第五章 测量误差的基本知识
合集下载
第五章 测量误差的基本知识

容 = 3m 有时对精度要求较严,也可采用容 = 2m作为容许误 差。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
第五章 测量误差的基本知识

2 ma
解:
α
D
+a
mS = ± 30 2 × 0.04 2 + 40 2 × 0.03 2
mS = ±1.7(m 2 )
1、求D 、 D=Lcos α = =165.50×cos15°30′ × ° =159.48m
2、求mD 、 (1)函数式 ) D=Lcosα (2)偏微分 )
中误差m ㎜,中误差 d=±0.2㎜,求实地距离 及其 ㎜ 求实地距离D及其 中误差。 中误差。 解: D=500d =
n-1 [ vv ] m=± n-1
例1:
l 1 2 3 4 5 85°42′49″ ° 85°42′40″ ° 85°42′42″ ° 85°42′46″ ° 85°42′48″ ° l0=85°42′40″ ° △l 9 0 2 6 8 25 v ﹣4 ﹢5 ﹢3 ﹣1 ﹣3 0 vv 16 25 9 1 9 60
V △l(㎜) (㎜) (㎜)
vv 4 25 256 441 9 121 856
m2 = n n
=
L = l0 +
[ vv ] 1 2 + m
∑∆ l 25" = 85°42' 40" + 5 5 =85°42′45″ °
二、求观测值的函数的中误差 S=ab (一)求偏微分 dS=b da+a db (二)以偶然误差代替微分元素
60 m=± 5 -1
m = ±3.9"
mD = 0.012 + 0.02 2 + 0.03 2
=±0.037(m) ± ( ) 六、线性函数的中误差 函数: 函数: z=k1x1+k2x2+…+knxn = + 偏微分: 偏微分: dz=k1 dx1+k2 dx2+…+kn dxn = + 中误差: 中误差:
第5章 误差基本知识

②仪器构造本身也有一定误差。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第5章 测量误差理论的基础知识

第五章 测量误差理论的基本知识
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
5.1 测量误差概述 5.2 衡量精度的指标 5.3 误差传播定律及其应用 5.4 等精度直接观测平差 5.5 不等精度观测的最或然值及其中误差
§5.1 测量误差概述
大量实践表明,当对某一未知量进行多次 观测时,无论观测仪器多么精密,观测进行得
多么仔细,观测值之间总是存在着差异。例如,
2 2 2 2 mZ A12 m12 A2 m2 An mn
§5.3.2 误差传播定律的应用
例1 量得某圆形建筑物得直径 D=34.50m, 其中误差mD 0.01m,
求建筑物得圆周长及其中误差。
解:圆周长:
P D 3.1416 34.50 108.38 中误差:
将以上各式两边平方、取平均,可得
Z 2 x12 x22 xn 2 n f2 f 2 ... f 2 xi x j 1 fi f j k 1 2 n k k k k i, j
i j
因 x 的观测值 l 彼此独立,则 xi x j 在 i j 时亦为偶 i i 然误差。根据偶然误差第4特性,上式末项当 k 时趋近于 零,故:
测量某一平面三角形的三个内角,其观测值之
和常常不等于理论值180°。这说明测量结果
不可避免地存在误差。
§5.1.1 测量误差的来源
测量工作是在一定条件下进行的,外界环境、观 测者的技术水平和仪器本身构造的不完善等原因,都 可能导致测量误差的产生。通常把测量仪器、观测者 的技术水平和外界环境三个方面综合起来,称为观测 条件。观测条件不理想和不断变化,是产生测量误差 的根本原因。通常把观测条件相同的各次观测,称为 等精度观测;观测条件不同的各次观测,称为不等精 度观测。
测量误差的基本知识

m乙 =
=
= 4.3
n
6
12
二、相对误差
l 绝对误差 :真误差、中误差 l 相对误差: 在某些测量工作中,绝对误差不能完全
反映出观测的质量。 相对误差K—— 等于误差的绝对值与相应观测值的
比值。常用分子为1的分式表示,即:
相对误差
=
误差的绝对值 观测值
=1 T
13
l 相对中误差:当误差的绝对值为中误差m 的绝对值时, K称为~,即 k=1/m 。
3
1.系统误差
l 系统误差:在相同的观测条件下,对某一未知量进行一系列 观测,若误差的大小和符号保持不变,或按照一定的规律变 化,这种误差称为~ 。
l 系统误差产生的原因 : 仪器工具上的某些缺陷;观测者的 某些习惯的影响;外界环境的影响。
l 系统误差的特点: 具有累积性
4
系统误差消减方法 ❖1、在观测方法和观测程序上采取一定的措施;
中误差、相对误差、极限误差和容许误差
10
一、中误差
在测量实践中观测次数不可能无限多,实际应用中,以 有限次观测个数n计算出标准差的估值定义为中误差m,作 为衡量精度的一种标准:
m = ±sˆ = ± [ ]
n
在测量工作中,普遍采用中误差来评定测量成果的精度。
11
l 有甲、乙两组各自用相同的条件观测了六个三角 形的内角,得三角形的闭合差(即三角形内角和 的真误差)分别为:
例:经纬仪的LL不垂直于VV对测角的影响
5
2.偶然误差 l 偶然误差:在相同的观测条件下,对某一未知量 进行一系列观测,如果观测误差的大小和符号没有 明显的规律性,即从表面上看,误差的大小和符号 均呈现偶然性,这种误差称为 ~。 l 产生偶然误差的原因: 主要是由于仪器或人的感 觉器官能力的限制,如观测者的估读误差、照准误 差等,以及环境中不能控制的因素(如不断变化着的 温度、风力等外界环境)所造成。
第五章 测量误差

(2)水准路线高差的中误差
如果在这段水准路线当中一共观测了n站,则总高 差为: 设每站的高差中误差均为m站 ,则 mh = 取3倍中误差为限差,则普通水准路线的容许误差为: m容= 3
2.水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘左 盘右观测同一方向的中误差为±6” ,即 =±6”。 假设盘左瞄准A点时读数为A左,盘右瞄准A时读数 为A右,那么瞄准A方向一个测回的平均读数应为
求真误差的方差: 由方差的性质可得:
中误差为标准差σ的估计值,而标准差的平方就等 于方差,故
二、线性函数
1、倍数函数 设有函数 Z=Kx 式中 x—直接观测值,其中误差为mx; K—常数 Z—观测值x的函数 若对x作n次同精度观测,其真误差列为 设对应的函数的真误差列为 。 观测值与函数间的真误差关系式为:
三、非线性函数 设有非线性函数 z=f(x1、x2、…、xn) 式中,x1、x2、…、xn为独立观测值,其相应的中
误差分别为m1、m2、…、mn,对其全微分得到
四、误差传播定律的应用 1.水准测量的误差分析
(1)一个测站的高差中误差 每站的高差为:h=a-b;a、b为水准仪在前后水准 尺上的读数,读数的中误差m读,m读≈±3mm,则 每个测站的高差中误差为
二、中误差(均方差)
1.测量工作中,用标准差来衡量观测的精度,我 们称之为中误差,用m表示。 设在相同的观测条件下,对未知量进行重复独立 观测,观测值为:l1,l2,…,ln,其真误差为Δ 1,
Δ 2,…,Δ n ,则真误差的方差
式中当n→∞,E(Δ ) = 0 ,根据数学期望的定义 E(Δ 2)就是Δ 2的算术平均值。
将上式平方,得 按上式求和,并除以n,得
《测量学》第05章 测量误差的基本知识

第五章 测量误差的基本知识
5.1 测量误差概述 5.2 衡量精度的标准 5.3 误差传播定律 5.4 算术平均值及其中误差 5.5 加权平均值及其中误差
5.1 测量误差概述
测量实践中可以发现, 测量实践中可以发现,测量结果 不可避免的存在误差 比如: 存在误差, 不可避免的存在误差,比如: 1.对同一量的多次观测值不相同; 对同一量的多次观测值不相同; 对同一量的多次观测值不相同 2.观测值与理论值存在差异。 观测值与理论值存在差异。 观测值与理论值存在差异
5.3 误差传播定律
阐述观测值中误差与观测值函数的中误 差之间关系的定律,称为误差传播定律 误差传播定律。 差之间关系的定律,称为误差传播定律。 一、观测值的函数 1.和差函数 2.倍函数 3.线性函数 4.-般函数
Z = x1 + x 2 + L + x n
Z = mx
Z = k1 x1 + k 2 x 2 + L + k n x n
mZ = ± (
∂f 2 2 ∂f ∂f 2 2 ) m1 + ( ) 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) 2 mn ∂x1 ∂x2 ∂xn
5.4 算术平均值及观测值的中误差
一、求最或是值
设在相同的观测条件下对未知量观测了n次 设在相同的观测条件下对未知量观测了 次 , 观测值为l 中误差为m 观测值为 1、l2……ln,中误差为 1、m2、…mn,则 其算术平均值(最或然值、似真值) 其算术平均值(最或然值、似真值)L 为:
二、研究测量误差的目的和意义
分析测量误差产生的原因及其性质。 分析测量误差产生的原因及其性质。 确定未知量的最可靠值及其精度。 确定未知量的最可靠值及其精度。 正确评价观测成果的精度。 正确评价观测成果的精度。
5.1 测量误差概述 5.2 衡量精度的标准 5.3 误差传播定律 5.4 算术平均值及其中误差 5.5 加权平均值及其中误差
5.1 测量误差概述
测量实践中可以发现, 测量实践中可以发现,测量结果 不可避免的存在误差 比如: 存在误差, 不可避免的存在误差,比如: 1.对同一量的多次观测值不相同; 对同一量的多次观测值不相同; 对同一量的多次观测值不相同 2.观测值与理论值存在差异。 观测值与理论值存在差异。 观测值与理论值存在差异
5.3 误差传播定律
阐述观测值中误差与观测值函数的中误 差之间关系的定律,称为误差传播定律 误差传播定律。 差之间关系的定律,称为误差传播定律。 一、观测值的函数 1.和差函数 2.倍函数 3.线性函数 4.-般函数
Z = x1 + x 2 + L + x n
Z = mx
Z = k1 x1 + k 2 x 2 + L + k n x n
mZ = ± (
∂f 2 2 ∂f ∂f 2 2 ) m1 + ( ) 2 m2 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +( ) 2 mn ∂x1 ∂x2 ∂xn
5.4 算术平均值及观测值的中误差
一、求最或是值
设在相同的观测条件下对未知量观测了n次 设在相同的观测条件下对未知量观测了 次 , 观测值为l 中误差为m 观测值为 1、l2……ln,中误差为 1、m2、…mn,则 其算术平均值(最或然值、似真值) 其算术平均值(最或然值、似真值)L 为:
二、研究测量误差的目的和意义
分析测量误差产生的原因及其性质。 分析测量误差产生的原因及其性质。 确定未知量的最可靠值及其精度。 确定未知量的最可靠值及其精度。 正确评价观测成果的精度。 正确评价观测成果的精度。
测量误差的基本知识

§5.5误差传播定律的应用
一、水准测量的误差分析
每站的高差为:h = a - b ;m读≈ ±3mm
一站的高差中误差:m站 =
≈ ±4mm
线路n站,则总高差:
取3倍中误差为限差,则普通水准路线的容许误 差为 :
二、水平角观测的误差分析
用DJ6经纬仪进行测回法观测水平角,那么用盘 左盘右观测同一方向的中误差为±6 ″,
1、倍数函数:Z=kx 中误差:mz=kmx
2、和差函数 :Z=x1±x2±…±xn 中误差:mz m12 m22 ... mn2
3、线形函数 : Z=k1x1±k2x2±…±knxn 中误差:mz (k1)2 m12 (k2 )2 m22 ... (k n)2 mn2
加权平均值的中误差: M0 = = ±3.2mm
一、一般函数的中误差
设Z=f(x1,x2,…,xn),其中x1,x2,…,xn属于独立自 变量(如直接观测值),他们的中误差分别为 m1,m2,…,mn则函数Z的中误差为 :
mz
(
f x1
)
2
m12
f (
x2
) 2 m22
f ... (
xn
) 2 mn2
二、特殊函数的中误差
小结
• 正确列出函数式; • 检查观测值是否独立; • 求偏微分并代入观测值确定系数; • 套用公式求出中误差。
思考题:一个边长为l的正方形,若测量一 边中误差为ml=±1cm,求周长的中误差? 若四边都测量,且测量精度相同,均为ml, 则周长中误差是多少?
§5.4等精度直接观测值
1.算术平均值原理 假设对某量X 进行了n次等精度的独立观测,得
5.偶然误差的特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
M=±2.6
3
124.569 -6
36
4
124.570 -7
49
5
124.559 +4
16
6
124.561 +2
4
平均
124.563 【v】=+1 【vv】= 209
第五章小节
▪ 1.误差定义 ▪ 2.观测条件(观测者、仪器、环境) ▪ 3.测量误差分类(系统误差、偶然误差) ▪ 4.精度定义,评定精度的标准(中误差、相对
注意:观测角度不能用相对中误差衡量
3.极限误差
中误差是反映误差分布的密集或离散程度的,不是代表个 别误差的大小,因此,要衡量某一观测值的质量,决定其取舍 ,还要引入极限误差的概念,极限误差又称为允许误差,简称 限差。偶然误差的第一特性说明,在一定条件下,误差的绝对 值有一定的限值。根据误差理论可知,在等精度观测的一组误 差中,误差落在区间 , 、 2, 2 、 3, 3 的概率分别为:
▪ 10测量误差大于______时,被认为是错误,必须重测。
▪ 11用经纬仪对某角观测四次,由观测结果算得观测值 中误差为±20″,则该角的算术平均值中误差为 _____.
▪ 12某线段长度为300m,相对误差为1/1500,则该线段中 误差为______。
▪ 13有一N边多边形,观测了N-1个角度,其中误差均为 ±10″,则第N个角度的中误差是_____。
mD ml n 5 10 16mm D 300 0.016(m)
例1 在某三角形ABC中,直接观测A和B
角,其中误差mA分 别3″为,mB 4″
mC
试求 中误差
5.3等精度直接观测量的最可靠值及其中 误差
▪ 当观测次数n趋于无穷大时,算术平均值趋 于未知量的真值。当n为有限值时,通常取 算术平均值做为最可靠值。
m乙
36 25 0 11 3.5 5
由此可以看出甲组观测值比乙组观测值的精度高,因为乙组观测值中 有较大的误差,用平方能反映较大的影响,因此,测量工作中采用中 误差作为衡量精度的标准。
2.相对误差
测量工作中,有时以中误差还不能完全表达观测结果
的精度。例如,分别丈量了100m及50m两段距离,其
n
m [] n
Δ=l-X
[]
12
22
…+
2 n
例7-1设有甲,乙两组观测值,其真误差分别为:
甲组: 4、 2、0、 4、 3
乙组: 6、 5、0、1、1
则两组观测值的中误差分别为:
m甲
16 4 0 16 9 3.0 5
▪ 难点:误差传播定律及其应用
§5.1测量误差与精度
▪ 5.1.1 测量误差的概念
▪ 测量误差(观测误差):观测量之间的差值 或观测值与真值之间的差值
▪ Δ=l-X
▪ Δ——测量误差,
▪ l ——观测值 ▪ X——真值
测量误差不可避免
5.1.2测量误差的来源
观测条件
观测者
仪器设备
环境
5.1.2测量误差的来源
P 68.3% P 2 2 95.4% P 3 3 99.7%
允 限 3m或 允 限 2m
超过上述限差的观测值应舍去不用,或返工重测。
5.2误差传播定律
▪ 误差传播:直接观测值误差对间接观测值 有影响。
▪ 6对某目标进行n次等精度观测,某算术平均值的中 误差是观测值中误差的______倍。
▪ 7在等精度观测中,对某一角度重复观测多次,观测 值之间互有差异,其观测精度是______的。
▪ 8在观测条件不变的情况下,为了提高测量的精度,其 唯一方法是______。
▪ 9当测量误差大小与观测值大小有关时,衡量测量精度 一般用______来表示。
▪
等精度观测
▪
非等精度观测
▪
§5.1.4 测量误差的分类及处理方法
测量误差按其对测量结果影响的性质,可分为:
系统误差和偶然误差。
一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观
测,如误差出现符号和大小均相同或按一定的规律 变化,这种误差称为系统误差。
2.特点: 具有积累性,对测量结果的影响大,但可通 过一般的改正或用一定的观测方法加以消除。 必须限制在允许范围内。
5.1.5精度的概念及评定的标准
▪ 精度定义:对某个量进行多次同精度的观 测中,其偶然误差分布的离散程度。
▪ 常用衡量精度的指标: ▪ 中误差、相对中误差、容许误差
1.中误差
设在相同的观测条件下,对某量进行n次
观测,其观测值为 l1 , l2 ,…,ln ,
相应的真误差为 则中误差为:
1,
2,…,
例如:钢尺尺长误差、 钢尺温度误差、水 准仪视准轴误差、 经纬仪视准轴误差。
二.偶然误差 (accident error)
1、定义: 在相同观测条件下,对某量进行一系列观测, 如误差出现符号和大小均不一定,这种误差 称为定观测条件下,偶然误差的绝对值有一定的限 值,或者说,超出该限值的误差出现的概率为零;——有界性*
中误差、容许误差) ▪ 5.误差传播定律 ▪ 6.真值未知时用算术平均值改正数计算观测值
中误差
作业
▪ P132思考题3 ▪ P132 习题 1,2 ▪ 4设有一n边形,每个角的观测值中误
差为m=±10″,试求该n变形内角和 的中误差。
▪ 5量得一圆的半径R=31.3mm,其中误 差为±0.3mm,求其圆面积及其中误差
x=
用频率直方图表示的偶然误差统计: 频率直方图中,每一条形的面积表示误差出现在该区
间的频率k/n,而所有条形的总面积等于1。 频率直方图的中间高、两边低,并向横轴逐渐逼近,
对称于y轴。 各条形顶边中点 连线经光滑后的曲 线形状,表现出偶 然误差的普遍规律
图6-1 误差统计直方图
▪ 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。
▪ 14在等精度观测的条件下,正方形一条边a的观测中误差为 m,则正方形的周长(S=4a)中的误差为( )
▪ A.m; B.2m; C.4m ▪ 14丈量某长方形的长为α=20,宽为b=15,它们的丈量精
度( )
▪ A相同; B.不同; C.不能进行比较 ▪ 16衡量一组观测值的精度的指标是( ) ▪ A.中误差; B.允许误差; C.算术平均值中误差 ▪ 17在距离丈量中,衡量其丈量精度的标准是( ) ▪ A.相对误差; B.中误差; C .往返误差 ▪ 18下列误差中( )为偶然误差 ▪ A.照准误差和估读误差; B.横轴误差和指标差;
C.水准管轴不平行与视准轴的误差
▪ 经纬仪对中误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 尺长误差和温度误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 下面是三个小组丈量距离的结果,只有( 测量的相对误差不低于1/5000的要求
)组
▪ A.100m 0.025m; B.200m 0.040m; C.150m 0.035m
中误差均为 0.1m 并不能说明丈量距离的精度,因为量距时其中误差或
相对误差,它是中误差的绝对值与观测值的比值,通
常用分子为1的分数形式表示。例如上例中前者的相
对误差为
0.1 1 100 1000
,后者则为
大比值小,丈量精度高。
0.1 1 50 500
前者分母
K |m| 1 D D/|m|
结果可写成 P 108.38 0.03(m)
例2. 水准测量从A进行到B, 得高差hAB 15.476m,
中误差mhAB 0.012m,
h m 从B到C得高差 5.747m,中误差 0.009m,
BC
hBC
求A, C两点间的高差及其中误差。
解:hAC hAB hBC 15.476 5.747 21.223m
▪ 利用观测值的改正数vi计算中误差:
m [vv] (n 1)
▪ 算术平均值中误差:
M m [vv] n n(n 1)
例:对某直线丈量了6次,丈量结果如表,求算术
平均值、算术平均值中误差及相对中误差
测次 距离
改正数v vv
计算
1
124.553 +10
100
m=±6.5
2
124.565 -2
▪ 1观测误差按性质可分为_______和_______两类。
▪ 2测量误差是由于______、_______、_______三方 面的原因产生的。
▪ 3直线丈量的精度是用_____来衡量的。
▪ 4相同的观测条件下,一测站高差的中误差为 _______。
▪ 5衡量观测值精度的指标是_____、_______和 ______。
第五章 测量误差的基本知识
第五章 测量误差基本知识
5.1 测量误差与精度 5.2误差传播定律 5.3等精度直接观测量的最可靠值及其中误 差 5.4非等精度直接观测值的最可靠值及其中 误差
第五章 测量误差基本知识
▪ 主要内容:测量误差的概念、来源、分类 与处理方法;精度概念及评定标准;误差 传播定律;观测值中误差计算;直接观测 值的最可靠值及其中误差
1
2
n
图形:偶然误差分布频率直方图
四个特性:有界性,偶然性,对称y性,抵偿性。
lim 1 2 n lim 0
n
n
n n
正态分布曲线
-21 -15 -9 -3 +3 +9 +15 +21 -24 -18 -12 -6 0 +6 +12 +18 +24