传热系数计算案例
传热计算习题附详细答案

传热计算题1.在一内径为0.25cm的管轴心位置上,穿一直径为 0.005cm的细导线,用以测定气体的导热系数。
当导线以0.5A 的电流时,产生的电压降为0.12V/cm,测得导线温度为167℃,空心管内壁温度为150℃。
试求充入管内的气体的导热系数试分析仪器精度以外造成结果误差的客观原因。
2.有两个铜质薄球壳,内球壳外径为0。
015m,外球壳内径为 0.1m,两球壳间装入一种其导热系数待测的粉粒料。
内球用电加热,输入功率为 50w,热量稳定地传向外球,然后散发到周围大气中。
两球壁上都装有热电偶,侧得内球壳的平均温度为120℃,外求壳的平均温度为50℃,周围大气环境温度为20℃;设粉粒料与球壁贴合,试求:(1)待测材料的导热系数(2)外球壁对周围大气的传热系数3.有一面积为10cm2带有保护套的热电偶插入一输送空气的长管内,用来测量空气的温度。
已知热电偶的温度读数为300℃,输气管的壁温为 200℃,空气对保护套的对流传热系数为60w/m2.k,该保护套的黑度为 0.8,试估算由于辐射造成的气体温度测量误差。
并叙述减小测量误差的途径。
已知 Stefan-Bohzman常数σ=5.67×10-9w/m2k 。
4.用两个结构尺寸相同的列管换热器按并联方式加热某中料液。
换热器的管束由32根长 3m 的Ф25×3mm 的钢管组成。
壳程为120℃的饱和蒸汽。
料液总流量为20m3/h,按相等流量分配到两个换热器中作湍流流动,由 25℃加热到 80℃。
蒸汽冷凝对流传热系数为8Kw/m2.℃,管壁及污垢热阻可不记,热损失为零,料液比热为 4.1KJ/kg.℃,密度为 1000kg/m3。
试求:(1)管壁对料液的对流传热系数(2)料液总流量不变,将两个换热器串联,料液加热程度有何变化?(3)此时蒸汽用量有无变化?若有变化为原来的多少倍?(两者情况下蒸汽侧对流传热系数和料液物性不变)5.某厂现有两台单壳程单管程的列管式空气加热器,每台传热面积为A0=20m2(管外面积),均由128根Ф25×2.5mm的钢管组成。
传热系数计算

(整理)管道总传热系数计算

1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i ne n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。
为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。
(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。
在层流状态(Re<2000),当Pr 500Gr <时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈的紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次;——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16W/(m ·K)间,随温度变化的关系可用下式表示:(1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。
传热系数计算方法

循环流化床锅炉炉内传热计算循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。
正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。
随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。
许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。
但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。
清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。
根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。
为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。
清华的传热理论及计算方法循环流化床传热分析CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。
为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。
而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。
近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。
在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。
传热计算题

传热计算题导热系数的测定1.在一内径为0.25cm 的管轴心位置上,穿一直径为 0.005cm 的细导线 ,用以测定气体的导热系数。
当导线以0.5A 的电流时,产生的电压降为0.12V/cm ,测得导线温度为167℃,空心管内壁温度为150℃。
试求充入管内的气体的导热系数试分析仪器精度以外造成结果误差的客观原因。
(浙大95/10) 解:2.有两个铜质薄球壳,内球壳外径为0。
015m ,外球壳内径为 0.1m ,两球壳间装入一种其导热系数待测的粉粒料。
内球用电加热,输入功率为 50w ,热量稳定地传向外球,然后 散发到周围大气中。
两球壁上都装有热电偶,侧得内球壳的平均温度为120℃,外求壳的平均温度为50℃,周围大气环境温度为20℃;设粉粒料与球壁贴合,试求: (1)待测材料的导热系数(2)外球壁对周围大气的传热系数(石油98/17) 解:球体辐射3.有一面积为10cm 2带有保护套的热电偶插入一输送空气的长管内,用来测量空气的温度。
已知热电偶的温度读数为300℃,输气管的壁温为 200℃,空气对保护套的对流传热系数为60w/m 2.k ,该保护套的黑度为 0.8,试估算由于辐射造成的气体温度测量误差。
并叙述减小)/(04.015016710)0025.0125.0(.1012.05.0)(197.0)0025.0/125.0ln(0025.0125.014.32)/ln(221)/(222121212C m w cm r r r r LLr S cmL IVS b t t Q m m m ︒=-⨯-⨯⨯⨯==-⨯=-====-=-λππλ))50120(0075.005.014.34)0075.005.0(50)(4)(4)1(122112211221=-⨯⨯⨯⨯-⨯=--=--=t t r r r r Q r rr r r t t Q πλλπ)/(1.53)2050(05.014.3450)()()2()/(44.62222C m w t t S Q St t Q C m w b b ︒=-⨯⨯⨯=-=-=︒=αα测量误差的途径。
传热系数计算

传热系数计算散热器是一种热交换器,其热工计算的基本公式为传热方程式,其表达式为:Ф=KAΔt m(6-1)Ф为传热量单位:WK为传热系数单位:W/(m2·℃)A 为传热面积单位:㎡Δt m为冷热流体间的对数平均温差单位:℃从《车辆冷却传热》[4]上可知,以散热器空气侧表面为计算基础,散热器传热系数计算公式为:K=(β/h1+(β×λ管) +(1/η0×h2)+ R f)-1(6-2)式中:β为肋化系数,其等于空气侧所有表面积之和/水侧换热面积h1为水侧表面传热系数单位:W/(m2·℃)h2为空气侧表面传热系数单位:W/(m2·℃)λ管为散热管材料导热系数单位:W/(m2·℃)R f为散热器水侧和空气侧的总热阻单位:(m2·℃)/Wη0为肋壁总效率,其表达式为:η0=1-(×(1-ηf))/A2(6-3)A22为空气侧二次换热面积,单位:㎡A2 为空气侧所有表面积之和,单位:㎡ηf为肋片效率ηf=th(m×h f)/ (m×h f)(6-4)th为双曲线函数h f为散热带的特性尺寸,即散热管一侧的肋片高度m为散热带参数,表达式为:m=((2×h2)/(δ2×λ2))0.5 (6-5)h2为空气侧传热系数单位:W/(m2·℃)δ2为散热带壁厚单位:mλ2为散热带材料导热系数单位:W/(m2·℃)从《传热学》上可知,表面传热系数h的公式为:h= Nu×/de 单位:W/(m2·℃) (6-6)λ为流体的热导率,对散热器,即为空气热导率de为换热面的特性尺度,对散热器,求气侧换热系数时,因空气外掠散热管,故特性尺度为散热管外壁的当量直径, 单位m由《传热学》[2]中外掠管束换热实验知,流体横掠管束时,对其第一排管子来说,换热情况与横掠但管相仿。
Nu m=C×Re (6-7) 式中C、为常数,数值见《传热学》[3]表5.2Re=Va×de/νa (6-8)Va 为空气流速单位m/sνa为空气运动粘度单位m2/s。
3传热过程计算(1)

q m 2 c p 2 5 0 0 0 4 1 7 0
T 1 T 2 8 0 T 2
q m 1 c p 1 3 8 0 0 2 4 5 0 t ' 2 t 1 t ' 2 2 0
q ' m 2 /q m 2q m 2 c p 2 q ' m 2 /q m 2 5 0 0 0 4 1 7 0T 1 T ' 28 0 3 6
第十五页,编辑于星期四:十六点 五分。
新工况
T'2=36℃
冷却水t1=20℃,q'm2=?
有机溶液T1=80℃
t'2=?℃
(新工况)欲通过提高冷却水流量的方法使有机溶液出口温度降 至36℃,试求冷却水流量应达到多少?(设冷却水对流传热系数与其
流量的0.8次方成正比)
第十六页,编辑于星期四:十六点 五分。
twt1 50 30 00 70 4A A 1 12261 50 30 00 70 4231.3 ℃
第四页,编辑于星期四:十六点 五分。
讨论:本例中,换热器一侧是水与管壁的沸腾传热,另一侧是气体 的 无 相 变 对 流 传 热 , 两 过 程 的 传 热 系 数 相 差 很 大 ( 分 别 为 10000 W/(m2K)、230 W/(m2K)),换热器的总传热系数(178.7 W/(m2K) )接近于气体的对流传热系数。即两侧对流传热系数相差较大 时,总传热系数接近小的对流传热系数,或着说传热总热阻主 要取决于大的热阻。
例:生产中用一换热管规格为252.5mm(钢管)的列管换热器回 收裂解气的余热。用于回收余热的介质水在管外达到沸腾,其传热
系数为10000 W/(m2K)。该侧压力为2500kPa(表压)。管内走 裂 解 气 , 其 温 度 由 580℃ 下 降 至 472℃ , 该 侧 的 对 流 传 热 系 数 为 230W/(m2K)。若忽略污垢热阻,试求换热管内、外表面的温度。
真空玻璃传热系数计算

一、真空玻璃热导和热阻及传热系数的简单计算方法1 •两平行表面之间的辐射热导可由下式估算C 辐射=£ 有效(T (T14-T24)/(T1-T2)(1)式中T1, T2是两表面的绝对温度,单位为K£有效是表面有效辐射率T是斯忒芬-波尔兹曼(Stefan-Boltzmann) 常数,其数值为5.67 x 10-8Wm-2K-4在两平行表面温差不大(如数十度)的条件下,可用下面公式(2)计算,误差在百分之一以内。
C辐射=4£有效T T3 (2)T是两表面的平均绝对温度。
(1)和(2)式中£有效为有效辐射率,由下式(3)计算:£ 有效=(£ 1-1+ £ 2-1-1)-1 ⑶式中£ 1是表面1的半球辐射率。
£ 2是表面2的半球辐射率。
计算例:真空玻璃的一片玻璃是4mmLow-玻璃,辐射率为0.10,另一片是4mm普通白玻,辐射率为0.84,则可算出£ 有效=(10+1.19-1)-1=0.098按我国测试标准,室内侧温度:T仁18+273=291K室外侧温度:T2=-20+273=253K平均温度:T=272K公式⑵ 可简化为C辐射=4.564 £有效据此可算出C辐射=0.447Wm-2K-1R辐射=1/C 辐射=2.237W-1m2K2 •圆柱支撑物热导可由公式(4)计算式中入玻为玻璃导热系数,约为0.76Wm-1K-1h为支撑物高度,单位为ma为支撑物半径,单位为mb为支撑物方阵间距,单位为m入支撑物为支撑物材料的导热系数,单位为Wm-1K-1目前国内外均选用不锈钢材料制作支撑物,使得入支撑物比入玻大20倍以上,支撑物高度h又比半径a小,故公式(4)可简化为计算例:当支撑物选用a=0.25mm,h=0.15mn方阵间距b=25mm贝U C支撑物=0.608Wm-2K-1我国新立基公司的专利采用环形(又称C形)支撑物,热导还可比上述计算值小10济20% 此例中C支撑物可按0.50Wm-2K-1计,贝U支撑物热阻正在研制的支撑物半径a=0.125mm贝U C支撑物将减小一倍,为0.25Wm-2K-13 •真空玻璃中的残余气体热导真空玻璃生产工艺要求产品经过350E以上高温烘烤排气,不仅把间隔内的空气(包括水气)排出,而且把吸附于玻璃内表面表层和深层的气体尽可能排出,使真空层气压达到低于10-1Pa(也就是百万分之一大气压)以下,这样残余气体传热才可以忽略不计。