传热系数计算方法

合集下载

传热系数k的计算公式

传热系数k的计算公式

传热系数k的计算公式传热是物质内部或物质之间的热量传递过程,是热力学中的重要概念。

在工程领域中,传热是一个非常重要的问题,因为它涉及到许多工程应用,如热交换器、锅炉、冷却塔等。

传热系数k是一个重要的参数,它描述了热量在物质中的传递速率。

本文将介绍传热系数k的计算公式及其应用。

传热系数k的定义传热系数k是一个描述热量传递速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。

传热系数k的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。

传热系数k越大,热量传递速率越快。

传热系数k的计算公式传热系数k的计算公式是:k = Q/(A×ΔT)其中,Q表示单位时间内传递的热量,A表示传热面积,ΔT表示温度差。

传热系数k的计算公式可以用于各种传热过程的计算,如对流传热、辐射传热和传导传热。

对流传热的传热系数k计算公式对流传热是指热量通过流体的传递过程。

对流传热的传热系数k可以通过下面的公式计算:k = h×L其中,h表示对流传热系数,L表示传热长度。

对流传热系数h是一个描述流体内部传热速率的参数,它表示单位时间内单位面积上的热量传递量与温度差之比。

对流传热系数h的单位是W/(m2·K),其中W表示热量,m2表示面积,K表示温度。

传热长度L是指热量传递的距离。

辐射传热的传热系数k计算公式辐射传热是指热量通过辐射的传递过程。

辐射传热的传热系数k可以通过下面的公式计算:k = εσ(T1+T2)(T1^2+T2^2)其中,ε表示辐射率,σ表示斯特藩-玻尔兹曼常数,T1和T2分别表示两个物体的温度。

辐射率ε是一个描述物体辐射能力的参数,它表示单位时间内单位面积上的辐射能量与温度差之比。

斯特藩-玻尔兹曼常数σ是一个物理常数,它表示单位时间内单位面积上的辐射能量与温度差的四次方之比。

传导传热的传热系数k计算公式传导传热是指热量通过物质内部的传递过程。

传导传热的传热系数k可以通过下面的公式计算:k = λA/L其中,λ表示热导率,A表示传热面积,L表示传热长度。

传热系数计算公式.doc

传热系数计算公式.doc

一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/λ
式中:δ—材料层厚度(m)
λ—材料导热系数[W/(m.k)]
多层结构热阻
R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)
λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻(m2.k/w)(一般取0.11) Re—外表面换热阻(m2.k/w)(一般取0.04) R —围护结构热阻(m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0—围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:
Km—外墙的平均传热系数[W/(m2.k)]
Kp—外墙主体部位传热系数[W/(m2.k)]
Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)]
Fp—外墙主体部位的面积
Fb1、Fb2、Fb3—外墙周边热桥部位的面积。

热工计算公式及参数

热工计算公式及参数

热工计算公式及参数热工计算是指通过一系列公式和参数来计算热量、功率、效率等热力学参数的过程。

热工计算在工程设计、能源管理和热力学研究等领域起着重要的作用。

本文将介绍一些常用的热工计算公式和参数。

1.热功率计算公式:热功率(Q)是表示单位时间内传输的热量的物理量。

常用的热功率计算公式如下:Q=m×c×ΔT其中,Q表示热功率,m表示物体的质量,c表示物体的比热容,ΔT表示物体的温度变化。

2.传热系数计算公式:传热系数(k)是表示单位时间内在单位面积上传输的热量的物理量。

常用的传热系数计算公式如下:k=Q/(A×ΔT)其中,k表示传热系数,Q表示传输的热量,A表示传热面积,ΔT表示温度差。

3.热效率计算公式:热效率(η)是指燃烧设备、热交换设备或热动力系统中实际产生的热量与理论上可能产生的最大热量之比。

常用的热效率计算公式如下:η=(实际产生的热量/理论可能产生的最大热量)×100%4.压力与体积关系公式:热工系统中的工质一般按照多种状态方程进行描述,其中最常用的是理想气体状态方程:PV=nRT其中,P表示压力,V表示体积,n表示物质的摩尔数,R表示气体常数,T表示温度。

5.比容与温度关系公式:比容(v)是指单位质量的物质占据的体积。

对于理想气体,比容与温度的关系可以用热力学公式来表示:v=(R×T)/P其中,v表示比容,R表示气体常数,T表示温度,P表示压力。

6.热辐射传热计算公式:热辐射传热是指两个物体之间通过热辐射方式传输热量的过程。

常用的热辐射传热计算公式如下:Q=ε×σ×A×(T1^4-T2^4)其中,Q表示传输的热量,ε表示发射率,σ表示热辐射常数,A表示辐射面积,T1和T2分别表示两个物体的温度。

7.热导率计算公式:热导率(λ)是指单位时间内通过单位厚度、单位面积的热流量。

常用的热导率计算公式如下:λ=(Q×L)/(A×ΔT)其中,λ表示热导率,Q表示传输的热量,L表示传热路径的长度,A表示传热的面积,ΔT表示温度差。

传热系数计算

传热系数计算
传热系数K是评价材料传热性能的重要指标,其经验计算采用公式K=1/(1/αn+1/以及修正系数等因素。通过将这些参数代入公式,可以求得材料的传热系数K值。本文详细列出了不同类型墙体的材料名称、厚度、导热系数和修正系数等关键数据,这些数据是进行传热系数计算的基础。同时,本文还提供了具体的计算示例,以帮助读者更好地理解和掌握传热系数的计算方法。通过本文的介绍,读者可以了解到传热系数K的计算方法、相关参数的含义以及如何进行实际的计算操作。

传热系数计算公式

传热系数计算公式

传热系数计算公式传热系数(heat transfer coefficient)是指单位时间内通过单位面积的热量传递量与传热温差之比,它是描述传热性能的一个重要参数。

传热系数的计算公式根据传热模式的不同而有所区别,下面将介绍几种常见的传热模式以及相应的传热系数计算公式。

1.对流传热:对流传热是指流体与固体界面之间的热量传递。

对流传热系数的计算公式常用的有:- 强制对流 (forced convection):强制对流是指通过外部力量将流体强制对流,比如流体在管内流动、气体通过风扇增加流动速度等。

强制对流传热系数可由下式表示:h=Nu×k/d其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,d表示流体流动路径的特征长度。

- 自然对流 (natural convection):自然对流是指无外部力量参与的情况下,流体的密度梯度引起流动。

对于自然对流,传热系数的计算公式可由下式表示:h=Nu×k/L其中,h表示传热系数,Nu表示Nusselt数,k表示流体的热传导率,L表示体积的特征长度。

这里的Nu值可以通过实验或者经验关联公式来计算。

2. 导热传热(conduction heat transfer):导热传热是指通过固体内部的分子热传导完成的热量传递。

在导热传热中,传热系数可以通过傅里叶热传导定律来计算:q=-k×A×∇T/d其中,q表示单位时间内通过单位面积的热量传递量,k表示固体的热传导率,A表示传热面积,∇T表示温度梯度,d表示固体的厚度。

3. 辐射传热(radiation heat transfer):辐射传热是指通过电磁波辐射完成的热量传递。

辐射传热系数的计算公式比较复杂,其中一个常用的经验公式是斯特藩-玻尔兹曼定律:q=ε×σ×A×(T1^4-T2^4)其中,q表示单位时间内通过单位面积的热量传递量,ε表示物体的辐射率,σ为斯特藩-玻尔兹曼常数(约为 5.67×10^-8W/(m^2·K^4)),A表示传热面积,T1和T2分别表示物体的温度。

常见墙壁传热系数计算值

常见墙壁传热系数计算值

常见墙壁传热系数计算值本文将介绍常见墙壁传热系数的计算方法。

传热系数是描述材料导热性能的重要参数,对于建筑中墙壁的隔热设计至关重要。

常见墙壁结构常见的墙壁结构包括砖墙、混凝土墙、外墙保温系统等。

不同结构的墙壁由于材料的不同,其传热系数也会有所差异。

传热系数计算方法墙壁的传热系数可以通过以下公式计算:\[U = \frac{1}{R}\]其中,\(U\) 是传热系数,\(R\) 是热阻。

对于不同的墙壁结构,热阻可以通过以下公式计算:1. 对于砖墙:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} + \frac{1}{h_2} \]其中,\(h_1\) 是室内换热系数,\(t_1\) 是砖墙厚度,\(\lambda_1\) 是砖的热导率,\(h_2\) 是室外换热系数。

2. 对于混凝土墙:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} +\frac{t_2}{\lambda_2} + \frac{1}{h_2}\]其中,\(h_1\) 是室内换热系数,\(t_1\) 是混凝土墙厚度,\(\lambda_1\) 是混凝土的热导率,\(t_2\) 是保温层厚度,\(\lambda_2\) 是保温材料的热导率,\(h_2\) 是室外换热系数。

3. 对于外墙保温系统:\[R = \frac{1}{h_1} + \frac{t_1}{\lambda_1} +\frac{t_2}{\lambda_2} + \frac{t_3}{\lambda_3} + \frac{1}{h_2} \]其中,\(h_1\) 是室内换热系数,\(t_1\) 是保温层厚度,\(\lambda_1\) 是保温材料的热导率,\(t_2\) 是保护层厚度,\(\lambda_2\) 是保护材料的热导率,\(t_3\) 是外墙厚度,\(\lambda_3\) 是外墙材料的热导率,\(h_2\) 是室外换热系数。

传热系数K值计算

传热系数K值计算

传热系数K值计算传热系数(K值)是描述物体传热性能的一个参数,表示单位时间内单位面积上的热量传递量与温度差之间的比值。

在工程和科学研究中,计算传热系数是非常重要的。

本文将介绍传热系数(K值)的计算方法及其应用。

传热系数的计算方法通常有实验方法和理论方法。

实验方法是通过实验测量得到传热系数,常用的实验方法包括热平衡法、加热丝法、测定空气对流传热系数的干球温度法等。

热平衡法是一种常用的实验方法,该方法通过在被测物体表面加热,测量加热后物体表面的温度变化来计算传热系数。

具体步骤如下:1.在被测物体的表面用加热器加热,并测量加热器表面的温度变化;2.同时,在被测物体的表面用温度计测量温度变化;3.通过测量数据计算传热系数。

理论方法是通过数学模型来计算传热系数。

常用的理论方法包括对流传热模型、传热方程等。

对于常见的传热问题,可以使用理论模型来计算传热系数。

对于对流传热问题,可以使用对流传热模型来计算传热系数。

对流传热系数与流体的性质(如动力粘度、密度等)相关,一般通过测量流体的性质以及流体流动速度、温度等来计算对流传热系数。

传热系数的计算还与传热方式有关,常见的传热方式包括导热、对流传热和辐射传热。

导热系数是描述固体导热性能的参数,可以通过实验测量得到。

对流传热系数是描述流体流动过程中热量传递性能的参数,可以通过实验或理论模型计算得到。

辐射传热系数是描述热辐射传导过程中热量传递性能的参数,可以通过实验测量得到。

传热系数的计算还与被测物体的形状和表面状态有关。

通常情况下,平整的表面上的传热系数比粗糙表面上的传热系数要大,这是因为平整表面上的气体流动速度较大。

在实际工程中,传热系数的计算是非常重要的。

正确认识和计算传热系数对于工程设计和优化具有重要的意义。

基于传热系数的计算结果,可以进行材料的选择和设计优化。

比如,在建筑设计中,正确计算建筑外墙的传热系数有助于提高建筑的节能性能;在化工过程设计中,合理确定传热系数能够优化设备的传热效果。

传热系数计算

传热系数计算

传热系数计算散热器是一种热交换器,其热工计算的基本公式为传热方程式,其表达式为:Ф=KAΔt m(6-1)Ф为传热量单位:WK为传热系数单位:W/(m2·℃)A 为传热面积单位:㎡Δt m为冷热流体间的对数平均温差单位:℃从《车辆冷却传热》[4]上可知,以散热器空气侧表面为计算基础,散热器传热系数计算公式为:K=(β/h1+(β×λ管) +(1/η0×h2)+ R f)-1(6-2)式中:β为肋化系数,其等于空气侧所有表面积之和/水侧换热面积h1为水侧表面传热系数单位:W/(m2·℃)h2为空气侧表面传热系数单位:W/(m2·℃)λ管为散热管材料导热系数单位:W/(m2·℃)R f为散热器水侧和空气侧的总热阻单位:(m2·℃)/Wη0为肋壁总效率,其表达式为:η0=1-(×(1-ηf))/A2(6-3)A22为空气侧二次换热面积,单位:㎡A2 为空气侧所有表面积之和,单位:㎡ηf为肋片效率ηf=th(m×h f)/ (m×h f)(6-4)th为双曲线函数h f为散热带的特性尺寸,即散热管一侧的肋片高度m为散热带参数,表达式为:m=((2×h2)/(δ2×λ2))0.5 (6-5)h2为空气侧传热系数单位:W/(m2·℃)δ2为散热带壁厚单位:mλ2为散热带材料导热系数单位:W/(m2·℃)从《传热学》上可知,表面传热系数h的公式为:h= Nu×/de 单位:W/(m2·℃) (6-6)λ为流体的热导率,对散热器,即为空气热导率de为换热面的特性尺度,对散热器,求气侧换热系数时,因空气外掠散热管,故特性尺度为散热管外壁的当量直径, 单位m由《传热学》[2]中外掠管束换热实验知,流体横掠管束时,对其第一排管子来说,换热情况与横掠但管相仿。

Nu m=C×Re (6-7) 式中C、为常数,数值见《传热学》[3]表5.2Re=Va×de/νa (6-8)Va 为空气流速单位m/sνa为空气运动粘度单位m2/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
炉内受热面的结构尺寸, 如鳍片的净宽度、 厚度等, 对平均换热系数的影响也是非常明显 的。 鳍片宽度对物料颗粒的团聚产生影响; 另一方面, 宽度与扩展受热面的利用系数有关。根
据实验研究,可以归纳出循环流化床锅炉燃烧室受热面传热系数的计算方法。
CFB锅炉炉膛受热面的吸热量按下式计算:
(4-1)式中Q――传热量,W;
Ht――烟气侧总面积,
Hf——工质侧总面积,m2;
as――附加热阻,m2K/W;
1——管子厚度,m;
受热面金属导热系数,W/m2K;
b[P(1)1]1
式中P――鳍片面积系数,P旦如
Ht
Ht——受热面外部面积,m2o
式中
pHfm
Hts1
s, d管子节距、外径,
鳍片利用系数,
th( h)h
与受热面受热情况、
g1 exp kgSg
烟气辐射减弱系数k可按下式简单计算:
kg
0.55 2rH2o
0.1 1
(4-25)
式中,rH2o——烟气中水蒸气份额;
r——烟气中三原子气体份额;
sg――烟气辐射厚度,近似为下降流厚度,
对流换热ቤተ መጻሕፍቲ ባይዱ数由烟气对流和颗粒对流两部分组成,即
(4-26)
C――烟气对流换热系数,W/m2K,计算见式(4-27);
则由内循环流率决定, 它沿炉膛高度是逐渐变化的,底部高、 上部低。近壁区贴壁下降流的温 度比中心区温度低的趋势, 使边壁下降流减少了辐射换热系数; 水平截面方向上的横向搅混形 成良好的近壁区物料与中心区物料的质交换, 同时近壁区与中心区的对流和辐射的热交换使截 面方向的温度趋于一致, 综合作用的结果近壁区物料向壁面的辐射加强, 总辐射换热系数明显 提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓 度Cp对辐射传热和对流传热都有显着影响。燃烧室的平均温度是床对受热面换热系数的另一 个重要影响因素。 床温的升高增加了烟气辐射换热并提高烟气的导热系数。 虽然粒径的减小会 提高颗粒对受热面的对流换热系数, 在循环流化床锅炉条件下, 燃烧室内部的物料颗粒粒径变 化较小,在较小范围内的粒径变化时换热系数的变化不大, 在进行满负荷传热计算时可以忽略, 但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。
第四章 循环流化床锅炉炉内传热计算
循环流化床锅炉炉膛中的传热是一个复杂的过程, 传热系数的计算精度直接影响了受热面 设计时的布置数量, 从而影响锅炉的实际出力、 蒸汽参数和燃烧温度。 正确计算燃烧室受热面 传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。
随着循环流化床燃烧技术的日益成熟, 有关循环流化床锅炉的炉膛传热计算思想和方法的 研究也在迅速发展。许多着名的循环流化床制造公司和研究部门在此方面也做了大量的工作, 有的已经形成商业化产品使用的设计导则。
炉膛烟气物料两相混合物向壁面的换热包括对流和辐射两部分,
(4-15)
fw――水冷壁管壁温度,按式(4-17)计算:
水冷壁管壁内外侧温差
在气固两相中,烟气侧黑度包括颗粒黑度和烟气黑度两部分:
P g pg b
P
s
(1sP)B
物料表面平均黑度,与固体颗粒的浓度有关,可表示为
s1 exp CCpB
Cp――物料空间浓度,kg/m3。
清华的传热理论及计算方法
循环流化床传热分析
CFB锅炉与煤粉锅炉的显着不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度Cp大
大高于煤粉炉, 而且炉内各处的浓度也不一样, 它对炉内传热起着重要作用。 为此首先需要计 算出炉膛出口处的物料浓度Cp,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度
K——基于烟气侧总面积的传热系数,W/m2K;
T――温差,K;
H――烟气侧总面积,m2o
受热面结构尺寸对传热的影响
传热系数K按式(4-2)计算,其中分母包括四部分热阻:烟气侧热阻
1H
热面本身热阻;」;以及附加热阻
fHf
1
as
(4-2)
式中b――烟气侧向壁面总表面的名义换热系数,W/m2K;
f——工质侧换热系数,W/m2K,可按苏1973年热力计算标准求取;
关,可表示为
(4-6)
(4-4)
(21)d
m,见图4-1。
(4-5)
膜式壁鳍片结构尺寸和材料等有
) (1s b)
JNb(h
■J:::边壁流-
式中N受热情况,单面受热N=1,双面受热N=2;
鳍片厚度,m;
s――受热面污染系数,取为;
h'—^折算高度,m:
(4-8)
h”一-效高度,m:
(4-9)
根据实验和运行数据,可得到鳍片宽度系数与结构尺寸的关系:
但由于技术保密的原因, 目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉
膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。
清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大 学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导, 考虑工程上的方便和可行, 本章根椐清华大学提出的方法, 进一步分析整理, 作为我们研究的 基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大 学和华中理工大学的传热计算与巴苏的相近似。
2
ss
0.1659—+0.3032—+0.8608
dd
a——烟气侧换热系数,见式(4-15):
as――附加热阻,在计算耐火材料涂层受热面时考虑:
a a
a——受热面耐火层厚度,m;
Ta(TbTw)/2
式中fb烟气侧温度,K;
受热面外内面积比为
(2 )11
d21
式中1管壁厚度,m;
s管节距,m ;
CFB锅炉烟气侧换热系数b
p――颗粒对流换热系数,计算见式(4-28)。
gegVf07
相关文档
最新文档