .30oB .25oC .20oD .15o6.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ▲ )第2题图第5题图A .0.1B .0.15C .0.25D .0.3 7.计算111aa a ---的结果为( ▲ ) A .11a a +- B .1a a -- C .-1 D .28.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( ▲ )9.如图,西安路与南京路平行,并且与八一街垂直,曙 光路与环城路垂直.如果小明站在南京路与八一街的交 叉口,准备去书店,按图中的街道行走,最近的路程约 为( ▲ )A .600mB .500mC .400mD .300m10.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( ▲ )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.“x 与y 的差”用代数式可以表示为 ▲ .12.已知三角形的两边长为4,8,则第三边的长度可以是 ▲ (写出一个即可). 13.在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作抽样调查,统计如下: 的扇形圆心角的度数为 ▲ .14.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 ▲ .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ .16.如图,将一块直角三角板OAB 放在平面直角坐标系中, B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线第10题图1 02 C 1 02D1 02 A 1 0 2 B 第15题图D为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l , 以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´. (1)当点O ´与点A 重合时,点P 的坐标是 ▲ ; (2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:()015cos45π--+4. 18.(本题6分)已知213x -=,求代数式2(3)2(3+)7x x x -+-的值.19.(本题6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬. 现在有一长为6米的梯子AB , 试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)20.(本题8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均 数,并估算出甲、乙两山杨梅的产量 总和; (2)试通过计算说明,哪个山上的杨 梅产量较稳定?21.(本题8分)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲ 或 ▲ 或第19题图 C 杨梅树编号第20题图图222.(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到....学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.23.(本题10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上, 设抛物线2y ax bx c=++(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.24.(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结第22题图)(1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.浙江省2011年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、二、11.x -y 12.答案不惟一,在4<x <12之间的数都可 13. 144° 14. 1315. 32 16. (1)(4,0);(2)4≤t ≤2525-≤t ≤-4(各2分) 三、解答题(本题有8小题,共66分) 17.(本题6分)()0185cos45π--1+42 =121221422-⨯+⨯(写对一个2分,两个3分,三个4分,四个5分)2 ……1分 18.(本题6分)由2x -1=3得x =2, ……2分又2(3)2(3+)7x x x -+-=2269627x x x x -+++-=232x +,……2分 ∴当x =2时,原式=14. …2分 19.(本题6分)当α=70°时,梯子顶端达到最大高度, ……1分 ∵sin α=ABAC, ……2分 ∴ AC = sin70°×6=0.94×6=5.64 ……2分≈5.6(米)答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.……1分 20.(本题8分)(1)40=甲x (千克), ……1分40=乙x (千克), ……1分总产量为78402%9810040=⨯⨯⨯(千克);……2分(2)()()()()[]3840344040403640504122222=-+-+-+-=甲S (千克2 ), ……1分()()()()[]2440364048404040364122222=-+-+-+-=乙S (千克2), ……1分∴22S S乙甲>. ……1分 答:乙山上的杨梅产量较稳定. ……1分 21.(本题8分)(1)∵PG 平分∠EPF , ∴∠DPO =∠BPO , ∵OA//PE ,∴∠DPO =∠POA , ∴∠BPO =∠POA ,∴P A =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B .……2分(写对1个、2个、3个得1分,写对4个得2分) 22.(本题10分)(1)设师生返校时的函数解析式为b kt s +=,把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k ∴685+-=t s ,当0=s 时,t =13.6 , ∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++x x <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分23.(本题10分)(1)由题意可知,抛物线对称轴为直线x =12, ∴122b a -=,得b = 1; ……2分 (2)设所求抛物线解析式为21y ax bx =++,由对称性可知抛物线经过点B (2,1)和点M (12,2) P8.5 9.5)∴1421112 1.42a b ab =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3,设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13OD OC CD BC ==, 设OD =t ,则CD =3t , ∵222OD CD OC +=,∴222(3)1t t +=, ∴t ==, ∴C (10), 又 B 0), ∴把B 、C 坐标代入抛物线解析式,得010********.101010a b a ⎧=+⎪=+,解得:a =103-; ……2分 ②21n a n+=-. ……2分24.(本题12分) (1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分(2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°, 又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA, ∴OE EF DE AE =,即684EF=,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB , 当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC中点,即OE =25, ∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x , ∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO, ∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴CF CEAD AE =, 而AD =2BE , ∴2OC CEOE AE=, 即55210x x x -=-, 解得417551+=x , 417552-=x <0(舍去), ∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA, ∴CF ∥BE,OB DFC EA xy∴OEOCBE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴AD CFAE CE =, 而AD =2BE , ∴2OC CEOE AE=, ∴5+5210+x x x =, 解得417551+-=x , 417552--=x <0(舍去), ∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年江苏省南京市中考数学试卷-解析版
一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1、(2011•南京)的值等于()
A、3
B、﹣3
C、±3
D、
2、(2011•南京)下列运算正确的是()
A、a2+a3=a5
B、a2•a3=a6
C、a3+a2=a
D、(a2)3=a6
3、(2011•南京)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为2%,则该市65岁及以上人口用科学记数法表示约为()
A、0.736×106人
B、7.36×104人
C、7.36×105人
D、7.36×106人
<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、(2011•南京)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()
A、随机抽取该校一个班级的学生
B、随机抽取该校一个年级的学生
C、随机抽取该校一部分男生
D、分别从该校初一、初二、初三年级中各随机抽取10%的学生
情况去分析,难度适中.
5、(2011•南京)如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()
A、B、
C、D、
6、(2011•南京)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()
A、2
B、2+
C、2
D、2+
7、(2011•南京)﹣2的相反数是.
8、(2011•南京)如图,过正五边形ABCDE的顶点A作直线l∥CD,则∠1=.
9、(2011•南京)计算(+1)(2﹣)=.
10、(2011•南京)等腰梯形的腰长为5cm,它的周长是22cm,则它的中位线长为cm.
11、(2011•南京)如图,以0为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于.
12、(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD
的面积为 cm2.
13、(2011•南京)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB 的最大值为.
14、(2011•南京)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α= .
15、(2011•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为
16、(2011•南京)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:
①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;
②若报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为.
三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17、(2011•南京)解不等式组,并写出不等式组的整数解.
18、(2011•南京)计算.
19、(2011•南京)解方程x2﹣4x+1=0.
20、(2011•南京)某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.
(1)求训练后第一组平均成绩比训练前增长的百分数;
(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意
小明的观点吗?请说明理由;
(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.
22、(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是3600 m,他途中休息了20 min;
(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
23、(2011•南京)从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
26、(2011•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△A BC的外接圆.若⊙P与⊙O相切,求t的值.
27、(2011•南京)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC 中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;
(2)在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
28、(2011•南京)【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.。