传热系数计算公式.doc
传热系数计算的公式

传热系数计算的公式传热系数是描述热量传递效果的一个重要参数,它反映了物体对热量传递的阻碍程度。
在热传导、对流和辐射等传热过程中,传热系数起着至关重要的作用。
热传导是物体内部分子之间的热量传递。
传热系数是描述热传导的重要参数之一。
热传导过程中,传热系数与物体的导热性能有关,导热性能越好,传热系数越大。
对于均匀材料,传热系数可以用Fourier定律来表示。
Fourier定律指出,单位时间内通过单位面积的热量传递量与温度梯度成正比,比例系数就是传热系数。
传热系数的单位是W/(m·K)。
对流是物体表面与流体之间的热量传递。
传热系数是描述对流的重要参数之一。
对流传热过程中,传热系数与流体的传热特性有关,流体传热特性越好,传热系数越大。
对于定常状态下的对流传热,传热系数可以用牛顿冷却定律来表示。
牛顿冷却定律指出,单位时间内通过单位面积的热量传递量与温度差成正比,比例系数就是传热系数。
传热系数的单位是W/(m²·K)。
辐射是物体表面通过电磁辐射的方式传递热量。
传热系数是描述辐射的重要参数之一。
辐射传热过程中,传热系数与物体表面的辐射特性有关,表面辐射特性越好,传热系数越大。
对于黑体辐射,传热系数可以用斯特藩-玻尔兹曼定律来表示。
斯特藩-玻尔兹曼定律指出,单位时间内通过单位面积的热量传递量与温度的四次方成正比,比例系数就是传热系数。
传热系数的单位是W/(m²·K⁴)。
传热系数的计算方法因传热方式而异。
对于热传导,可以通过测量传热速率和温度梯度来计算传热系数。
对于对流和辐射,可以通过实验方法或理论模型来计算传热系数。
对流传热系数的计算需要考虑流体的性质、流速和流动形式等因素;辐射传热系数的计算需要考虑物体表面的辐射特性和辐射介质的吸收、反射和透射等因素。
传热系数的准确计算对于热传递过程的分析和工程设计具有重要意义。
传热系数的大小直接影响热传递速率和能量转换效率。
在工程实践中,我们常常需要根据传热系数来选择合适的材料和优化热交换器的结构,以提高热传递效果。
传热系数k的计算公式

传热系数k的计算公式传热是物质内部或物质之间的热量传递过程,是热力学中的重要概念。
在工程领域中,传热是一个非常重要的问题,因为它涉及到许多工程应用,如热交换器、锅炉、冷却塔等。
传热系数k是一个重要的参数,它描述了热量在物质中的传递速率。
本文将介绍传热系数k的计算公式及其应用。
传热系数k的定义传热系数k是一个描述热量传递速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。
传热系数k的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。
传热系数k越大,热量传递速率越快。
传热系数k的计算公式传热系数k的计算公式是:k = Q/(A×ΔT)其中,Q表示单位时间内传递的热量,A表示传热面积,ΔT表示温度差。
传热系数k的计算公式可以用于各种传热过程的计算,如对流传热、辐射传热和传导传热。
对流传热的传热系数k计算公式对流传热是指热量通过流体的传递过程。
对流传热的传热系数k可以通过下面的公式计算:k = h×L其中,h表示对流传热系数,L表示传热长度。
对流传热系数h是一个描述流体内部传热速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。
对流传热系数h的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。
传热长度L是指热量传递的距离。
辐射传热的传热系数k计算公式辐射传热是指热量通过辐射的传递过程。
辐射传热的传热系数k可以通过下面的公式计算:k = εσ(T1+T2)(T1^2+T2^2)其中,ε表示辐射率,σ表示斯特藩-玻尔兹曼常数,T1和T2分别表示两个物体的温度。
辐射率ε是一个描述物体辐射能力的参数,它表示单位时间内单位面积上的辐射能量与温度差之比。
斯特藩-玻尔兹曼常数σ是一个物理常数,它表示单位时间内单位面积上的辐射能量与温度差的四次方之比。
传导传热的传热系数k计算公式传导传热是指热量通过物质内部的传递过程。
传导传热的传热系数k可以通过下面的公式计算:k = λA/L其中,λ表示热导率,A表示传热面积,L表示传热长度。
总传热系数计算范文

总传热系数计算范文
对数平均温差法是一种基于热传导定律的方法,适用于许多传热装置。
该方法假定热量传导是均匀的,并且传热界面两侧温度的梯度是线性的。
对于热交换器,总传热系数可以使用下面的公式计算:
1/U=(1/h₁+δ₁/k₁+δ₂/k₂+1/h₂)
其中,U是总传热系数,h₁和h₂是导热界面两侧的对流换热系数,δ₁
和δ₂是导热界面两侧的对流膜层厚度,k₁和k₂是导热界面两侧的导热系数。
确定传热系数的方法是基于实验数据或理论计算。
实验方法包括传热
系数的测量和确定,包括测量两侧的温度和流体的流速,然后根据传热定
律求得传热系数。
理论方法则基于流体力学、传热学和边界层理论等原理,通过数学模型计算传热系数。
总传热系数的计算对于工程设计和设备优化非常重要。
通过合理选择
传热界面材料、优化流体流动、控制膜层厚度等措施,可以提高传热效果,减少能量损失。
此外,总传热系数还可以用于计算设备的传热效率和热量
损失,在工业生产中具有重要的经济和环境意义。
总的来说,总传热系数是热力学和传热学中的重要参数,用于描述传
热界面的传热效果。
计算总传热系数需要考虑导热界面的对流换热和传热
系数,可以通过实验和理论计算来确定。
通过合理选择材料和优化设计,
可以提高传热效果,减少能量损失。
总传热系数的研究对于工程设计和设
备优化具有重要意义。
幕墙中空玻璃传热系数计算方法

幕墙中空玻璃传热系数计算方法幕墙中空玻璃传热系数计算方法如下:1.公式P r=μc /λ式中μ——动态黏度,取1.761×10-5kg/(m•s);c——比热容,空气取1.008×103J/(kg•K)、氩气取0.519×103J/(kg•K);λ——导热系数,空气取2.496×10-2W/(m•K)、氩气取1.684×10-2W/(m•K)。
G r=9.81s 3ΔTρ2/Tmμ2式中 s——中空玻璃的气层厚度(m);ΔT ——外片玻璃表面温差,取15K;ρ——密度,空气取1.232kg/m3、氩气取1.669 kg/m3;T m——玻璃的平均温度,取283K;μ——动态黏度,空气取1.761×10-5kg/(m•s)、氩气取2.164×10-5kg/(m•s)。
N u= 0.035(G r Pr)0.38,如计算结果Nu,1,取Nu=1。
H g= N u λ/s W/(m2•K)H T =4ζ(1/ε1+1/ε2-1)-1×Tm 3式中ζ——常数,取5.67×10-8 W/(m2•K4);ε1 ——外片玻璃表面的校正辐射率;ε2 ——内片玻璃表面的校正辐射率;ε1、ε2取值:普通透明玻璃ην,15% 0.837 (GB/T2680表4) 真空磁控溅射镀膜玻璃ην?15% 0.45 (GB/T2680表4)ην,15% 0.70 (GB/T2680表4)LOW-E镀膜玻璃ην,15% 应由试验取得,如无试验资料时可取0.09~0.115。
h s = h g + h T1/h t=1/h s+δ/ r1式中δ——两片玻璃总厚度;r1——玻璃热阻,取1(m•K)/W。
1/U=1/h e +1/h i+1/h t式中 h e——玻璃外表面换热系数,取23(19)W/(m2•K);h i——玻璃内表面换热系数,取8(8.7)W/(m2•K)。
对流传热系数的计算公式

对流传热系数的计算公式
对流传热系数是热传导中的一种传热方式,常用于热交换器、冷却塔、加热器等传热设备的设计与计算中。
对于流体在壁面上的流动,其对流传热系数与流速、温度、粘度等变量密切相关。
在实际应用中,针对不同的流体与流动状态,可采用不同的计算公式。
下面列举几种常用的对流传热系数计算公式:
1. 自然对流传热系数公式:
h = 1.13 * (gβΔT)^1/4
其中,h为对流传热系数,g为重力加速度,β为热膨胀系数,ΔT为壁面温度与流体温度的差值。
2. 强制对流传热系数公式:
Nu = CRe^mPr^n
其中,Nu为努塞尔数,Re为雷诺数,Pr为普朗特数,C、m、n 为经验系数。
3. 线性对流传热系数公式:
h = kΔT
其中,k为比例常数,ΔT为温度差值。
需要注意的是,以上公式仅适用于理想条件下的流动状态,而实际应用中因存在多种不确定因素,其计算结果仅供参考,具体设计与计算仍需进行实际测试与验证。
- 1 -。
传热-传热系数

(3)若为金属薄管,清洁流体
111
重点
K o i
计算
A、管内、外对流传热系数分别为50W/(m2.K) 、1000W/(m2.K) 忽略管壁热阻和污垢热阻,计算总传热系数。 47.6 B、管内、外对流传热系数分别为100W/(m2.K) 、1000W/(m2.K) 忽略管壁热阻和污垢热阻,计算总传热系数。 90.9 C、管内、外对流传热系数分别为50W/(m2.K) 、2000W/(m2.K) 忽略管壁热阻和污垢热阻,计算总传热系数。 48.8
式中,K — 总传热系数,W/(m2·K)
注意: K 与 A 对应,选Ai、Am 或 A0
工程上习惯以管外表面积作为计算的传热面积,即取 A = A0
1 1 1 KodAo 0dA0 dAm idAi
同乘 dAo
1 1 do do K0 0 dm idi
4、污垢热阻
实际计算热阻应包括壁两侧污垢热阻:
六、工业热源与冷源
1)工业上传热过程有3种情况 1、一种工艺流体被加热或沸腾,另一侧使用外来
工业热源,热源温度应高于工艺流体出口温度 2、一种工艺流体被冷却或者冷凝,另一侧使用外
来工业冷源,冷源温度低于工艺流体的出口温度 3、需要冷却的高温工艺流体同需要加热的低温工
艺流体之间进行换热,节约外来热源与冷源降低 成本。
6、 壁温计算
管壁较薄,忽略其热阻,稳态传热:
q T tw
1
o
Rso
tw t
1
i
Rsi
结论:壁温接近对流传热系数大的一侧流体温度
五、计算示例与分析
例 4-12(设计型计算) 例 4-13 (操作型计算,试差) 例 4-14 (操作型计算)
例 4-12
传热系数计算

换热器的传热系数K(精编文档).doc

【最新整理,下载后即可编辑】介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。
水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003实际运行还少有保守。
有余量约10%冷流体热流体总传热系数K,W/(m2.℃)水水 850~1700水气体 17~280水有机溶剂 280~850水轻油 340~910水重油60~280有机溶剂有机溶剂115~340水水蒸气冷凝1420~4250气体水蒸气冷凝30~300水低沸点烃类冷凝 455~1140水沸腾水蒸气冷凝2000~4250轻油沸腾水蒸气冷凝455~1020不同的流速、粘度和成垢物质会有不同的传热系数。
K值通常在800~2200W/m2·℃范围内。
列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。
螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。
板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。
1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/λ
式中:δ—材料层厚度(m)
λ—材料导热系数[W/(m.k)]
多层结构热阻
R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)
λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻(m2.k/w)(一般取0.11) Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0—围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:
Km—外墙的平均传热系数[W/(m2.k)]
Kp—外墙主体部位传热系数[W/(m2.k)]
Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)]
Fp—外墙主体部位的面积
Fb1、Fb2、Fb3—外墙周边热桥部位的面积。