关于改善直流电机EMC方案
170911-关于改善直流电机EMC方案

170911-关于改善直流电机EMC 方案关于改善直流电机EMC方案一.单相串激电机的换向种类分为:直线换向(电阻换向).延时换向.超前换向,由于有电抗电势的存在和影响,直线换向根本不存在,因此单相串激电机的换向只有两种,不是延时换向,就是超前换向;1. 当电抗电势所形成的环流大于换向电势所形成的环流时,直线换向就变成延时换向,此时后刷边的电流密度大于前刷边的电流密度,造成后刷边的火花较大;2.当电抗电势所形成的环流小于换向电势所形成的环流时,直线换向就变成超前换向,此时前刷边的电流密度大于后刷边的电流密度,造成前刷边的火花较大;二.单相串激电机的换向好坏直接影响EMC的测试,要想改善EMC就必须改善电机的换向,改善电机的换向有以下措施:1. 选用与换向器接触电阻较大的碳刷,而增加碳刷与换向器的接触电阻最有效的办法是选用硬质碳刷,碳刷越硬,接触电阻越大,接触压降也越大,相对的削弱了电感的影响,使换向过程近似于直线换向,有利于消除火花.碳刷根据接触电阻大小分为:碳石墨碳刷.石墨碳刷.电化石墨碳刷和铜石墨碳刷.需要注意的是,每种电机都有适合其性能的碳刷,有的电机可能这种碳刷火花大,而换上另一种碳刷可能就满足换向要求,因此,一个电机尽量多试几种碳刷,以找到最适合该电机的碳刷.2. 控制碳刷弹簧压力在250~500g/cm²之间;3. 控制碳刷电流密度≤12A/cm²4.控制换向器片间电压< 25V;5. 控制碳刷在刷握里的单边尺寸在0.05-0.39MM之间;6. 控制换向器与刷握的端面间距在1.5±0.5MM之间;7. 控制换向器的表面粗糙度Ra<0.48. 减少电抗电势E=2×I×L/T,其中I为电枢电流,L为线圈电感,T为换向周期,要减少电抗电势,可采用减少换向线圈的匝数,即减少转子的线圈数;采用较短的铁芯长度等;9. 利用换向电势或速度电势来抵消电抗电势; 10. 逆转子旋转方向移动碳刷10度-26度;11. 在绕线时,将接线顺着转子的旋转方向偏前1-2片; 12. 在绕线时,采用短距绕组,而不能采用全距绕组;13. 加强定子磁场以相对削弱转子磁场的办法,即加大定子的激磁安匝数;14. 定子采用不均匀气隙,其益处:可降低由于电枢反应所引起的气隙磁场的畸变程度,使换向器的片间电压最大值减小,从而可减少换向火花(见下图) 15. 限制变压器电势E=4.44×f×W2×¢,其中f为电源的频率, W2为转子的每元件匝数, W2=N/2K,N为转子的总导体数,K为换向片数, ¢为定子单边磁通量,要减少变压器电势可采用增加换向器片数的办法,或者减少转子的每元件匝数,一般将变压器电势控制在≤7V. 三. 改善EMC的措施一台高速运转的带换向器的串激电机就相当于一台无线电发射装置,由于换向时产生火花和电弧,它将产生低频和高频的无线电干涉影响电视广播和无线电通讯,因此需要对其产生的干扰进行抑制;1.电磁干扰形成的原因A. 电机换向时导致参与换向的电枢线圈短路,回路流过短时大电流,当换向片与碳刷断开位置时,碳刷与换向片之间产生换向火花,使换向区域附近的空气介质电离,在空气中形成带电粒子,从而形成电磁干扰,这种火花电离产生的干扰频谱较宽且连续分布,对广播电视产品.通讯类产品及其他电子类产品有较大的干扰作用;B. 由于可控硅.整流二极管.开关等在导通和截止的工作特性和导通的稳定性较差,也会产生高频次谐波干扰分量;C. 由于电机的定子铁芯和转子的开槽设计和线圈上磁路设计比较饱和,也会产生较大的高频次谐波干扰分量引起电磁干扰.2. EMC: Electro Magnetic Compatibility (电磁兼容性):根据电磁兼容指令89/336/EEC,其定义为:装置.设备单元或系统在电磁环境中能够正常工作(抗扰度),并且不对该环境中的任何装置.设备构成不能承受的干扰(发射)能力.3.串激电机运转产生的低频波段在0.15MHz-30MHz,该波段的频率一般通过传导干扰由电源线反馈回电网;4.串激电机运转产生的高频波段在30MHz-300MHz,该波段的频率通过辐射干扰以电磁波的形式辐射到空间,通过电视广播和无线电通讯的天线接收而影响接收器的正常工作;5. 电磁干扰的途径见下图.6. GB4343.1-2003对频率在0.15MHz-30MHz连续干扰电压的允许值和频率在30MHz-300MHz的干扰功率值有严格的规定,这里不详述,有兴趣的同事可查此标准. 7. 下面从结构设计和制造工艺方面就降低无线电干扰采取的一些措施:A. 重视对电机换向的改善,只要电机的换向改善了,电机对无线电干扰的程度就会得到很大的改善,改善换向的方法如前面所述;B. 重视刷握在机壳中的定位方法,刷握固定的形式必须牢固可靠,以防止由于刷握的微量跳动而使高频分量过大,造成干扰功率的过大;C. 内部连接线与导电部位的联接要可靠,并稳妥地安置在合适位置,比如稳妥地安放在卡线槽内,接触点不牢固将会对30MHz以上的高频分量带来较大的干扰电平;D. 碳刷与换向器的材质要相宜,尤其是硬度搭配要合适,不能一个软一个硬,要防止换向器表面的过早磨损而出现表面不平,引起干扰电平的增大;6. 安装附加抑制器,为改善高频时滤波器的抑制效果,提高对高频干扰功率的抑制能力,可以采用附加抑制器,常见的形式有:A. 在碳刷两端并接一只电容器;B. 在碳刷和定子绕组间串接电感;C. A和B 的组合;D. 在手柄电源线中串接两只电感;E. 采用三角形电容.F. 采用三角形电容和电感的配合使用.采用附加抑制器主要就是利用电感和电容的“通高频阻低频”或“通低频阻高频”的特点,减弱因电动工具高速旋转所产生的低频干扰和高频辐射,从而减少对电视广播和无线电通讯的干扰.随着科学技术的发展,电视广播和无线电通讯的频率范围已从甚高频(VHF)300MHz以下发展到超高频(UHF),频率范围300MHz-3000MHz,因此有的国家特别是欧洲国家已要求抑制干扰的频率扩大到10KHz-1000MHz,这给电动工具的EMC测试提出了新的要求.同时,高速运转的串激电机不仅对电视广播和无线电通讯带来干扰,同时对附近工作的微型化和电子化的电子仪器也产生干扰,影响其准确度和精确度.电磁兼容性反映了电子设备或系统在其电磁环境中符合要求运行并不对其环境的任何设备产生无法忍受的电磁干扰能力,它包含两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值即EMI(ElectromagneticInterference);另一方面是指设备对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性EMS(ElectromagneticSusceptibility),商用电气产品为取得某一市场的销售资格,其EMI水平必须通过强制性认证,即达到某一标准,如国际无线电干扰特别委员会的IECCISPRI4-1,欧洲的 EN55014-1,或中国的GB4343.1等等。
_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围的其他设备或者系统产生不可接受的干扰。
在实际应用中,由于各种原因,电子设备可能会存在电磁兼容性问题,需要进行整改措施。
二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在设备外壳或者电路板上添加屏蔽材料,有效地阻隔电磁辐射和电磁感应。
屏蔽材料可以是金属盖板、金属屏蔽罩等,能够将电磁波反射、吸收或者散射,从而达到减少干扰的效果。
2. 地线设计地线设计是EMC整改中的关键措施之一。
良好的地线设计可以有效地抑制电磁辐射和电磁感应,减少电磁干扰。
在地线设计中,需要合理规划地线的走向和布局,确保地线的连接良好,并避免浮现地线回流、地线环路等问题。
3. 滤波器应用滤波器是一种常用的EMC整改措施,通过滤除电源线上的高频噪声,减少电磁辐射和电磁感应。
滤波器可以分为入线滤波器和出线滤波器,分别用于滤波电源输入端和输出端的电磁干扰。
合理选择并应用滤波器,可以有效地提高设备的抗干扰能力。
4. 等效电路仿真等效电路仿真是一种常见的EMC整改手段,通过建立设备的等效电路模型,分析电磁辐射和电磁感应的机理,预测设备在不同工作条件下的电磁兼容性。
通过仿真分析,可以找出设备中存在的电磁兼容性问题,并采取相应的措施进行整改。
5. 电磁屏蔽间隙控制电磁屏蔽间隙控制是一种常用的EMC整改措施,通过控制设备外壳或者电路板之间的间隙,减少电磁波的穿透和辐射。
合理设计和控制屏蔽间隙,可以有效地提高设备的抗干扰能力,减少电磁辐射和电磁感应。
6. 接地设计合理的接地设计是EMC整改中的重要措施之一。
通过良好的接地设计,可以减少电磁辐射和电磁感应,提高设备的抗干扰能力。
在接地设计中,需要注意接地回路的布局、接地电阻的选择和接地线的连接方式等方面。
EMC实用整改方案

EMC实用整改方案随着科技的不断发展,电子产品已经成为人们日常生活中不可或缺的一部分。
然而,电磁兼容(EMC)问题也逐渐凸显出来。
EMC是指电子设备在正常工作时,不会对周围电磁环境造成干扰,同时也能耐受其他设备可能产生的电磁干扰的能力。
为了解决EMC问题,制定一份实用的整改方案是至关重要的。
一、了解市场要求和标准首先,为了制定适合的整改方案,必须了解当前市场上对EMC的要求和标准。
各个行业和地区可能存在不同的要求,因此需要针对具体情况进行分析。
了解市场需求和合规要求,有助于确定整改方案的方向和重点。
二、检测和评估电磁兼容性在制定整改方案前,需要对现有设备的电磁兼容性进行检测和评估。
通过专业的测试仪器和设备,对设备进行EMC测试,获取相关数据和结果。
评估结果可以帮助确定问题的具体范围和程度,为后续整改提供依据。
三、制定整改目标和安排基于检测和评估结果,确定整改目标和安排。
整改目标应该明确具体,包括提高电磁兼容性,减少电磁干扰等。
根据实际情况,合理安排整改时间和资源,确保整改工作的高效进行。
四、加强电磁屏蔽为了提高设备的电磁兼容性,可以采取一些措施加强电磁屏蔽。
例如,在设计和生产过程中使用符合标准的屏蔽材料,优化设备的布线和连接方式,提高抗干扰能力。
此外,合理设计外壳和散热系统,减少电磁泄漏和干扰。
五、优化接地系统接地系统在电磁兼容性中起着重要的作用。
通过合理设计和构建接地系统,可以有效减少电磁辐射和干扰。
确保设备的接地电阻符合标准要求,提高接地系统的稳定性和可靠性。
此外,对设备进行接地处理时,还需注意排除地雷、干扰源等问题,确保接地系统的有效运行。
六、优化信号线布线信号线的布线也对EMC起到重要影响。
合理的信号线布线可以降低电磁干扰的发生和传播。
在设计和生产过程中,需要从布线距离、信号线和地面平面的位置等方面进行考虑。
优化信号线布线可以提高设备的抗干扰能力,降低对其他设备和系统的影响。
七、提升人员技能和意识为了有效解决EMC问题,除了从技术和工程方面入手,还需要提升人员的技能和意识。
170911-关于改善直流电机EMC方案

关于改善直流电机EMC方案一.单相串激电机的换向种类分为:直线换向(电阻换向).延时换向.超前换向,由于有电抗电势的存在和影响,直线换向根本不存在,因此单相串激电机的换向只有两种,不是延时换向,就是超前换向;1. 当电抗电势所形成的环流大于换向电势所形成的环流时,直线换向就变成延时换向,此时后刷边的电流密度大于前刷边的电流密度,造成后刷边的火花较大;2.当电抗电势所形成的环流小于换向电势所形成的环流时,直线换向就变成超前换向,此时前刷边的电流密度大于后刷边的电流密度,造成前刷边的火花较大;二.单相串激电机的换向好坏直接影响EMC的测试,要想改善EMC就必须改善电机的换向,改善电机的换向有以下措施:1. 选用与换向器接触电阻较大的碳刷,而增加碳刷与换向器的接触电阻最有效的办法是选用硬质碳刷,碳刷越硬,接触电阻越大,接触压降也越大,相对的削弱了电感的影响,使换向过程近似于直线换向,有利于消除火花.碳刷根据接触电阻大小分为:碳石墨碳刷.石墨碳刷.电化石墨碳刷和铜石墨碳刷.需要注意的是,每种电机都有适合其性能的碳刷,有的电机可能这种碳刷火花大,而换上另一种碳刷可能就满足换向要求,因此,一个电机尽量多试几种碳刷,以找到最适合该电机的碳刷.2. 控制碳刷弹簧压力在250~500g/cm²之间;3. 控制碳刷电流密度≤12A/cm²4.控制换向器片间电压< 25V;5. 控制碳刷在刷握里的单边尺寸在0.05-0.39MM之间;6. 控制换向器与刷握的端面间距在1.5±0.5MM之间;7. 控制换向器的表面粗糙度Ra<0.48. 减少电抗电势E=2×I×L/T,其中I为电枢电流,L为线圈电感,T为换向周期,要减少电抗电势,可采用减少换向线圈的匝数,即减少转子的线圈数;采用较短的铁芯长度等;9. 利用换向电势或速度电势来抵消电抗电势; 10. 逆转子旋转方向移动碳刷10度-26度;11. 在绕线时,将接线顺着转子的旋转方向偏前1-2片; 12. 在绕线时,采用短距绕组,而不能采用全距绕组;13. 加强定子磁场以相对削弱转子磁场的办法,即加大定子的激磁安匝数;14. 定子采用不均匀气隙,其益处:可降低由于电枢反应所引起的气隙磁场的畸变程度,使换向器的片间电压最大值减小,从而可减少换向火花(见下图) 15. 限制变压器电势E=4.44×f×W2×¢,其中f为电源的频率, W2为转子的每元件匝数, W2=N/2K,N为转子的总导体数,K为换向片数, ¢为定子单边磁通量,要减少变压器电势可采用增加换向器片数的办法,或者减少转子的每元件匝数,一般将变压器电势控制在≤7V. 三. 改善EMC的措施一台高速运转的带换向器的串激电机就相当于一台无线电发射装置,由于换向时产生火花和电弧,它将产生低频和高频的无线电干涉影响电视广播和无线电通讯,因此需要对其产生的干扰进行抑制;1.电磁干扰形成的原因A. 电机换向时导致参与换向的电枢线圈短路,回路流过短时大电流,当换向片与碳刷断开位置时,碳刷与换向片之间产生换向火花,使换向区域附近的空气介质电离,在空气中形成带电粒子,从而形成电磁干扰,这种火花电离产生的干扰频谱较宽且连续分布,对广播电视产品.通讯类产品及其他电子类产品有较大的干扰作用;B. 由于可控硅.整流二极管.开关等在导通和截止的工作特性和导通的稳定性较差,也会产生高频次谐波干扰分量;C. 由于电机的定子铁芯和转子的开槽设计和线圈上磁路设计比较饱和,也会产生较大的高频次谐波干扰分量引起电磁干扰.2. EMC: Electro Magnetic Compatibility (电磁兼容性):根据电磁兼容指令89/336/EEC,其定义为:装置.设备单元或系统在电磁环境中能够正常工作(抗扰度),并且不对该环境中的任何装置.设备构成不能承受的干扰(发射)能力.3.串激电机运转产生的低频波段在0.15MHz-30MHz,该波段的频率一般通过传导干扰由电源线反馈回电网;4.串激电机运转产生的高频波段在30MHz-300MHz,该波段的频率通过辐射干扰以电磁波的形式辐射到空间,通过电视广播和无线电通讯的天线接收而影响接收器的正常工作;5. 电磁干扰的途径见下图.6. GB4343.1-2003对频率在0.15MHz-30MHz连续干扰电压的允许值和频率在30MHz-300MHz的干扰功率值有严格的规定,这里不详述,有兴趣的同事可查此标准. 7. 下面从结构设计和制造工艺方面就降低无线电干扰采取的一些措施:A. 重视对电机换向的改善,只要电机的换向改善了,电机对无线电干扰的程度就会得到很大的改善,改善换向的方法如前面所述;B. 重视刷握在机壳中的定位方法,刷握固定的形式必须牢固可靠,以防止由于刷握的微量跳动而使高频分量过大,造成干扰功率的过大;C. 内部连接线与导电部位的联接要可靠,并稳妥地安置在合适位置,比如稳妥地安放在卡线槽内,接触点不牢固将会对30MHz以上的高频分量带来较大的干扰电平;D. 碳刷与换向器的材质要相宜,尤其是硬度搭配要合适,不能一个软一个硬,要防止换向器表面的过早磨损而出现表面不平,引起干扰电平的增大;6. 安装附加抑制器,为改善高频时滤波器的抑制效果,提高对高频干扰功率的抑制能力,可以采用附加抑制器,常见的形式有:A. 在碳刷两端并接一只电容器;B. 在碳刷和定子绕组间串接电感;C. A和B的组合; D. 在手柄电源线中串接两只电感;E. 采用三角形电容.F. 采用三角形电容和电感的配合使用.采用附加抑制器主要就是利用电感和电容的“通高频阻低频”或“通低频阻高频”的特点,减弱因电动工具高速旋转所产生的低频干扰和高频辐射,从而减少对电视广播和无线电通讯的干扰.随着科学技术的发展,电视广播和无线电通讯的频率范围已从甚高频(VHF)300MHz以下发展到超高频(UHF),频率范围300MHz-3000MHz,因此有的国家特别是欧洲国家已要求抑制干扰的频率扩大到10KHz-1000MHz,这给电动工具的EMC测试提出了新的要求.同时,高速运转的串激电机不仅对电视广播和无线电通讯带来干扰,同时对附近工作的微型化和电子化的电子仪器也产生干扰,影响其准确度和精确度.电磁兼容性反映了电子设备或系统在其电磁环境中符合要求运行并不对其环境的任何设备产生无法忍受的电磁干扰能力,它包含两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值即EMI(ElectromagneticInterference);另一方面是指设备对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性EMS(ElectromagneticSusceptibility),商用电气产品为取得某一市场的销售资格,其EMI水平必须通过强制性认证,即达到某一标准,如国际无线电干扰特别委员会的IECCISPRI4-1,欧洲的 EN55014-1,或中国的GB4343.1等等。
关于改善直流电机EMC方案

一.单相串激电机的换向种类分为:直线换向(电阻换向).延时换向.超前换向,由于有电抗电势的存在和影响,直线换向根本不存在,因此单相串激电机的换向只有两种,不是延时换向,就是超前换向;1. 当电抗电势所形成的环流大于换向电势所形成的环流时,直线换向就变成延时换向,此时后刷边的电流密度大于前刷边的电流密度,造成后刷边的火花较大;2.当电抗电势所形成的环流小于换向电势所形成的环流时,直线换向就变成超前换向,此时前刷边的电流密度大于后刷边的电流密度,造成前刷边的火花较大;二.单相串激电机的换向好坏直接影响EMC的测试,要想改善EMC就必须改善电机的换向,改善电机的换向有以下措施:1. 选用与换向器接触电阻较大的碳刷,而增加碳刷与换向器的接触电阻最有效的办法是选用硬质碳刷,碳刷越硬,接触电阻越大,接触压降也越大,相对的削弱了电感的影响,使换向过程近似于直线换向,有利于消除火花.碳刷根据接触电阻大小分为:碳石墨碳刷.石墨碳刷.电化石墨碳刷和铜石墨碳刷.需要注意的是,每种电机都有适合其性能的碳刷,有的电机可能这种碳刷火花大,而换上另一种碳刷可能就满足换向要求,因此,一个电机尽量多试几种碳刷,以找到最适合该电机的碳刷.2. 控制碳刷弹簧压力在250~500g/cm²之间;3. 控制碳刷电流密度≤12A/cm²4.控制换向器片间电压<25V;5. 控制碳刷在刷握里的单边尺寸在0.05-0.39MM之间;6. 控制换向器与刷握的端面间距在1.5±0.5MM之间;7. 控制换向器的表面粗糙度Ra<0.48. 减少电抗电势E=2×I×L/T,其中I为电枢电流,L为线圈电感,T为换向周期,要减少电抗电势,可采用减少换向线圈的匝数,即减少转子的线圈数;采用较短的铁芯长度等;9. 利用换向电势或速度电势来抵消电抗电势;10. 逆转子旋转方向移动碳刷10度-26度;11. 在绕线时,将接线顺着转子的旋转方向偏前1-2片;12. 在绕线时,采用短距绕组,而不能采用全距绕组;13. 加强定子磁场以相对削弱转子磁场的办法,即加大定子的激磁安匝数;14. 定子采用不均匀气隙,其益处:可降低由于电枢反应所引起的气隙磁场的畸变程度,使换向器的片间电压最大值减小,从而可减少换向火花(见下图)15. 限制变压器电势E=4.44×f×W2×¢,其中f为电源的频率, W2为转子的每元件匝数, W2=N/2K,N为转子的总导体数,K为换向片数, ¢为定子单边磁通量,要减少变压器电势可采用增加换向器片数的办法,或者减少转子的每元件匝数,一般将变压器电势控制在≤7V.三. 改善EMC的措施一台高速运转的带换向器的串激电机就相当于一台无线电发射装置,由于换向时产生火花和电弧,它将产生低频和高频的无线电干涉影响电视广播和无线电通讯,因此需要对其产生的干扰进行抑制;1.电磁干扰形成的原因A. 电机换向时导致参与换向的电枢线圈短路,回路流过短时大电流,当换向片与碳刷断开位置时,碳刷与换向片之间产生换向火花,使换向区域附近的空气介质电离,在空气中形成带电粒子,从而形成电磁干扰,这种火花电离产生的干扰频谱较宽且连续分布,对广播电视产品.通讯类产品及其他电子类产品有较大的干扰作用;B. 由于可控硅.整流二极管.开关等在导通和截止的工作特性和导通的稳定性较差,也会产生高频次谐波干扰分量;C. 由于电机的定子铁芯和转子的开槽设计和线圈上磁路设计比较饱和,也会产生较大的高频次谐波干扰分量引起电磁干扰.2. EMC: Electro Magnetic Compatibility (电磁兼容性):根据电磁兼容指令89/336/EEC,其定义为:装置.设备单元或系统在电磁环境中能够正常工作(抗扰度),并且不对该环境中的任何装置.设备构成不能承受的干扰(发射)能力.3.串激电机运转产生的低频波段在0.15MHz-30MHz,该波段的频率一般通过传导干扰由电源线反馈回电网;4.串激电机运转产生的高频波段在30MHz-300MHz,该波段的频率通过辐射干扰以电磁波的形式辐射到空间,通过电视广播和无线电通讯的天线接收而影响接收器的正常工作;5. 电磁干扰的途径见下图.6. GB4343.1-2003对频率在0.15MHz-30MHz连续干扰电压的允许值和频率在30MHz-300MHz的干扰功率值有严格的规定,这里不详述,有兴趣的同事可查此标准.7. 下面从结构设计和制造工艺方面就降低无线电干扰采取的一些措施:A. 重视对电机换向的改善,只要电机的换向改善了,电机对无线电干扰的程度就会得到很大的改善,改善换向的方法如前面所述;B. 重视刷握在机壳中的定位方法,刷握固定的形式必须牢固可靠,以防止由于刷握的微量跳动而使高频分量过大,造成干扰功率的过大;C. 内部连接线与导电部位的联接要可靠,并稳妥地安置在合适位置,比如稳妥地安放在卡线槽内,接触点不牢固将会对30MHz以上的高频分量带来较大的干扰电平;D. 碳刷与换向器的材质要相宜,尤其是硬度搭配要合适,不能一个软一个硬,要防止换向器表面的过早磨损而出现表面不平,引起干扰电平的增大;6. 安装附加抑制器,为改善高频时滤波器的抑制效果,提高对高频干扰功率的抑制能力,可以采用附加抑制器,常见的形式有:A. 在碳刷两端并接一只电容器;B. 在碳刷和定子绕组间串接电感;C. A和B的组合;D. 在手柄电源线中串接两只电感;E. 采用三角形电容.F. 采用三角形电容和电感的配合使用.采用附加抑制器主要就是利用电感和电容的“通高频阻低频”或“通低频阻高频”的特点,减弱因电动工具高速旋转所产生的低频干扰和高频辐射,从而减少对电视广播和无线电通讯的干扰.随着科学技术的发展,电视广播和无线电通讯的频率范围已从甚高频(VHF)300MHz 以下发展到超高频(UHF),频率范围300MHz-3000MHz,因此有的国家特别是欧洲国家已要求抑制干扰的频率扩大到10KHz-1000MHz,这给电动工具的EMC测试提出了新的要求.同时,高速运转的串激电机不仅对电视广播和无线电通讯带来干扰,同时对附近工作的微型化和电子化的电子仪器也产生干扰,影响其准确度和精确度.电磁兼容性反映了电子设备或系统在其电磁环境中符合要求运行并不对其环境的任何设备产生无法忍受的电磁干扰能力,它包含两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值即EMI(ElectromagneticInterference);另一方面是指设备对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性EMS(ElectromagneticSusceptibility),商用电气产品为取得某一市场的销售资格,其EMI水平必须通过强制性认证,即达到某一标准,如国际无线电干扰特别委员会的IECCISPRI4-1,欧洲的EN55014-1,或中国的GB4343.1等等。
_EMC_整改常见措施

_EMC_整改常见措施标题:EMC整改常见措施引言概述:电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够正常工作而不对周围环境和其他设备造成干扰的能力。
在实际应用中,由于各种因素的影响,电子设备可能出现EMC问题,需要进行整改措施。
本文将介绍EMC整改的常见措施,帮助读者更好地解决EMC问题。
一、电路设计方面的整改措施1.1 优化PCB布局:合理布局电路板上的元器件,减少信号线长度,减小回路面积,降低电磁辐射。
1.2 使用屏蔽罩:对容易产生电磁辐射的元器件或电路进行屏蔽,减少电磁波的辐射和传播。
1.3 降低电路噪声:采取滤波、隔离等措施,减少电路中的噪声干扰,提高电路的抗干扰能力。
二、外壳设计方面的整改措施2.1 选择合适的外壳材料:外壳材料应具有良好的屏蔽性能,能够有效阻挡电磁波的传播。
2.2 设计合理的接地结构:外壳的接地结构应设计合理,确保外壳与地线连接良好,减少接地回路的阻抗。
2.3 添加滤波器:在外壳上添加滤波器,对进出的电磁波进行滤波处理,降低外壳内的电磁辐射水平。
三、电源线设计方面的整改措施3.1 优化电源线布局:电源线应尽量远离信号线,减少电磁干扰的可能性。
3.2 使用滤波器:在电源线上添加滤波器,减少电源线传导的电磁干扰。
3.3 稳定电源供应:确保电源供应稳定,避免电源波动引起的电磁干扰。
四、设备测试方面的整改措施4.1 进行辐射测试:对设备进行辐射测试,检测设备的电磁辐射水平,及时发现问题并进行整改。
4.2 进行传导测试:对设备进行传导测试,检测设备的电磁传导水平,找出潜在的干扰源。
4.3 进行整体测试:对整个设备进行综合测试,验证设备的整体电磁兼容性,确保设备符合相关标准要求。
五、软件设计方面的整改措施5.1 优化软件编程:减少软件中的电磁辐射源,降低软件对电磁兼容性的影响。
5.2 添加滤波算法:在软件中添加滤波算法,对输入输出信号进行滤波处理,减少电磁干扰。
_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境下,能够正常工作并与其他设备共存的能力。
在实际应用中,往往会出现电磁辐射、抗干扰等问题,需要采取相应的整改措施来保证设备的正常运行。
二、常见的EMC整改措施1. 设计合理的电磁屏蔽结构:通过使用合适的屏蔽材料、设计合理的屏蔽结构,可以有效地减少电磁辐射和电磁干扰。
例如,在电子产品的外壳和电路板之间添加屏蔽罩,以阻隔电磁波的传播。
2. 优化电路布局:合理的电路布局可以减少电磁辐射和抗干扰能力。
通过减少信号线的长度、增加信号线之间的间距、避免信号线与电源线的交叉等方式,可以降低电磁辐射和干扰。
3. 选择合适的滤波器:滤波器是一种常用的EMC整改措施,可以用来滤除电源线上的高频噪声,提高设备的抗干扰能力。
根据实际情况选择合适的滤波器类型和参数,可以有效地减少电磁干扰。
4. 加强接地措施:良好的接地系统能够有效地降低电磁辐射和抗干扰能力。
通过增加接地导线的截面积、减小接地回路的阻抗、合理布置接地点等方式,可以提高接地系统的效果。
5. 使用屏蔽电缆和连接器:在高频信号传输过程中,使用屏蔽电缆和连接器可以有效地减少电磁辐射和干扰。
通过选择合适的屏蔽材料和设计合理的连接方式,可以提高电缆和连接器的抗干扰能力。
6. 合理选择元器件:在设计电子设备时,选择合适的元器件也是一种重要的EMC整改措施。
例如,选择低电磁辐射的元器件、抗干扰能力强的元器件等,可以提高整个系统的EMC性能。
7. 进行EMC测试和评估:在整改措施实施完成后,进行EMC测试和评估是必不可少的。
通过对设备进行电磁兼容性测试,可以评估整改措施的有效性,并对不合格的地方进行进一步的改进。
三、总结EMC整改是保障电子设备正常运行的重要环节。
通过合理的电磁屏蔽结构、优化电路布局、选择合适的滤波器、加强接地措施、使用屏蔽电缆和连接器、合理选择元器件以及进行EMC测试和评估等措施,可以有效地提高设备的电磁兼容性,减少电磁辐射和抗干扰能力,保证设备的正常运行。
3相直流电机控制器emc整改 -回复

3相直流电机控制器emc整改-回复三相直流电机控制器(EMC)是用于控制直流电机的关键设备之一。
它能够将直流电能转换为机械能,并且可以调节电机的转速和转矩,使其适应不同的工作要求。
然而,由于各种原因,如设计不当或使用不当,EMC 可能会出现问题,需要进行整改和调试。
本文将详细介绍三相直流电机控制器EMC的整改步骤和方法。
第一步:排除电源故障在进行EMC整改之前,首先要排除电源故障的可能性。
检查电机的电源线是否连接稳定、电压是否正常。
如果发现电源故障,需要先修复电源问题,然后再进行EMC的整改。
第二步:检查电机连接EMC与电机之间通过电缆进行连接,因此需要检查电机连接是否良好。
检查电缆接头是否松动、腐蚀或损坏。
如果发现问题,需要重新连接或更换电缆,确保电机与EMC之间的连接稳固可靠。
第三步:检查电机参数设置EMC需要根据电机的参数进行正确设置,以确保其正常工作。
首先检查EMC的参数设置是否与电机的额定参数相匹配。
如果发现不匹配的情况,需要进行相应的调整和设置,以确保EMC能够正确地控制电机。
第四步:检查控制信号EMC通过控制信号来控制电机的转速和转矩。
检查控制信号的传输是否正常,确保控制信号能够顺利地传递给EMC。
同时,也需要检查控制信号的电压水平是否符合EMC的要求。
如果发现控制信号有问题,可以尝试重新连接或更换控制信号线路,或者检修控制信号发生器。
第五步:检查EMC内部故障如果以上步骤都没有解决EMC的问题,可能是EMC内部出现了故障。
此时,需要打开EMC进行检查。
首先,检查电路板上是否有焊接不良、腐蚀或损坏的元件。
如果发现问题,可以尝试重新焊接或更换故障元件。
此外,还需要检查EMC的散热系统是否正常工作,以防止过热引起的故障。
如果发现散热系统有问题,可以清理或更换散热器,确保EMC的正常散热。
第六步:重新调试EMC在进行任何整改之后,需要重新调试EMC以确保其正常工作。
首先,将EMC连接到电机,并检查其运行状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.单相串激电机的换向种类分为:直线换向(电阻换向).延时换向.超前换向,由于有电抗电势的存在和影响,直线换向根本不存在,因此单相串激电机的换向只有两种,不是延时换向,就是超前换向;1. 当电抗电势所形成的环流大于换向电势所形成的环流时,直线换向就变成延时换向,此时后刷边的电流密度大于前刷边的电流密度,造成后刷边的火花较大;2.当电抗电势所形成的环流小于换向电势所形成的环流时,直线换向就变成超前换向,此时前刷边的电流密度大于后刷边的电流密度,造成前刷边的火花较大;二.单相串激电机的换向好坏直接影响EMC的测试,要想改善EMC就必须改善电机的换向,改善电机的换向有以下措施:1. 选用与换向器接触电阻较大的碳刷,而增加碳刷与换向器的接触电阻最有效的办法是选用硬质碳刷,碳刷越硬,接触电阻越大,接触压降也越大,相对的削弱了电感的影响,使换向过程近似于直线换向,有利于消除火花.碳刷根据接触电阻大小分为:碳石墨碳刷.石墨碳刷.电化石墨碳刷和铜石墨碳刷.需要注意的是,每种电机都有适合其性能的碳刷,有的电机可能这种碳刷火花大,而换上另一种碳刷可能就满足换向要求,因此,一个电机尽量多试几种碳刷,以找到最适合该电机的碳刷.2. 控制碳刷弹簧压力在250~500g/cm²之间;3. 控制碳刷电流密度≤12A/cm²4.控制换向器片间电压<25V;5. 控制碳刷在刷握里的单边尺寸在0.05-0.39MM之间;6. 控制换向器与刷握的端面间距在1.5±0.5MM之间;7. 控制换向器的表面粗糙度Ra<0.48. 减少电抗电势E=2×I×L/T,其中I为电枢电流,L为线圈电感,T为换向周期,要减少电抗电势,可采用减少换向线圈的匝数,即减少转子的线圈数;采用较短的铁芯长度等;9. 利用换向电势或速度电势来抵消电抗电势;10. 逆转子旋转方向移动碳刷10度-26度;11. 在绕线时,将接线顺着转子的旋转方向偏前1-2片;12. 在绕线时,采用短距绕组,而不能采用全距绕组;13. 加强定子磁场以相对削弱转子磁场的办法,即加大定子的激磁安匝数;14. 定子采用不均匀气隙,其益处:可降低由于电枢反应所引起的气隙磁场的畸变程度,使换向器的片间电压最大值减小,从而可减少换向火花(见下图)15. 限制变压器电势E=4.44×f×W2×¢,其中f为电源的频率, W2为转子的每元件匝数, W2=N/2K,N为转子的总导体数,K为换向片数, ¢为定子单边磁通量,要减少变压器电势可采用增加换向器片数的办法,或者减少转子的每元件匝数,一般将变压器电势控制在≤7V.三. 改善EMC的措施一台高速运转的带换向器的串激电机就相当于一台无线电发射装置,由于换向时产生火花和电弧,它将产生低频和高频的无线电干涉影响电视广播和无线电通讯,因此需要对其产生的干扰进行抑制;1.电磁干扰形成的原因A. 电机换向时导致参与换向的电枢线圈短路,回路流过短时大电流,当换向片与碳刷断开位置时,碳刷与换向片之间产生换向火花,使换向区域附近的空气介质电离,在空气中形成带电粒子,从而形成电磁干扰,这种火花电离产生的干扰频谱较宽且连续分布,对广播电视产品.通讯类产品及其他电子类产品有较大的干扰作用;B. 由于可控硅.整流二极管.开关等在导通和截止的工作特性和导通的稳定性较差,也会产生高频次谐波干扰分量;C. 由于电机的定子铁芯和转子的开槽设计和线圈上磁路设计比较饱和,也会产生较大的高频次谐波干扰分量引起电磁干扰.2. EMC: Electro Magnetic Compatibility (电磁兼容性):根据电磁兼容指令89/336/EEC,其定义为:装置.设备单元或系统在电磁环境中能够正常工作(抗扰度),并且不对该环境中的任何装置.设备构成不能承受的干扰(发射)能力.3.串激电机运转产生的低频波段在0.15MHz-30MHz,该波段的频率一般通过传导干扰由电源线反馈回电网;4.串激电机运转产生的高频波段在30MHz-300MHz,该波段的频率通过辐射干扰以电磁波的形式辐射到空间,通过电视广播和无线电通讯的天线接收而影响接收器的正常工作;5. 电磁干扰的途径见下图.6. GB4343.1-2003对频率在0.15MHz-30MHz连续干扰电压的允许值和频率在30MHz-300MHz的干扰功率值有严格的规定,这里不详述,有兴趣的同事可查此标准.7. 下面从结构设计和制造工艺方面就降低无线电干扰采取的一些措施:A. 重视对电机换向的改善,只要电机的换向改善了,电机对无线电干扰的程度就会得到很大的改善,改善换向的方法如前面所述;B. 重视刷握在机壳中的定位方法,刷握固定的形式必须牢固可靠,以防止由于刷握的微量跳动而使高频分量过大,造成干扰功率的过大;C. 内部连接线与导电部位的联接要可靠,并稳妥地安置在合适位置,比如稳妥地安放在卡线槽内,接触点不牢固将会对30MHz以上的高频分量带来较大的干扰电平;D. 碳刷与换向器的材质要相宜,尤其是硬度搭配要合适,不能一个软一个硬,要防止换向器表面的过早磨损而出现表面不平,引起干扰电平的增大;6. 安装附加抑制器,为改善高频时滤波器的抑制效果,提高对高频干扰功率的抑制能力,可以采用附加抑制器,常见的形式有:A. 在碳刷两端并接一只电容器;B. 在碳刷和定子绕组间串接电感;C. A和B的组合;D. 在手柄电源线中串接两只电感;E. 采用三角形电容.F. 采用三角形电容和电感的配合使用.采用附加抑制器主要就是利用电感和电容的“通高频阻低频”或“通低频阻高频”的特点,减弱因电动工具高速旋转所产生的低频干扰和高频辐射,从而减少对电视广播和无线电通讯的干扰.随着科学技术的发展,电视广播和无线电通讯的频率范围已从甚高频(VHF)300MHz 以下发展到超高频(UHF),频率范围300MHz-3000MHz,因此有的国家特别是欧洲国家已要求抑制干扰的频率扩大到10KHz-1000MHz,这给电动工具的EMC测试提出了新的要求.同时,高速运转的串激电机不仅对电视广播和无线电通讯带来干扰,同时对附近工作的微型化和电子化的电子仪器也产生干扰,影响其准确度和精确度.电磁兼容性反映了电子设备或系统在其电磁环境中符合要求运行并不对其环境的任何设备产生无法忍受的电磁干扰能力,它包含两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值即EMI(ElectromagneticInterference);另一方面是指设备对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性EMS(ElectromagneticSusceptibility),商用电气产品为取得某一市场的销售资格,其EMI水平必须通过强制性认证,即达到某一标准,如国际无线电干扰特别委员会的IECCISPRI4-1,欧洲的EN55014-1,或中国的GB4343.1等等。
各类标准事实上是等效的川。
1EMI产生的根源对于由小型永磁直流电机驱动的各类产品,通常只有EMI的问题。
EMI可分为传导干扰和辐射干扰:传导干扰是指干扰能量沿着电缆以干扰电压的形式传播;辐射干扰是指干扰能量以电磁波的形式通过空间将其信号藕合(干扰)到另一个电网络。
为限制永磁电机的EMI,必须搞清干扰源才能有效对电磁干扰加以抑制。
在由永磁直流电机驱动的各种工业产品中,EMI的来源主要包括:L1电机的火花火花使换向区域附近的空气介质电离,在空气中形成带电粒子,形成电磁干扰; L2非线性器件可控硅、整流二极管以及晶体管开关的导通和截止的工作特性会产生高频谐波干扰;1.3电机的磁路过于饱和的磁路也会产生较大的电磁干扰。
在产品中加装滤波器以及采用各种屏蔽手段可以有效地抑制EMI,但从根源上消除干扰源的干扰同样重要。
在上述各干扰源中,直流电机在换向过程中产生的火花,由于其成因复杂,在实际应用中常常难以控制。
表面上,电机生产过程中的各种不良工艺都会加剧运行中的火花,必须加以控制,如换向器表面的精车水平包括圆度、跳动、光洁度,转子的动平衡水平,此外,弹簧的压力以及碳刷的材质都会对火花的大小产生极大的影响。
理论上,火花产生的根源是换向中产生的各种电动势,包括电抗电势及变压器电势,换向片上的片间电压以及转子上的电枢反应等。
这其中,电抗电势是最主要的。
换向时,电枢电流在极短的时间内变换方向,线圈电流的换向过程由图1简示。
2抑制电抗电势的方法由上述分析可知,抑制永磁直流电机EMI的根本在于有效地削弱换向过程产生的电抗电势。
当然,前提是必须保证电机生产工艺及电机在产品中装配的稳定性。
这里仅限从理论上探究抑制电抗电势的方法。
根据(1),削弱电抗电势的手段包括调整定转子线圈匝数比或依靠增加换向片数来减少每线圈匝数以减小电感,或适当加大碳刷宽度以增加换向周期,另外,增大碳刷的电阻率亦可减小电抗电势对换向的阻碍。
但是,在工程实际中,上述条件只能非常有限的被满足。
比如,匝数比太大会造成磁路过度饱和,反而会恶化EM1;同时过高的定子槽满率不仅会降低电机的过载能力,也会影响生产效率;又如,受限于生产工艺水平,换向片数也无法太大。
至于碳刷电阻率,受发热限制,亦无法无限度提高。
所以,设法在换向过程中产生一个与电抗电势反向的电动势将其抵消将是抑制火花和EMI的最有效的方法。
众所周知,直流电机在磁极间加装换向极可以产生与电抗电势相反的电势,但小型直流电机受空间所限,不便加装换向极,所以,绝大多数设计都采用逆电机转向偏移碳刷位置的方法来达到与加装换向极相同的效果[zJ。
与偏移碳刷位置效果相同、精度更高、被现代生产实践应用更广泛的手段是,在转子绕线的过程中直接产生磁场借偏。
虽然国际国内各大电机制造公司及研究机构对电机的转子借偏角的定义不尽相同,但事实上却有同样的理论基础,这里不加赘述。
图3及图4分别表示了转子在借偏前后的电流分布:借偏有其特定的方向性,即对于已经制造完毕的有借偏的转子,其借偏的作用只对电机在某单方向有效,换言之,若转向相反,则该借偏会恶化换向及EMI。
其原理在于借偏角的方向必须与电机的转向一致,才可保证换向过程由借偏产生的电动势与电抗电动势向反。
借偏角度亦不可过大。
由于借偏相当于减小了转子的有效匝数,过大的借偏角度需要更多的线圈匝数来弥补,过多的用铜(铝)势必增加损耗,降低效率;同时,过大的借偏有时反而不利于电抗电动势的抵消。
在工程实际中,必须在火花抑制和电机性能中寻找最佳的平衡点,不可偏废。
必须指出,电机同其它工业产品一样,其最终的性能绝不仅仅决定于电磁设计和机械结构设计水平。
事实上,制造水平及工艺稳定性是保证好的电机设计的根本。