人教版中考数学《方案设计》专题复习(含答案)
人教版_2021年中考数学专题复习教学案--方案设计型(附答案)

方案设计型㈠应用方程(组)不等式(组)解决方案设计型例1.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用.,以两人的用的总钱数为等量关系,可以列出方程组.第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组.解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24. 点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组).同步检测:1 (2009·安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.2.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.练习参考答案:1. 解:(1)设成人人数为x 人,则学生人数为(12-x)人. 则35x + 235(12 –x )= 350 解得:x = 8 故:学生人数为12 – 8 = 4 人, 成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16 = 336元336﹤350 所以,购团体票更省钱.所以,有成人8人,学生4人;购团体票更省钱.2. 解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:⎩⎨⎧=+=+3152183y x y x 解得:⎩⎨⎧==53y x 所以,每支钢笔3元,每本笔记本5元(2)设买a 支钢笔,则买笔记本(48-a )本依题意得:⎩⎨⎧≥-≤-+aa a a 48200)48(53,解得:2420≤≤a ,所以,一共有5种方案即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24.二、应用函数设计方案问题:例2.(2009·安徽)(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解析:此类试题结合函数图像所提供的信息,对信息加工应用,可以求出函数解析式,分析题意,根据:销售利润y =日最高销售量x ×每千克的利润(每千克的利润=零售价-批发价),由此整理可得到y 关于x 的二次函数,解:(1)图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;图②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象略. 由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)设日最高销售量为x kg(x >60)则由图②日零售价p 满足:32040x p =-,于是32040x p -=销售利润23201(4)(80)1604040x y x x -=-=--+,当x =80时,160y =最大值,此时p =6 即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元点评:注重数形结合,领会通过图形所传递的信息,以及二次函数顶点的意义的理解与应用.同步检测:3:(2009·四川省南充市)某电信公司给顾客提供了两种手机上网计费方式:方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.(1)分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象;(2)如何选择计费方式能使甲上网费更合算?练习参考答案:练习3。
中考数学专题复习《设计方案》测试卷-附带答案

中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。
人教版中考复习数学练习专题五:方案设计专题(含答案)

专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。
微专题6 抛物线型实际应用设计问题(含实践活动)+课件+2025年九年级中考数学总复习人教版(山东)

若顶点一侧挂3盏灯笼,则1.6×3<6,
∴顶点一侧最多可挂3盏灯笼.
∵挂满灯笼后成轴对称分布,
∴共可挂7盏灯笼.
∴最左边一盏灯笼悬挂点的横坐标是-4.8.
21
方案二:如图6,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为
0.8 m,
∵若顶点一侧挂5盏灯笼,则0.8+1.6×(5-1)>6,
线.球从点A处被抛出,恰好越过横线,测得投掷距离OC=8 m.
13
问题解决
任务1
计算投掷距离
建立合适的直角坐标系,求素材1中的投掷距离OB.
任务2
探求高度变化
求素材2和素材1中球的最大高度的变化量.
任务3
提出训练建议
为了把球掷得更远,请给小林提出一条合理的训练建议.
14
【解析】任务1:建立如图所示的直角坐标系,
整理得w=(-16x+1 120)+(-32x+2 240)+(-2x2+120x),
∴w=-2x2+72x+3 360(x≥10).
27
任务3:由任务2得w=-2x2+72x+3 360=-2(x-18)2+4 008,
∴当x=18时,获得最大利润,
y=- ×18+ = ,∴x≠18,
−
∴y=-0.15x2+x+1.6,∴顶点纵坐标为
=
= ,
×(−.)
-1.8= (m),∴素材2和素材1中球的最大高度的变化量为
中考数学复习《一次函数分配方案问题》专项检测卷(附带答案)

中考数学复习《一次函数分配方案问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.移动公司手机话费有A 套餐(月租25元,通话费每分钟0.1元)和B 套餐(月租0元,通话费每分钟0.2元)两种.设A 套餐每月话费为1y 元,B 套餐每月话费为2y 元,月通话时间为x 分钟.(1)分别表示出1y 、2y 与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下B 套餐更省钱?2.为有效落实双减政策,切实做到减负提质,某学校在课外活动中增加了球类项目.学校计划用1800元购买篮球,在购买时发现,每个篮球的售价可以打六折,打折后购买的篮球总数量比打折前多10个.(1)求打折前每个篮球的售价是多少元?(2)由于学生的需求不同,该学校决定增购足球.学校决定购买篮球和足球共50个,每个足球原售价为100元,在购买时打八折,且购买篮球的数量不超过总数量的一半,请问学校预算的1800元是否够用?如果够用,请设计一种最节省的购买方案;如果不够用,请求出至少需要再添加多少元?3.某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,设该车间每天安排x 名工作制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y (元)与x (人)之间的函数关系式;(2)若只考虑利润问题,要使每天所获利润不低于24000元,你认为至多要派多少名工人制造甲种零件才合适?4.2023年洛阳市第五届全民健身运动会第一阶段自5月2日启动至6月底结束,围棋作为赛事之一,备受广大爱好者关注.某机构欲向文体店购买A 、B 两种品牌的围棋共50副,已知A 品牌的单价比B 品牌的单价多30元,用2500元购买A 品牌的数量比用3500元购买B 品牌的数量少25副.(1)分别求A、B两种品牌围棋的单价(2)经协商,在保证购买A品牌数量不少于B品牌数量一半的情况下,文体店同意打折销售,其中A品牌打八折,B品牌打九折,请你设计一个最省钱的购买方案,并求出最少费用?5.濮阳市为改善空气质量,降低空气污染,决定让公交公司逐步淘汰原有的汽油公交车,更换节能环保的电动公交车.公司准备采购A型和B型两种公交车共10辆,其中每辆的价格,年均载客量如下表所示:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求A、B两种型号公交车的单价分别是多少万元;(2)如果该公司要确保这10辆公交车的年均载客量总和不少于680万人次.请你设计一个方案,使购买的总费用最少.6.为锻炼身体,增强体质,某户外俱乐部组织队员去效游,需要购买雨伞和保温杯.已知购买10把雨伞和15个保温杯需要450元;购买12把雨伞和10个保温杯需要380元.(1)求购买1把雨伞和1个保温杯各需多少元;(2)若购买雨伞和保温杯的总数为30,总费用不少于479元且不多于502元,则有几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?7.七中育才学校数学组组织学生举行“数学计算大赛”,需购买甲、乙两种奖品.若购买甲奖品3个和乙奖品4个,需160元;购买甲奖品4个和乙奖品5个,需205元.(1)甲、乙两种奖品的单价各是多少元?(2)学校计划购买奖品200个,设购买甲奖品a个,购买这200个奖品的总费用为W元.①求W关于a的函数关系式;①若购买甲奖品的数量不少于30个,同时又不超过80个,则该学校购进甲奖品、乙奖品各多少个,才能使总费用最少?8.某校计划租用甲、乙两种型号客车送200名师生去研学基地开展综合实践活动,需租用甲、乙两种型号的客车共10辆.已知租用一辆甲型客车需800元,租用一辆乙型客车需1100元.甲型客车每辆可坐16名师生,乙型客车每辆可坐22名师生.设租用甲型客车x辆,租车总费用为y元.(1)请写出y与x之间的函数表达式.(不要求写自变量的取值范围)(2)据资金预算,本次租车总费用不超过10800元,则甲型客车至少需租用几辆?(3)在(2)的条件下,要保证全体师生都有座位,问有哪几种租车方案?请选出最省钱的租车方案.9.某学生用品商店,计划购进A、B两种背包共80件进行销售,购货资金不少于2090元,但不超过2096元,两种背包的成本和售价如下表:种类成本(元/件)售价(元/件)A2530B2835假设所购两种背包可全部售出,请回答下列问题:(1)该商店对这两种背包有哪几种进货方案?(2)该商店如何进货获得利润最大?(3)根据市场调查,每件B种背包的市价不会改变,每件A种背包的售价将会提高a元(a>0),该商店又将如何进货获得的利润最大?10.小李计划从网上批发一些饰品摆摊售卖.经过多方调查,仔细甄别,他选定了A、B两款网红饰品,其进价分别为每个x元、y元.已知购进A款饰品8个和B款饰品6个所需花费相同;购进A款饰品10个和B款饰品4个共需230元.(1)请求出A,B两款饰品的进价分别是多少?(2)小李计划购进两款饰品共计100个(其中A款饰品最多62个),要使所需费用不多于1700元,则他有哪几种购进方案?哪种方案的费用最低?最低费用为多少?11.合肥某校有3名教师准备带领部分学生(不少于3人)参观野生动物园.经洽谈,野生动物园的门票价格为教师票每张36元,学生票半价,且有两种购票优惠方案.方案一:购买一张教师票赠送一张学生票;方案二,按全部师生门票总价的80%付款,只能选用其中一种方案购买.假如学生人数为x(人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少;(3)若选择最优惠的方案后,共付款288元,则学生有多少人?12.某学校计划组织全校1500名师生外出参加集体活动,经过研究,决定租用当地租车公司一共60辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量是指不包括驾驶员的每辆客车最多载客人数.学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数解析式,并直接写出x的取值范围;(2)若要使租车总费用不超过22000元,一共有几种租车方案?并结合函数性质说明哪种租车方案最省钱?最低费用是多少元?13.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表所示.现要配制这种饮料10千克,设需要甲种原料x千克,请回答下列问题:(1)若要求至少含有4000单位的维生素C,则至少要多少千克甲原料?(2)若要求成本不超过72元,则至多要______千克甲原料.(3)为了称量方便,所需甲、乙原料的质量均为整数,在(1)和(2)同时满足的情况下,写出该饮料所有可能的配置方案,并求出最省钱的配置方案.14.某家政服务公司选派20名清洁工去打扫民宿的房间,房间有大、小两种规格,每名清洁工一天能打扫8个大房间或12个小房间,设派x 人去清扫大房间,其余人清扫小房间,清扫一个大房间工钱为50元,清扫一个小房间工钱为30元.(1)写出家政服务公司每天的收入y (元)与x (人)之间的函数关系式;(2)若该家政服务公司计划选派这20名清洁工打扫民宿房间每天的收入不低于7800元,该家政公司最多安排多少人打扫小房间?15.学校打算购买A ,B 两种教具,若购买60件A 种教具和30件B 种教具共需花费1650元:购买50件A 种教具和10件B 种教具共需花费1150元.(1)求A 种教具和B 种教具的单价;(2)实际购买时,发现厂家有两种优惠方案,方案一:购买A 种教具超过20件时,超过的部分按原价的8折付款,B 种教具没有优惠;方案二;无论购买多少件A ,B 教具,两种教具都按原价的9折付款,该校决定购买n (20n >且为整数)件A 种教具和40件B 种教具. 请根据上述信息填空①当n =_________时,“方案一”与“方案二”的花费相同,此时花费金额为_________; ①当84n =时,方案_________更优惠(填“一”或“二”).参考答案1.(1)10.125y x =+ 20.2y x =(2)250min(3)x <250时,当月通话时间少于250分钟时,B 套餐更划算2.(1)打折前每个篮球的售价是120元(2)不够用,该学校至少还需要再添加2000元3.(1)()40026000020y x x =-+≤≤(2)至多要派5名工人制造甲种零件才合适4.(1)A 品牌围棋的单价为100元,B 品牌围棋的单价为70元(2)方案为:A 品牌围棋买17副,B 品牌购买33副,最少费用为3439元5.(1)A 型公交车的单价是100万元/辆,B 型公交车的单价是150万元/辆;(2)总费用最少的购买方案为:购买8辆A 型公交车,2辆B 型公交车.6.(1)购买1把雨伞需15元,购买1个保温杯需20元(2)有五种购买方案(3)购买24把雨伞和6个保温杯总费用最少,最少费用是480元7.(1)甲种奖品的单价是20元,乙种奖品的单价是25元(2)①55000W a =-+;①该学校购买甲奖品80个,乙奖品120个,才能使总费用最少8.(1)30011000y x =-+(2)甲型客车至少需租用1辆(3)有3种租车方案:方案一,甲型客车租1辆,乙型客车租9辆;方案二,甲型客车租2辆,乙型客车租8辆;方案三,甲型客车租3辆,乙型客车租7辆.最省钱的租车方案是甲型客车租3辆,乙型客车租7辆9.(1)有3种方案:A :48、B :32;A :49、B :31;A :50、B :30(2)464元(3)购A 种背包48件, 购B 种背包32件10.(1)A 款饰品的进价是15元,B 款饰品的进价是20元(2)购进62个A 款饰品,38个B 款饰品费用最低,最低费用为1690元11.(1)方案一:1854y x =+;方案二:14.486.4y x =+(2)当9x =时,两种方案一样多;当39≤<x 时,方案一更优惠;当9x >时,方案二更优惠(3)学生人数为14人12.(1)100180003060y x x ≤≤=+()(2)一共有11种租车方案,当租用A 型车辆30辆,B 型车辆30辆时,租车费用最省钱,最低费用为21000元13.(1)6千克(2)8(3)方案见解析,最省钱的配置方案为方案一:甲原料6千克,乙原料为4千克14.(1)407200y x =+(2)5人15.(1)A 种教具的单价为20元,B 种教具的单价为15元(2)①70;1800;①一。
人教版中考数学专题总复习《方案设计与决策型问题》练习题及答案精品教学课件PPT

(3)当 y1<y2,即 12.6x<12x+30 时,解得 x<50; 当 y1=y2,即 12.6x=12x+30 时,解得 x=50; 当 y1>y2,即 12.6x>12x+30 时,解得 x>50. 综上所述,当购买奖品超过 10 件但少于 50 件时, 买文具盒省钱; 当购买奖品正好是 50 件时,买文具盒和买钢笔的 钱数相等; 当购买奖品超过 50 件时,买钢笔省钱.
3.今年 4 月份,李大叔收获洋葱 30 吨,黄瓜
13 吨.现计划租用甲、乙两种货车共 10 辆,将这两种
蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱
4 吨和黄瓜 1 吨,一辆乙种货车可装洋葱和黄瓜各
2 吨.李大叔租用甲、乙两种货车的方案有( B )
A.2 种
B.3 种
C.4 种
D.5 种
解析:设租用甲种货车 x 辆,则租用乙种货车 (10-x)辆,依题意,得x4+x+22101-0-xx≥≥133,0, 解这个不 等式组,得 5≤x≤7.∵x 是整数,∴x 可取 5,6,7,即租 用甲、乙两种货车有三种方案:①甲种货车 5 辆,乙种 货车 5 辆;②甲种货车 6 辆,乙种货车 4 辆;③甲种货 车 7 辆,乙种货车 3 辆.故选 B.
(1)每个文具盒、每支钢笔各多少元?
(2)时逢“五一”,商店举行“优惠促销”活动, 具体办法如下:文具盒“九折”优惠;钢笔 10 支以上 超出部分“八折”优惠.若买 x 个文具盒需要 y1 元, 买 x 支钢笔需要 y2 元,求 y1,y2 关于 x 的函数关系式;
人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案

专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。
初中数学中考第二轮专题复习-方案设计型试题(含答案

方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。
解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。
练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。
(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案设计专题方案设计问题通常以社会生产和生活为背景,要求通过运用所学知识设计出最科学、最合理的方案. 综合考查了学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、书面表达能力.一、设计搭配方案搭配方案问题一般与交通动输,安排车辆,工程施工等问题相联系,解此类问题时,需要将实际问题转化为方程(组),不等式(组)的问题,通过寻找题目中的相等(或不等)关系求解,确定出符合条件方案.例1 (2015•齐齐哈尔)母亲节前夕,某淘宝店主从厂家购进A,B两种礼盒,已知A,B两种礼盒的单价比为2∶3,单价和为200元.(1)求A,B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?分析:(1)根据“A,B两种礼盒的单价比为2∶3,单价和为200元”,列方程求解即可;(2)可利用方程和不等式结合解决这一问题:根据“两种礼盒恰好用去9600元”列出方程,再利用“A种礼盒最多36个”和“B种礼盒的数量不超过A种礼盒数量的2倍”这两个不等关系求出进货方案.解:(1)设A 种礼盒单价为2x 元,B 种礼盒单价为3x 元,依据题意,得2x+3x=200,解得x=40.则2x=80,3x=120.答:A 种礼盒单价为80元,B 种礼盒单价为120元.(2)设购进A 种礼盒a 个,B 种礼盒b 个,依据题意,得.9600120b 80a =+,整理得24032=+b a ,即8032+-=a b , 又因为⎩⎨⎧≤≤a b a 236可得⎪⎩⎪⎨⎧≤+-≤a a a 2803236,解得3630≤≤a . 因为a ,b 的值均为整数,所以a 的值为30,33,36.综上可知,共有三种方案.评注:此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.跟踪训练:1.(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有 ( )A.1种B.2种C.3种D.4种2.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案.二、设计最佳方案最佳方案就是利用数学知识,设计出最科学、最合理的方案,一般以社会热点问题为背景,题目中往往会出现成本最低、效率最高、利润最大、运费最少、最合算等标志性词语.解决此类问题一般需借助不等式(组),方程(组),函数等知识构建适当的数学模型,将实际问题转化为数学问题,对所有可能的方案进行分析,找出符合要求的最优方案.例2 (2015•恩施州)某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:(1)该工厂生产A 、B 两种产品有哪几种方案?(2)若生产一件A 产品可获利80元,生产一件B 产品可获利120元,怎样安排生产可获得最大利润?分析:(1)设工厂可安排生产x 件A 产品,则生产(50﹣x )件B 产品,根据所需A 种原料不能多于360千克,B 种原料不能多于290千克,列出不等式求解;(2)可根据一次函数的性质,确定最大利润及方案.解:(1)设工厂可安排生产x 件A 产品,则生产(50﹣x )件B 产品,由题意,得 ()360x -5049x ≤+()29050103≤-+x x ,解得30≤x≤32.又所以有三种生产方案:方案一:A30件,B20件;方案二:A31件,B19件;方案三:A32件,B18件.(2)设生产两种产品的利润为w ,则有()x -5012080x w +=,整理,得600040+-=x w .根据一次函数的性质可知,当x 取最小值30时,w 有最大值,此时480060003040=+⨯-=w ,所以当生产A产品30件,B产品20件时,所获利润最大为4800元.评注:本题是利用一元一次不等式组和一次函数设计最佳方案的问题,这类题通常需要利用不等式(组)得到未知数据取值范围,然后根据范围内符合题意的解设计出不同的方案.跟踪训练:3.(2015•辽阳)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台,并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.三、设计图形的方案图形的分割,拼接问题是设计图案最常见的类型,这类问题具有一定的开放性,要求从多角度、多层次进行探索,以展示思维的灵活性,发散性.例3 (2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3).333分析:本题可分腰长为3和底长为3等情况分别尝试构造.解:满足条件的所有等腰三角形如下图所示.评注:本题有多种情况,在解答本题时,可通过分多种情况分别尝试的方法,力求做到不重复不遗漏.跟踪训练:4.(2015•枣庄)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2种B.3种C.4种D.5种5.(2015•广安)手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的裁剪线,并直接写出每种不同分割后得到的最小等腰直角三角形面积.(注:不同的分法,面积可以相等).四、设计测量方案这类问题主要包括物体高度和地面宽度的测量,通常是要求先设计测量方案,然后再计算,常用到全等、相似、解直角三角形等知识,需注意的是所设计的方案要切实可行.例4 如图,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:第一种 第二种 第三种 第四种A B D αβC C 1D 1H(1)画出测量示意图;(2)写出测量步骤(测量数据用字母表示);(3)根据(2)中的数据计算AB .分析:本题是一道测量底部不可到达物体高度问题,可通过构造双直角三角形完成. 解:(1)画出的示意图如图所示;(2)测量步骤:①在地面上取一点C 安装测角仪,测得树顶A 的仰角为α;②沿CB 前进到D ,用皮尺量出CD 之间的距离CD=a 米;③在D 处安装测角仪,测得树顶A 的仰角为β;③用皮尺测出测角仪的高度为h .(3)计算:如图,设AH=x 米, 在Rt △AC 1H 中,HC AH tan 1=α,即C 1H=αtan x , 同理可得D 1H=βtan x , 因为C 1D 1=C 1H-D 1H ,即αtan x -βtan x =a ,解得αββαtan tan tan tan -⋅⋅=a x . 所以树的高度AB=AH+BH= h a +-⋅⋅αββαtan tan tan tan评注:本题考查了数学知识的实际应用,关键是如何将实际问题与数学问题联系起来.本题方法多样,只要符合要求,能够操作即可.跟踪训练:6.如图,河边有一条笔直的公路l,公路两侧是平坦的草地.在数学活动课上,老师要求测量河对岸B点到公路的距离,请你设计一个测量方案.要求:(1)列出你测量所使用的测量工具;(2)画出测量的示意图,写出测量的步骤;(3)用字母表示测得的数据,求出B点到公路的距离.参考答案:公路l1.B2.解:(1)30(5﹣x)280(5﹣x)(2)根据题意,得400x+280(5﹣x)≤1900,解得x≤4,所以x的最大值为4.(3)根据题意列不等式得45x+30(5﹣x)≥195,解得x≥3,由(2)可知,x≤4,所以x可能取值为3、4.即租车方案共有两种,方案一:A车3辆,B车2辆;方案二:A车4辆,B车1辆.3.解:(1)设一台A型换气扇x元,一台B型换气扇的售价为y元,根据题意,得,解得,答:一台A型换气扇50元,一台B型换气扇的售价为75元.(2)设购进A型换气扇z台,总费用为w元,则有z≤3(40﹣z),解得z≤30,因为z为换气扇的台数,所以z≤30且z为正整数.所以w=50z+75(40﹣z)=﹣25z+3000,根据一次函数性质可知,w随着z的增大而减小,所以当z=30时,w最大=25×30+3000=2250,此时40﹣z=40﹣30=10,答:最省钱的方案是购进30台A型换气扇,10台B型换气扇.4.C5.分割后的图形如下:上面四种情况下最小的等腰直角三角形的面积依次是是2cm 2 、2cm 2、2 cm 2、、1cm 2.6.解:(1)测角器、卷尺;(2)测量示意图如图;测量步骤:①在公路上取两点C ,D ,使∠BCD ,∠BDC 为锐角;②用测角器测出∠BCD =∠α,∠BDC=∠β;③用卷尺测得CD 的长,记为m 米;④计算求值.(3)解:设B 到CD 的距离为x 米,作BA ⊥CD 于点A ,在△CAB 中,tan x CA α=,在△DAB 中,tan x AD β=, tan tan x x CA AD αβ∴==,,CA AD m += ,tan tan x x m αβ∴+=,tan tan tan tan x m αβαβ∴=+··.。