2020年浙江新高考数学二轮复习教师用书:专题一 5 第5讲 导数的简单应用
高中数学选择性必修二 专题5 2 导数在研究函数中的应用(A卷基础篇)(含答案)

专题5. 2导数在研究函数中的应用(1)(A 卷基础篇)(新教材人教A 版,浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·全国高二课时练习)设函数()f x 的图象如图所示,则导函数()'f x 的图象可能为( )A .B .C .D .【答案】C 【解析】∵()f x 在(,1)-∞,(4,)+∞上为减函数,在(1,4)上为增函数, ∴当1x <或4x >时,()0f x '<;当14x <<时,()0f x '>. 故选:C .2.(2020·河北张家口市·高三月考)下列函数中,在其定义域上为增函数的是( ) A .4y x = B .2x y -=C .cos y x x =+D .12y x =-【答案】C 【解析】对于A 选项,函数4y x =为偶函数,在()0,∞+上递增,在(),0-∞上递减; 对于B 选项,函数2xy -=在R 上递减;对于C 选项,1sin 0y x '=-≥在R 上恒成立,则函数cos y x x =+在其定义域R 上递增; 对于D 选项,函数12y x =-在()0,∞+上递减. 故选:C .3.(2020·赣州市赣县第三中学高三期中(文))已知函数21()ln 2f x x x =-,则其单调增区间是( ) A .()1,+∞ B .()0,∞+C .(]0,1D .[]0,1【答案】A 【解析】 由21()ln 2f x x x =-,函数定义域为()0,∞+, 求导211()x f x x x x='-=-,令()0f x '>,得1x >或1x <-(舍去)所以()f x 单调增区间是()1,+∞ 故选:A.4.(2020·张家界市民族中学高二月考)函数22y x x=+的单调递增区间为( )A .(),1-∞B .)+∞C .()1,+∞D .(),0-∞【答案】C 【解析】3222222x y x x x-'=-=,由0y '>得3220x ->,即1x >, 所以函数22y x x=+的单调递增区间为(1,)+∞. 故选:C5.(2020·全国高三专题练习)如图所示为()y f x '=的图象,则函数()y f x =的单调递减区间是( )A .(),1-∞-B .()2,0-C .()()2,0,2,-+∞D .()(),1,1,-∞-+∞【答案】C 【解析】由导函数图象,知20x -<<或2x >时,()0f x '<,∴()f x 的减区间是(2,0)-,(2,)+∞. 故选:C .6.(2019·江西九江市·高二期末(理))函数()22ln f x x x =-的递增区间是( )A .10,2⎛⎫ ⎪⎝⎭B .1,02⎛⎫-⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭C .1,2⎛⎫+∞⎪⎝⎭D .1,2⎛⎫-∞-⎪⎝⎭和10,2⎛⎫ ⎪⎝⎭【答案】C 【解析】因为()22ln f x x x =-的定义域为(0,)+∞,1()4f x x x'=-, 由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1(,)2+∞. 故选:C.7.(2020·四川内江市·高三三模(文))函数xy x e =⋅的图像大致为( )A .B .C .D .【答案】C 【解析】'(1)x y x e =+⋅,当1x >-时,'0y >,当1x <-时,'0y <,所以函数x y x e =⋅在(1,)-+∞上单调递增,在(,1)-∞-上单调递减. 故选:C8.(2020·广东深圳市·高三开学考试)已知函数()f x 与f x 的图象如图所示,则不等式组()()03f x f x x '<⎧⎨<<⎩解集为( )A .0,1B .()1,3C .1,2D .()1,4【答案】B 【解析】由导函数与原函数单调性关系知图中实线是()'f x 的图象,虚线是()f x 的图象,不等式组()()03f x f x x <⎧⎨<<'⎩解集是{|13}x x <<. 故选:B .9.(2020·全国高三专题练习)已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( ) A .(2)(1)2f f > B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 【答案】D 【解析】令()()F x xf x =,则()()()0xf x x F x f '='+>,故()F x 为R 上的增函数, 所以()()21F F >即()()221f f >, 故选:D.10.(2020·黄梅国际育才高级中学高二期中)已知函数()2ln 1f x x a x =-+在()1,3内不是单调函数,则实数a 的取值范围是( ) A .()2,18 B .[]2,18C .(][),218,-∞+∞D .[)2,18【答案】A 【解析】 ∵()'2a f x x x=-,()2ln 1f x x a x =-+在()1,3内不是单调函数, 故20ax x-=在()1,3存在变号零点,即22a x =在()1,3存在零点, ∴218a <<. 故选:A.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·长顺县文博高级中学有限公司高三月考)函数322611y x x =-+的单调减区间是__________.【答案】()0,2 【解析】()261262y x x x x '=-=-,令0y '<,解得02x <<,所以函数的单调减区间为()0,2. 故答案为:()0,212.(2020·全国高三专题练习)函数()52ln f x x x =-的单调递减区间是______.【答案】20,5⎛⎫ ⎪⎝⎭【解析】()f x 的定义域是()0,∞+,()252'5x f x x x-=-=, 令()'0f x <,解得:205x <<,所以()f x 在20,5⎛⎫ ⎪⎝⎭递减,故答案为20,.5⎛⎫ ⎪⎝⎭13.(2019·全国高三月考(文))已知0a >,函数3()2f x x ax =-在[1,)+∞上是单调增函数,则a 的最大值是_______. 【答案】6 【解析】2()6f x x a '=-,令()0f x '>,得6a x >6a x <-16a≤,解得6a . 故答案为:614.(2018·全国高二专题练习) 函数()32267f x x x =-+在区间______上是增函数,在区间______上是减函数.【答案】(),0-∞和()2,+∞ ()0,2 【解析】2'()612f x x x =-=6(2)x x -,令'()0f x <,解得:02x <<,令'()0f x >,解得:0x <或2x >.函数()32267f x x x =-+在区间(,0)-∞,(2,)+∞上是增函数,在区间(0,2)上是减函数.15.(2020·浙江高一期末)已知2()(3)f x x b x =+-是定义在R 上的偶函数,则实数b =_____,写出函数2()2g x x x=+-在(0,)+∞的单调递增区间是______ 【答案】3 )2,+∞【解析】()f x 是定义在R 上的偶函数,()()f x f x ∴-=,()22(3)(3)x b x x b x ∴---=+-,解得3b =,()(2221x x g x x x+'=-+=, 令()0g x '>,解得x >()g x ∴的单调递增区间是)+∞.故答案为:3;)+∞.16.(2020·全国高三专题练习)已知()lg f x x x =,那么()f x 单调递增区间__________;()f x 单调递减区间__________.【答案】1,e ⎛⎫+∞ ⎪⎝⎭ 10,e ⎛⎫ ⎪⎝⎭【解析】因为()lg f x x x =,故11()lg lg lg lg lg ln10ln10f x x x x x e ex x '=+⋅=+=+=.令()0f x '=可得1ex =,即1x e=. 又()f x '为增函数,故当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0f x '>,()f x 单调递增.故答案为:(1) 1,e ⎛⎫+∞ ⎪⎝⎭;(2)10,e ⎛⎫ ⎪⎝⎭17.(2019·山西运城市·高三期中(文))设函数()-=-x xf x e ae (a 为常数).若()f x 为奇函数,则a =________;若()f x 是[2,2]-上的减函数,则a 的取值范围是________.【答案】1 41≥-a e 【解析】 (1)若()-=-xx f x eae 为奇函数则()()xxx x f x e ae x e ae f --=-=-+-=-,则1a =(2)若()f x 是[2,2]-上的减函数,则()x xf x e ae -'=--在[2,2]-上小于或者等于零,即0x x e ae ---≤在[2,2]-上恒成立,2x e a --≤,可知2xy e-=-在[2,2]-上单调递增,所以41≥-a e .三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.(2020·甘肃省岷县第二中学高二期中(理))求函数()33f x x x =-的递减区间.【答案】()1,1- 【解析】 ∵233fxx ,∴令2330x ,解得11x -<<.∴函数()33f x x x =-的递减区间为()1,1-.19.(2019·甘肃省武威第一中学高二月考(理))求函数ln ()(0)xf x x x=>的单调区间. 【答案】增区间为(0e),,减区间为(e )+∞,. 【解析】 由()f x 得()()2221·ln ln ''ln 1ln 'x xx x x x x x f x x x x ---===, 令()'0f x =,即21ln 0xx -=,得1ln 0x -=,从而e x =,令()'0f x >,即21ln 0xx ->,得e x <,此时()f x 为增函数,又0x >,得增区间为()0e ,,令()'0fx <,即21ln 0xx-<,得e x >,此时()f x 为减函数,减区间为()e +∞,.20.(2020·横峰中学月考(文))已知()1xf x e ax =--. (1)当2a =时,讨论()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围.【答案】(1)()f x 的单调递增区间为()ln 2,+∞,单调递减区间为(),ln 2-∞;(2)0a ≤ 【解析】(1)当2a =时,()21xf x e x =--则()'2x f x e =-,令()'20x f x e =->,得ln 2x > 令()'20x fx e =-<,得ln 2x <所以()f x 的单调递增区间为()ln 2,+∞ 单调递减区间为(),ln 2-∞(2)由题可知:()f x 在定义域R 内单调递增 等价于()'0x f x e a =-≥由()'x fx e a =-在R 上单调递增,又0x e >则000a a -≥⇒≤21.(2020·西宁市海湖中学高二月考(文))已知函数()31f x x ax =--. (1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围. (2)若()f x 的单调递减区间为(1,1)-,求a 的值. 【答案】(1)(],3-∞;(2)3. 【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立, 所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞ (2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得33aa x -<<, 所以()f x 的单调递减区间为(,)33a a -, 又已知()f x 的单调递减区间为(1,1)-,所以(,)33a a -=(1,1)-, 所以13a=,即3a =. 22.已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求的单调区间.【答案】(Ⅰ).(Ⅱ)①当时,的单调递减区间为;单调递增区间为,.②当时,的单调递减区间为,;单调递增区间为,.③当时,为常值函数,不存在单调区间.④当时,的单调递减区间为,;单调递增区间为,.【解析】(Ⅰ)解:当时,,.……2分由于,,所以曲线在点处的切线方程是. ……4分(Ⅱ)解:,. …………6分①当时,令,解得.的单调递减区间为;单调递增区间为,.…8分当时,令,解得,或.②当时,的单调递减区间为,;单调递增区间为,. ……10分③当时,为常值函数,不存在单调区间.……………11分④当时,的单调递减区间为,;单调递增区间为,. …………14分。
2020浙江高考数学二轮专题强化训练:专题一第5讲 导数的简单应用 Word版含解析

专题强化训练1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A.因为f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.所以f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.2.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫-43,0 B.⎝⎛⎭⎫0,43 C.⎝⎛⎭⎫-∞,-43,(0,+∞) D.⎝⎛⎭⎫-∞,-43∪(0,+∞) 解析:选C.因为f ′(x )=3x 2-2mx ,所以f ′(-1)=3+2m =-1,解得m =-2.所以f ′(x )=3x 2+4x .由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间为⎝⎛⎭⎫-∞,-43,(0,+∞),故选C. 3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C.由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或a ≥-4⇔a ≥-2 6.4.(2019·台州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C.因为f ′(x )=2x +b ,所以F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,所以⎩⎪⎨⎪⎧F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,所以f (x )=(x +2)2≥0,f (x )min =0.5.(2019·温州瑞安七校模拟)已知函数f (x )=(x -x 1)·(x -x 2)(x -x 3)(其中x 1<x 2<x 3),g (x )=e x -e -x ,且函数f (x )的两个极值点为α,β(α<β).设λ=x 1+x 22,μ=x 2+x 32,则( )A .g (α)<g (λ)<g (β)<g (μ)B .g (λ)<g (α)<g (β)<g (μ)C .g (λ)<g (α)<g (μ)<g (β)D .g (α)<g (λ)<g (μ)<g (β)解析:选D.由题意,f ′(x )=(x -x 1)(x -x 2)+(x -x 2)(x -x 3)+(x -x 1)(x -x 3), 因为f ′(x 1+x 22)=-(x 2-x 1)24<0,f ′(x 2+x 32)=-(x 2-x 3)24<0,因为f (x )在(-∞,α),(β,+∞)上递增,(α,β)上递减, 所以α<λ<μ<β,因为g (x )=e x -e -x 单调递增, 所以g (α)<g (λ)<g (μ)<g (β). 故选D.6.(2019·宁波诺丁汉大学附中高三期中考试)已知函数f (x )=x +2b x +a ,x ∈[a ,+∞),其中a >0,b ∈R ,记m (a ,b )为f (x )的最小值,则当m (a ,b )=2时,b 的取值范围为( )A .b >13B .b <13C .b >12D .b <12解析:选D.函数f (x )=x +2bx+a ,x ∈[a ,+∞),导数f ′(x )=1-2bx2,当b ≤0时,f ′(x )>0,f (x )在x ∈[a ,+∞)递增,可得f (a )取得最小值, 且为2a +2b a ,由题意可得2a +2ba =2,a >0,b ≤0方程有解;当b >0时,由f ′(x )=1-2bx 2=0,可得x =2b (负的舍去),当a ≥2b 时,f ′(x )>0,f (x )在[a ,+∞)递增,可得f (a )为最小值, 且有2a +2ba=2,a >0,b >0,方程有解;当a <2b 时,f (x )在[a ,2b ]递减,在(2b ,+∞)递增, 可得f (2b )为最小值,且有a +22b =2,即a =2-22b >0, 解得0<b <12.综上可得b 的取值范围是(-∞,12).故选D.7.(2019·浙江“七彩阳光”联盟模拟)函数f (x )=2x 2+3x2e x的大致图象是( )解析:选B.由f (x )的解析式知有两个零点x =-32与x =0,排除A ,又f ′(x )=-2x 2+x +32e x ,由f ′(x )=0知函数有两个极值点,排除C ,D ,故选B.8.(2019·成都市第一次诊断性检测)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝⎛⎭⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24 D.e4解析:选A.由y =tx ,得y ′=t 2tx ,则切线斜率为k =t 4,所以切线方程为y -2=t4⎝⎛⎭⎫x -4t ,即y =t4x +1.设切线与曲线y =e x +1+1 的切点为(x 0,y 0).由y =e x +1+1,得y ′=e x +1,则由e x 0+1=t 4,得切点坐标为⎝⎛⎭⎫ln t 4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝⎛⎭⎫x -ln t 4+1,即y=t 4x -t 4ln t 4+t 2+1,所以由题意,得-t 4ln t 4+t 2+1=1,即ln t4=2,解得t =4e 2,故选A. 9.(2019·金华十校高考模拟)已知函数f (x )=23x 3-x 2+ax -1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a 的取值范围为____________.解析:由题意知,f (x )=23x 3-x 2+ax -1的导数f ′(x )=2x 2-2x +a .2x 2-2x +a =3有两个不等正根,则⎩⎪⎨⎪⎧Δ=4-8(a -3)>012(a -3)>0,得3<a <72.答案:⎝⎛⎭⎫3,72 10.(2019·湖州市高三期末)定义在R 上的函数f (x )满足:f (1)=1,且对于任意的x ∈R ,都有f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.解析:设g (x )=f (x )-12x ,因为f ′(x )<12,所以g ′(x )=f ′(x )-12<0,所以g (x )为减函数,又f (1)=1, 所以f (log 2x )>log 2x +12=12log 2x +12,即g (log 2x )=f (log 2x )-12log 2x >12=g (1)=f (1)-12=g (log 22),所以log 2x <log 22,又y =log 2x 为底数是2的增函数, 所以0<x <2,则不等式f (log 2x )>log 2x +12的解集为(0,2).答案:(0,2)11.(2019·绍兴、诸暨高考二模)已知函数f (x )=x 3-3x ,函数f (x )的图象在x =0处的切线方程是________;函数f (x )在区间[0,2]内的值域是________.解析:函数f (x )=x 3-3x ,切点坐标(0,0),导数为y ′=3x 2-3,切线的斜率为-3, 所以切线方程为y =-3x ;3x 2-3=0,可得x =±1,x ∈(-1,1),y ′<0,函数是减函数,x ∈(1,+∞),y ′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2]. 答案:y =-3x [-2,2]12.(2019·台州市高三期末考试)已知函数f (x )=x 2-3x +ln x ,则f (x )在区间[12,2]上的最小值为________;当f (x )取到最小值时,x =________.解析:f ′(x )=2x -3+1x =2x 2-3x +1x(x >0),令f ′(x )=0,得x =12,1,当x ∈(12,1)时,f ′(x )<0,x ∈(1,2)时,f ′(x )>0,所以f (x )在区间[12,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )在区间[12,2]上的最小值为f (1)=-2.答案:-2 113.(2019·唐山二模)已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为________.解析:易知f (x )的定义域为(0,+∞). 因为f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1.设h (n )=g (n )-n +2=-ln n -n +1.因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1). 答案:(0,1)14.(2019·浙江东阳中学期中检测)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是________.解析:设g (x )=e x (2x -1),y =ax -a ,由题意存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,g (x )min =-2e-12,当x =0时,g (0)=-1,g (1)=e>0,直线y =ax -a恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.答案:32e≤a <115.设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max=-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).16.(2019·浙江金华十校第二学期调研)设函数f (x )=e x -x ,h (x )=-kx 3+kx 2-x +1. (1)求f (x )的最小值;(2)设h (x )≤f (x )对任意x ∈[0,1]恒成立时k 的最大值为λ,证明:4<λ<6. 解:(1)因为f (x )=e x -x ,所以f ′(x )=e x -1, 当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减, 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f (0)=1.(2)证明:由h (x )≤f (x ),化简可得k (x 2-x 3)≤e x -1, 当x =0,1时,k ∈R , 当x ∈(0,1)时,k ≤e x -1x 2-x3,要证:4<λ<6,则需证以下两个问题; ①e x -1x 2-x 3>4对任意x ∈(0,1)恒成立; ②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.先证:①e x -1x 2-x 3>4,即证e x -1>4(x 2-x 3),由(1)可知,e x -x ≥1恒成立,所以e x -1≥x ,又x ≠0,所以e x -1>x , 即证x ≥4(x 2-x 3)⇔1≥4(x -x 2)⇔(2x -1)2≥0, (2x -1)2≥0,显然成立,所以e x -1x 2-x 3>4对任意x ∈(0,1)恒成立;再证②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.取x 0=12,e -114-18=8(e -1),因为e <74,所以8(e -1)<8×34=6,所以存在x 0∈(0,1),使得e x 0-1x 20-x 30<6,由①②可知,4<λ<6.17.(2019·宁波市高考模拟)已知f (x )=x +a 2x ,g (x )=x +ln x ,其中a >0.若对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立,求实数a 的取值范围.解:对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)⇔当x ∈[1,e]有f (x )min ≥g (x )max , 当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在x ∈[1,e]上单调递增, 所以g (x )max =g (e)=e +1.当x ∈[1,e]时,f ′(x )=1-a 2x 2=x 2-a2x2,因为a >0,所以令f ′(x )=0得x =a .①当0<a <1时,f ′(x )>0,所以f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=a 2+1.令a 2+1≥e +1得a ≥e ,这与0<a <1矛盾. ②当1≤a ≤e 时,若1≤x <a ,则f ′(x )<0,若a <x ≤e ,则f ′(x )>0,所以f (x )在[1,a ]上单调递减,在[a ,e]上单调递增, 所以f (x )min =f (a )=2a ,令2a ≥e +1得a ≥e +12,又1≤a ≤e , 所以e +12≤a ≤e.③当a >e 时,f ′(x )<0,所以f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=e +a 2e.令e +a 2e ≥e +1得a ≥e ,又a >e ,所以a >e.综合①②③得,所求实数a 的取值范围是⎣⎢⎡⎭⎪⎫e +12,+∞. 18.(2019·宁波九校联考)已知函数f (x )=e -x -11+x .(1)证明:当x ∈[0,3]时,e -x ≥11+9x; (2)证明:当x ∈[2,3]时,-27<f (x )<0.证明:(1)要证e -x ≥11+9x ,也即证e x ≤1+9x .令F (x )=e x -9x -1,则F ′(x )=e x -9.令F ′(x )>0,则x >2ln 3.因此,当0≤x <2ln 3时,有F ′(x )<0,故F (x )在[0,2ln 3)上单调递减;当2ln 3<x ≤3时,有F ′(x )>0,故F (x )在[2ln 3,3]上单调递增.所以,F (x )在[0,3]上的最大值为max{F (0),F (3)}. 又F (0)=0,F (3)=e 3-28<0.故F (x )≤0,x ∈[0,3]成立, 即e x ≤1+9x ,x ∈[0,3]成立.原命题得证.(2)由(1)得:当x ∈[2,3]时,f (x )=e -x -11+x ≥11+9x -11+x.令t (x )=11+9x -11+x,则t ′(x )=-(1+9x )-2·9+(1+x )-2=1(1+x )2-9(1+9x )2=(1+9x )2-9(1+x )2(1+9x )2(1+x )2=72x 2-8(1+9x )2(1+x )2≥0,x ∈[2,3].所以,t (x )在[2,3]上单调递增,即t (x )≥t (2)=-1657>-1656=-27,x ∈[2,3],所以f (x )>-27得证.下证f (x )<0. 即证e x >x +1令h (x )=e x -(x +1)则h ′(x )=e x -1>0, 所以h (x )在[2,3]上单调递增,所以,h (x )=e x -(x +1)≥e 2-3>0,得证.另证:要证11+9x -11+x>-27,即证9x 2-18x +1>0,令m (x )=9x 2-18x +1=9(x -1)2-8在[2,3]上递增,所以m (x )≥m (2)=1>0得证.。
2020年浙江高三数学总复习:导数的综合应用复习讲义

第五节导数的综合应用- 备考方向明确 h ------------------------- 方向比勢力更重要 ---------------知识链条完善- --------------------------- 把散落的知识连起来 ------------一、 利用导数解决实际生活中的优化问题1. 分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函 数关系式y=f(x)并确定定义域.2. 求导数f ' (x),解方程f ' (x)=0.3. 判断使f ' (x)=0的点是极大值点还是极小值点.4. 确定函数的最大值或最小值,还原到实际问题中作答. 提醒:注意实际问题中函数定义域的确定. 二、不等式问题1. 证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.2. 求解不等式恒成立或有解问题,可以考虑将参数分离出来,将参数范围问题转 化为研究新函数的值域问题.3. 方程解(函数的零点)个数问题可根据函数的单调性、极值等应用数形结合思 想求解.1. 与不等式有关的结论 (1)对任意 x,f(x)>g(x)? f(x)-g(x)>0? [f(x)-g(x)] min >0.⑶存在x i,x 2,f(x 1)>g(x 2)? f(x) ma?g(x) min.⑷对任意x,存在X o,f(X)>g(X o) ? f(x) min>g(x) min.(5) f(x) > a 或f(x) < a 对x € D恒成立? f(x) min > a 或f(x) max< a.(6) 若存在x € D,使f(x) > a 或f(x) < a? f(x) max》a 或f(x) min < a.2. 与生活优化有关的结论如果函数在开区间内只有一个极值点,那么该极值点就是最值点(不必再与端点的函数值比较).温故知新1. 设f(x)=a(x-5) 2+6In x,其中a€ R,曲线y=f(x)在点(1,f(1)) 处的切线与y轴相交于点(0,6).则a等于(A )(A) J (B)1 (C)2 (D)- 1解析:因为f(x)=a(x-5) 2+6ln x,故f' (x)=2a(x-5)+ -.x令x=1,得f(1)=16a,f ' (1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=*.故选A.2. 已知函数f(x)=e x在点(0,f(0))处的切线为I,动点(a,b)在直线I上,则2a+2-b 的最小值是(D )(A)4 (B)2 (C)2 2 (D) 2解析:由题得f ' (x)=e x,f(0)=e 0=1,k=f ' (0)=e 0=1. 所以切线方程为y-1=x-0即x-y+1=0,所以a-b+1=0,所以a-b=-1,所以2a+2-b>2芦卫=2尹=2〒二2(当且仅当a=l,b=- 1时取等号).故选D.3. _______ 已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x o,且x o>0,则a的取值范围是________ .解析:显然当a=0时,函数有两个不同的零点,不符合. 当a z 0 时,由f' (x)=3ax 2-6x=0,得x i=0,X2=-.a当a>0时,函数f(x)在(-乂,0),( ?,+ 乂)上单调递增,在(0, M)上单调递减,又a af(0)=1,所以函数f(x)存在小于0的零点,不符合题意;当a<0时,函数f(x)在(-乂,勻,(0,+ 乂)上单调递减,在(2,0)上单调递增,a a所以只需f(勻>0,解得a<-2.a答案:(-乂,-2)—咼频考点突破' ------------------------- ^在训练中掌握方法j - 考点一利用导数研究生活中的优化问题【例1]设函数f(x)在R上可导,其导函数是f ' (x),且函数f(x)在x=-2处取得极小值,则函数y=xf ' (x)的图象可能是()解析:因为函数f(x)在R上可导,其导数为f' (x),且函数f(x)在x=-2处取得极小值,所以当x>-2 时,f ' (x)>0;当x=-2 时,f ' (x)=0;当xv-2 时,f ' (x)<0,所以当x>-2时,xf ' (x)<0,函数y=xf ' (x)单调递增;当x<-2时,xf ' (x)>0,函数y=xf ' (x)单调递减,故选A.◎S 在求实际问题中的最大值或最小值时,一般先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.考点二不等式恒成立、不等式有解问题【例2] 设f(x)= a +xln x,g(x)=x 3-x 2-3.x(1)如果存在X1,X 2€ [0,2]使得g(x i)-g(x 2) >M成立,求满足上述条件的最大整数M;⑵如果对于任意的s,t € [1,2],都有f(s) > g(t)成立,求实数a的取值范围.思路点拨:(1)存在x i,x 2€ [0,2],使得g(x i)-g(x 2) >M成立,等价于[g(x l)-g(x 2)] max》M.⑵对任意的s,t € [ 1,2],都有f(s) > g(t)成立,等价于f(x) min> g(x) max.解:(1)由g(x)=x 3-x 2-3,得g‘ (x)=3x 2-2x=3x(x- |).由g‘ (x)>0 得x<0 或x>|,由g‘ (x)<0 得0<x<3,3又x€ [0,2],所以g(x)在[0, 2]上是单调递减函数,3在[?,2]上是单调递增函数,3所以g(X)min=g(;)=- 887 ,g(X)ma)=g(2)=1. 故[g(X 1)-g(X 2)]maF g(X)max-g(x) min = 罟》M, 则满足条件的最大整数M=4.(2) 对于任意的s,t € [1,2],都有f(s) > g(t)成立, 等价于在区间[1 ,2]上,函数f(x) min》g(x) max.由(1)可知在区间[}2]上,g(x)的最大值为g(2)=1. 在区间[丄,2]上,f(x)= a+xln x > 1恒成立等价于a>x-x2ln x恒成立.2 x设h(x)=x-x 2ln x,h ' (x)=1-2xIn x-x,可知h' (x)在区间[1,2]上是减函数,又h' (1)=0,所以当1<x<2 时,h ' (x)<0;当!<x<1 时,h ' (x)>0.即函数h(x)=x-x 2ln x在区间(苏1)上单调递增,在区间(1,2)上单调递减,所以h(x) max=h(1)=1,即实数a的取值范围是[1,+ 乂).◎也“恒成立”与“存在性”问题的求解是“互补”关系,即f(x) >g(a)对于x € D恒成立,应求f(x)的最小值;若存在x € D,使得f(x) >g(a)成立,应求f(x)的最大值.求解时注意等号是否成立.[迂移輕已知函数f(x)=x 2ln x-a(x 2-1),a € R,若当x> 1时,f(x) >0成立,求a的取值范围.解:f ' (x)=2xln x+(1-2a)x=x(2ln x+1-2a), 其中x> 1.当a< 2 时,f ' (x) > 0,函数f(x)在[1,+ 乂)上单调递增,故f(x) >f(1)=0,1当a>1 时,令f' (x)=0,得X=e=1 1若X€ [1, eT,则f‘ (X)<0,函数f(x)在[1,訂]上单调递减,f(x) <f(1)=0,不符合题意.综上,a的取值范围是(-乂, !].考点三利用导数研究函数零点问题【例3】设函数f(x)=- l x3+x2+(m2-1)x(x € R),其中m>0.3(1) 当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;⑵求函数f(x)的单调区间与极值;⑶已知函数f(x)有三个互不相同的零点0,X1,X2,且X1VX2,若对任意的x €[x 1,X2],f(x)>f(1) 恒成立,求实数m的取值范围.解:(1)当m=1 时,f(x)=- £x3+x2,f ' (x)=-x 2+2x,故f' (1)=1,即曲线y=f(x)在点(1,f(1))处的切线斜率为1.(2) f ' (x)=-x 2+2x+m 1= -[x-(1-m)][x-(1+m)],令f' (x)=0,得x=1-m 或x=1+m,m>0故1+m>1-m,当X变化时,f ' (x),f(x) 的变化情况如表:所以f(x)的单调减区间是(-8,1-m),(1+m,+ 8),单调增区间是(1-m,1+m), 于是函数f(x)在x=1-m处取得极小值f(1-m)=- 2vm+rm--;3 3在x=1+m处取得极大值f(1+m)= 2vm+rm--.3 3⑶由题设知f(x)=-x( -x2-x-m2+1)=- l x(x-x i)(x-x 2),3 3所以方程-x2-x-m2+1=0有两个相异的非零实根x i,x 2,3故由根与系数的关系得X I+X2=3且厶=1+彳(m2-1)>0,3解得mM或m<-!(舍去),2 2因为X I<X2,所以2X2>X I+X2=3? X2>- >1,2若X I<1<X2,则f(1)=- l(1-x i)(1-x 2)>0,3而f(x 1)=0,不合题意,若K X1VX2,则对?x € [x i,x 2],有x>0,x-x 1 > 0,x-x 2< 0,所以f(x)=- 1 x(x-x i)(x-x 2) >0.3又f(x i)=f(x 2)=0,故f(x)在[x i,x 2]上的最小值为0,于是对?x € [x i,x 2],f(x)>f(1) 恒成立,得f(1)=m 2-1 <0? - — <m<?,3 3 3综上,实数m的取值范围是(1,三).2 3OS (1)函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解.(2) 研究函数零点(变号零点)所在区间,要利用函数零点存在定理确定.(3) 单调函数至多一个零点.[I迂務ai罐(2018 •全国H卷)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x> 0 时,f(x) > 1;⑵若f(x)在(0,+ 乂)只有一个零点,求a.(1)证明:当a=1 时,f(x) > 1 等价于(x 2+1)e-x-1 < 0.设函数g(x)=(x 2+1)e-x-1,则g‘ (x)=-(x 2-2x+1) • e-x=-(x-1) 2e-x.当X M 1 时,g ' (x)<0,所以g(x)在(0,+ g)上单调递减.而g(0)=0,故当x>0 时,g(x) <0,即f(x) > 1.⑵解:设函数h(x)=1-ax 2e-x.f(x)在(0,+ )上只有一个零点等价于h(x)在(0,+ ^)上只有一个零点.(i )当a< 0 时,h(x)>0,h(x) 没有零点;(ii)当a>0 时,h ' (x)=ax(x-2)e :当x€ (0,2)时,h ' (x)<0;当x€ (2,+ )时,h ' (x)>0.所以h(x)在(0,2)上单调递减,在(2,+ )上单调递增.故h(2)=1-算是h(x)在(0,+ s)上的最小值.e2①若h(2)>0,即a<e r,h(x)在(0,+ s)上没有零点.2 .,②若h(2)=0,即a=}h(x)在(0,+ s)上只有一个零点.2③若h(2)<0,即a>e r,因为h(0)=1,所以h(x)在(0,2)上有一个零点;由⑴知,当x>0时,e x>x2,3 3 3所以h(4a)=1-嗥=1-单 >1-理=1-丄>0,ae(e2a) (2a j故h(x)在(2,4a)上有一个零点.因此h(x)在(0,+ s)上有两个零点.2综上,当f(x)在(0,+ s)上只有一个零点时,a=e j.-解题规范夯实°------------------------- 在平凡的事情上精益求精 ----------利用导数证明不等式【例题】(2015 •全国I卷)设函数f(x)=e 2x-aIn x.(1)讨论f(x)的导函数f' (x)零点的个数;⑵证明:当a>0 时,f(x) >2a+aln 2 .a(1)解:f(x)的定义域为(0,+ s),2xf‘ (x)=2e - a(x>0). ①x当a< 0时,厂(x)>0,f ' (x)没有零点;当a>0时,因为y=e2x在(0,+ s)上单调递增,y=-旦在(0,+ s)上单调递增,x所以f ' (x)在(0,+ s)上单调递增.又f' (a)>0,当 b 满足0<b<a且b<* 时,f ' (b)<0,故当a>0时,f ' (x)存在唯一零点.⑵证明:由(1),可设f ' (x)在(0,+ 乂)上的唯一零点为X0,当x € (0,x 0)时,f '(x)<0;当x € (x 0,+ g)时,f ' (x)>0.故f(x)在(0,x 0)上单调递减,在(x 0,+ g)上单调递增,所以当X=X0时,f(x)取得最小值,最小值为f(x 0).由于2e2x0-三=0, ②X。
2020年高考数学(浙江专用)总复习教师用书:第3章 第1讲 导数的概念与导数的计算 Word版含解析

第1讲 导数的概念与导数的计算最新考纲 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→Δy Δx=0limx ∆→f (x 0+Δx )-f (x 0)Δx .(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2x )′=x ·2x -1.( )(4)若f (x )=e 2x ,则f ′(x )=e 2x .( )解析 (1)f ′(x 0)是函数f (x )在x 0处的导数,(f (x 0))′是常数f (x 0)的导数即(f (x 0))′=0;(3)(2x )′=2x ln 2; (4)(e 2x )′=2e 2x .答案 (1)× (2)√ (3)× (4)× 2.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x解析 y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x .答案 B3.(选修2-2P18AT7改编)曲线y=sin xx在x=π2处的切线方程为()A.y=0B.y=2πC.y=-4π2x+4πD.y=4π2x解析∵y′=x cos x-sin xx2,∴y′|x=π2=-4π2,当x=π2时,y=2π,∴切线方程为y-2π=-4π2⎝⎛⎭⎪⎫x-π2,即y=-4π2x+4π.答案 C4.(2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a =________.解析y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a=3.答案 35.(2017·丽水调研)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f′(5)=________;f(5)=________.解析f′(5)=-1,f(5)=-5+8=3.答案-1 36.(2017·舟山调研)定义在R上的函数f(x)满足f(x)=12f′(1)e2x-2+x2-2f(0)x,则f(0)=________;f(x)=________.解析 ∵f (x )=12f ′(1)e 2x -2+x 2-2f (0)x , ∴f ′(x )=f ′(1)e 2x -2+2x -2f (0), ∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f (x )=e 2x +x 2-2x . 答案 1 e 2x +x 2-2x考点一 导数的运算【例1】 分别求下列函数的导数: (1)y =e x ln x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x . 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =⎝ ⎛⎭⎪⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x . (4)∵y =ln 1+2x =12ln(1+2x ), ∴y ′=12·11+2x ·(1+2x )′=11+2x.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;(3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2;(4)y =ln(2x -5).解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.(3)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x . ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u . 则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5. 考点二 导数的几何意义(多维探究) 命题角度一 求切线的方程【例2-1】 (1)函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A.2x -y -4=0B.2x +y =0C.x -y -3=0D.x +y +1=0(2)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________. 解析 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故函数f (x )的图象在点(1,-2)处的切线方程为y -(-2)=x -1,即x -y -3=0. (2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=x 2,得 y ′|x =x 0=x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2,解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4.故所求的切线方程是y -83=x -2或y -83=4(x -2), 即3x -3y +2=0或12x -3y -16=0.答案 (1)C (2)3x -3y +2=0或12x -3y -16=0 命题角度二 求参数的值【例2-2】 (1)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A.1B.2C.-1D.-2(2)(2017·温州调研)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 (1)设切点为(x 0,y 0),y ′=1x +a,所以有⎩⎪⎨⎪⎧y 0=x 0+1,1x 0+a =1,y 0=ln (x 0+a ),解得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.(2)∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x . ∵f (x )存在垂直于y 轴的切线, ∴f ′(x )存在零点,∴x +1x -a =0有解, ∴a =x +1x ≥2(x >0). 答案 (1)B (2)[2,+∞) 命题角度三 公切线问题【例2-3】 (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x , ∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 的值为( ) A.-1或-2564 B.-1或214 C.-74或-2564D.-74或7解析 由y =x 3得y ′=3x 2,设曲线y =x 3上任意一点(x 0,x 30)处的切线方程为y -x 30=3x 20(x -x 0),将(1,0)代入得x 0=0或x 0=32.①当x 0=0时,切线方程为y =0,由⎩⎨⎧y =0,y =ax 2+154x -9得ax 2+154x -9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564.②当x 0=32时,切线方程为y =274x -274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得ax 2-3x -94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564. 答案 A[思想方法]1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解. [易错防范]1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x ;③复合函数求导分不清内、外层函数.2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.基础巩固题组(建议用时:40分钟)一、选择题1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=()A.0B.1C.2D.3解析∵y=e ax-ln(x+1),∴y′=a e ax-1x+1,∴当x=0时,y′=a-1.∵曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D2.若f(x)=2xf′(1)+x2,则f′(0)等于()A.2B.0C.-2D.-4解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2,∴f′(0)=2f′(1)=-4.答案 D3.(2017·杭州质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.答案 C4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为()A.eB.-eC.1e D.-1e解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1 x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1e.答案 C5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案 B 二、填空题6.(2015·天津卷改编)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________;f (x )在x =1处的切线方程为________.解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f (x )=3x ln x ,f (1)=0,∴f (x )在x =1处的切线方程为y =3(x -1),即为3x -y -3=0.答案 3 3x -y -3=07.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=08.(2015·陕西卷)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题9.(2017·长沙调研)已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, ∴当x =2时,y ′=-1,y =53,∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.能力提升题组 (建议用时:25分钟)11.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 017(x )等于( ) A.-sin x -cos x B.sin x -cos x C.-sin x +cos xD.sin x +cos x解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x , ∴f n (x )是以4为周期的函数, ∴f 2 017(x )=f 1(x )=sin x +cos x ,故选D. 答案 D12.已知函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A.4B.-14C.2D.-12解析 f ′(x )=g ′(x )+2x .∵y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=2,∴f ′(1)=g ′(1)+2×1=2+2=4,∴曲线y =f (x )在点(1,f (1))处的切线的斜率为4. 答案 A13.(2016·全国Ⅱ卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 214.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.15.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k ,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解 (1)设点P k -1的坐标是(x k -1,0), ∵y =e x ,∴y ′=e x ,∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1=e x k -1(x -x k-1),令y =0,则x k =x k -1-1(k =2,…,n ). (2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1), ∴|P k Q k |=e x k =e -(k -1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1) =1-e -n 1-e -1=e -e 1-n e -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-n e -1.。
浙江专用2020版高考数学复习第四章导数及其应用第1节导数的概念与导数的计算习题含解析

第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =,y =1x,y =2,y =3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (a +b )的复合函数)的导数.知 识 梳 理1.函数y =f ()在=0处的导数(1)定义:称函数y =f ()在=0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=ΔyΔx为函数y =f ()在=0处的导数,记作f ′(0)或y ′|=0,即f ′(0)= Δy Δx=f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f ()在点0处的导数f ′(0)的几何意义是在曲线y =f ()上点(0,f (0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(0)(-0). 2.函数y =f ()的导函数如果函数y =f ()在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f ()在开区间内的导函数.记作f ′()或y ′. 3.基本初等函数的导数公式4.若f ′(),g ′()存在,则有: (1)[f ()±g ()]′=f ′()±g ′(); (2)[f ()·g ()]′=f ′()g ()+f ()g ′(); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g x (g ()≠0). 5.复合函数的导数复合函数y =f (g ())的导数和函数y =f (u ),u =g ()的导数间的关系为y ′=y u ′·u ′,即y 对的导数等于y 对u 的导数与u 对的导数的乘积. [常用结论与易错提醒]1.f ′(0)与0的值有关,不同的0,其导数值一般也不同.2.f ′(0)不一定为0,但[f (0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f ()的导数f ′()反映了函数f ()的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′()|反映了变化的快慢,|f ′()|越大,曲线在这点处的切线越“陡”.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)f ′(0)与(f (0))′表示的意义相同.( )(2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2)′=·2-1.( )(4)若f ()=e 2,则f ′()=e 2.( )解析 (1)f ′(0)是函数f ()在0处的导数,(f (0))′是常数f (0)的导数即(f (0))′=0;(3)(2)′=2ln 2;(4)(e 2)′=2e 2.答案 (1)× (2)√ (3)× (4)× 2.函数y =cos -sin 的导数为( ) A.sin B.-sin C.cosD.-cos解析 y ′=(cos )′-(sin )′=cos -sin -cos =-sin . 答案 B3.(2018·全国Ⅱ卷)曲线y =2ln(+1)在点(0,0)处的切线方程为________________. 解析 ∵y =2ln(+1),∴y ′=2x +1.当=0时,y ′=2,∴曲线y =2ln(+1)在点(0,0)处的切线方程为y -0=2(-0),即y =2. 答案 y =24.(2019·南通一调)若曲线y =ln 在=1与=t 处的切线互相垂直,则正数t 的值为________. 解析 因为y ′=ln +1, 所以(ln 1+1)(ln t +1)=-1, ∴ln t =-2,t =e -2. 答案 e -25.定义在R 上的函数f ()满足f ()=12f ′(1)e 2-2+2-2f (0),则f (0)=________;f ()=________.解析 ∵f ()=12f ′(1)e 2-2+2-2f (0),∴f ′()=f ′(1)e 2-2+2-2f (0), ∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f ′(1)=2e 2,∴f ()=e 2+2-2. 答案 1 e 2+2-26.已知曲线y =e -,则其图象上各点处的切线斜率的取值范围为________;该曲线在点(0,1)处的切线方程为________.解析 由题意得y ′=-e -,则由指数函数的性质易得y ′=-e -∈(-∞,0),即曲线y =e -的图象上各点处的切线斜率的取值范围为(-∞,0).当=0时,y ′=-e -0=-1,则曲线y =e -在(0,1)处的切线的斜率为-1,则切线的方程为y -1=-1·(-0),即+y -1=0. 答案 (-∞,0) +y -1=0考点一 导数的运算【例1】 求下列函数的导数:(1)y =2sin ; (2)y =cos x ex ;(3)y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2;(4)y =ln(2-5).解 (1)y ′=(2)′sin +2(sin )′=2sin +2cos .(2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x .(3)∵y =sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12sin(4+π)=-12sin 4, ∴y ′=-12sin 4-12·4cos 4=-12sin 4-2cos 4.(4)令u =2-5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 分别求下列函数的导数: (1)y =eln ;(2)y =⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =-sin x 2cos x2;(4)y =ln 1+2x .解 (1)y ′=(e)′ln +e(ln )′=eln +e ·1x=⎝⎛⎭⎪⎫ln x +1x e.(2)∵y =3+1+1x 2,∴y ′=32-2x3.(3)∵y =-12sin ,∴y ′=1-12cos .(4)∵y =ln 1+2x =12ln(1+2),∴y ′=12·11+2x ·(1+2)′=11+2x .考点二 导数的几何意义多维探究角度1 求切线的方程【例2-1】 (1)(2019·绍兴一中模拟)已知函数f ()=e +2sin ,则f ()在点(0,f (0))处的切线方程为( ) A.+y -1=0 B.+y +1=0 C.3-y +1=0D.3-y -1=0(2)已知曲线y =133上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________.解析 (1)因为f ()=e +2sin ,所以f ′()=e +2cos .所以f ′(0)=3,f (0)=1.由导数的几何意义可知,函数f ()在点(0,f (0))处的切线方程为y -1=3,即为3-y +1=0,故选C. (2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=2,得y ′|=0=20,即过点P 的切线的斜率为20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若0≠2,则20=13x 30-83x 0-2, 解得0=-1,此时切线的斜率为1;若0=2,则切线的斜率为4. 故所求的切线方程是y -83=-2或y -83=4(-2),即3-3y +2=0或12-3y -16=0.答案 (1)C (2)3-3y +2=0或12-3y -16=0 角度2 求参数的值【例2-2】 (1)(2019·嘉兴检测)函数y =3-的图象与直线y =a +2相切,则实数a =( ) A.-1 B.1 C.2D.4(2)(2019·杭州质检)若直线y =与曲线y =e +m (m ∈R ,e 为自然对数的底数)相切,则m =( ) A.1 B.2 C.-1D.-2解析 (1)由题意得⎩⎨⎧y ′=3x 2-1=a ①,y =x 3-x =ax +2 ②,将①代入②,消去a 得3-=(32-1)+2,解得=-1,则a =2,故选C.(2)设切点坐标为(0,e 0+m ).由y =e +m ,得y ′=e +m ,则切线的方程为y -e 0+m =e 0+m (-0) ①,又因为切线y =过点(0,0),代入①得0=1,则切点坐标为(1,1),将(1,1)代入y =e +m 中,解得m =-1,故选C. 答案 (1)C (2)C 角度3 公切线问题【例2-3】 (一题多解)已知曲线y =+ln 在点(1,1)处的切线与曲线y =a 2+(a +2)+1相切,则a =________.解析 法一 ∵y =+ln , ∴y ′=1+1x,y ′|=1=2.∴曲线y =+ln 在点(1,1)处的切线方程为y -1=2(-1),即y =2-1.∵y =2-1与曲线y =a 2+(a +2)+1相切,∴a ≠0(当a =0时曲线变为y =2+1与已知直线平行).由⎩⎨⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得a 2+a +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2-1.设y =2-1与曲线y =a 2+(a +2)+1相切于点(0,a 20+(a +2)0+1).∵y ′=2a +(a +2),∴y ′|=0=2a 0+(a +2). 由⎩⎨⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·苏州调研)已知曲线f ()=a 3+ln 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若存在过点(1,0)的直线与曲线y =3和y =a 2+154-9(a ≠0)都相切,则a 的值为( )A.-1或-2564B.-1或214C.-74或-2564D.-74或7解析 (1)f ′()=3a 2+1x,则f ′(1)=3a +1=2,解得a =13.(2)由y =3得y ′=32,设曲线y =3上任意一点(0,30)处的切线方程为y -30=320(-0),将(1,0)代入得0=0或0=32.①当0=0时,切线方程为y =0,由⎩⎨⎧y =0,y =ax 2+154x -9得a 2+154-9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564. ②当0=32时,切线方程为y =274-274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得a 2-3-94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564.答案 (1)13(2)A基础巩固题组一、选择题1.若f ()=2f ′(1)+2,则f ′(0)等于( ) A.2 B.0 C.-2D.-4解析 ∵f ′()=2f ′(1)+2,∴令=1,得f ′(1)=-2, ∴f ′(0)=2f ′(1)=-4. 答案 D2.设曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,则a =( ) A.0 B.1 C.2D.3解析 ∵y =e a -ln(+1),∴y ′=a e a -1x +1,∴当=0时,y ′=a -1.∵曲线y =e a -ln(+1)在=0处的切线方程为2-y +1=0,∴a -1=2,即a =3.故选D. 答案 D3.曲线f ()=3-+3在点P 处的切线平行于直线y =2-1,则P 点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)解析 f ′()=32-1,令f ′()=2,则32-1=2,解得=1或=-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2-1上,故选C. 答案 C4.(2019·诸暨统考)已知f ()的导函数为f ′(),若满足f ′()-f ()=2+,且f (1)≥1,则f ()的解析式可能是( ) A.2-ln + B.2-ln - C.2+ln +D.2+2ln +解析 由选项知f ()的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎢⎡⎦⎥⎤f (x )x ′=1+1x ,故f (x )x=+ln +c (c 为待定常数),即f ()=2+(ln +c ).又f (1)≥1,则c ≥0,故选C. 答案 C5.(一题多解)(2018·全国Ⅰ卷)设函数f ()=3+(a -1)2+a .若f ()为奇函数,则曲线y =f ()在点(0,0)处的切线方程为( ) A.y =-2 B.y =- C.y =2D.y =解析 法一 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-)=-f (),所以(-)3+(a -1)(-)2+a (-)=-[3+(a -1)2+a ],所以2(a -1)2=0.因为∈R ,所以a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法二 因为函数f ()=3+(a -1)2+a 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f ()=3+(经检验,f ()为奇函数),所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 法三 易知f ()=3+(a -1)2+a =[2+(a -1)+a ],因为f ()为奇函数,所以函数g ()=2+(a -1)+a 为偶函数,所以a -1=0,解得a =1,所以f ()=3+,所以f ′()=32+1,所以f ′(0)=1,所以曲线y =f ()在点(0,0)处的切线方程为y =.故选D. 答案 D6.已知y =f ()是可导函数,如图,直线y =+2是曲线y =f ()在=3处的切线,令g ()=f (),g ′()是g ()的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f ()在=3处切线的斜率等于-13,∴f ′(3)=-13.∵g ()=f (),∴g ′()=f ()+f ′(),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 答案 B 二、填空题7.(2018·天津卷)已知函数f ()=eln ,f ′()为f ()的导函数,则f ′(1)的值为________. 解析 由题意得f ′()=eln +e ·1x,则f ′(1)=e.答案 e8.(2018·全国Ⅲ卷)曲线y =(a +1)e 在点(0,1)处的切线的斜率为-2,则a =________. 解析 y ′=(a +1+a )e ,由曲线在点(0,1)处的切线的斜率为-2,得y ′|=0=(a +1+a )e|=0=1+a =-2,所以a =-3.答案 -39.(2018·台州调考)已知函数f ()=a ln ,∈(0,+∞),其中a 为实数,f ′()为f ()的导函数,若f ′(1)=3,则a 的值为__________;f ()在=1处的切线方程为________.解析 f ′()=a ⎝⎛⎭⎪⎫ln x +x ·1x =a (1+ln ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f ()=3ln ,f (1)=0,∴f ()在=1处的切线方程为y =3(-1),即为3-y -3=0. 答案 3 3-y -3=010.设曲线y =e 在点(0,1)处的切线与曲线y =1x(>0)在点P 处的切线垂直,则P 的坐标为________.解析 y ′=e ,曲线y =e 在点(0,1) 处的切线的斜率1=e 0=1.设P (m ,n ),y =1x(>0)的导数为y ′=-1x 2(>0),曲线y =1x (>0)在点P 处的切线斜率2=-1m2(m >0),因为两切线垂直,所以12=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题11.已知点M 是曲线y =133-22+3+1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=2-4+3=(-2)2-1≥-1,∴当=2时,y ′min =-1,y =53, ∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率=-1, ∴切线方程为3+3y -11=0.(2)由(1)得≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 12.已知曲线y =133+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =133+43上,且y ′=2, ∴在点P (2,4)处的切线的斜率为y ′|=2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(-2),即4-y -4=0.(2)设曲线y =133+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|=0=20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=20(-0),即y =20·-2330+43.∵点P (2,4)在切线上,∴4=220-2330+43,即30-320+4=0,∴30+20-420+4=0, ∴20(0+1)-4(0+1)(0-1)=0,∴(0+1)(0-2)2=0,解得0=-1或0=2,故所求的切线方程为-y +2=0或4-y -4=0.能力提升题组13.(2018·萧山月考)已知f 1()=sin +cos ,f n +1()是f n ()的导函数,即f 2()=f 1′(),f 3()=f ′2(),…,f n +1()=f n ′(),n ∈N *,则f 2 018()等于( )A.-sin -cosB.sin -cosC.-sin +cosD.sin +cos解析 ∵f 1()=sin +cos ,∴f 2()=f 1′()=cos -sin ,∴f 3()=f 2′()=-sin -cos ,∴f 4()=f 3′()=-cos +sin ,∴f 5()=f 4′()=sin +cos ,∴f n ()是以4为周期的函数,∴f 2 018()=f 2()=-sin +cos ,故选C.答案 C14.(2019·无锡模拟)关于的方程2|+a |=e 有3个不同的实数解,则实数a 的取值范围为________.解析 由题意,临界情况为y =2(+a )与y =e 相切的情况,y ′=e =2,则=ln 2,所以切点坐标为(ln 2,2),则此时a =1-ln 2,所以只要y =2|+a |图象向左移动,都会产生3个交点,所以a >1-ln 2,即a ∈(1-ln 2,+∞).答案 (1-ln 2,+∞)15.若直线y =+b 是曲线y =ln +2的切线,也是曲线y =ln(+1)的切线,则b =________. 解析 y =ln +2的切线为:y =1x 1·+ln 1+1(设切点横坐标为1). y =ln(+1)的切线为:y =1x 2+1+ln(2+1)-x 2x 2+1(设切点横坐标为2).∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1, 解得1=12,2=-12,∴b =ln 1+1=1-ln 2. 答案 1-ln 216.(2019·湖州适应性考试)已知函数f ()=|3+a +b |(a ,b ∈R ),若对任意的1,2∈[0,1],f (1)-f (2)≤2|1-2|恒成立,则实数a 的取值范围是________.解析 当1=2时,f (1)-f (2)≤2|1-2|恒成立;当1≠2时,由f (1)-f (2)≤2|1-2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f ()在(0,1)上的导函数f ′()满足|f ′()|≤2,函数y =3+a +b 的导函数为y ′=32+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎨⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1].答案 [-2,-1]17.设函数f ()=a -b x,曲线y =f ()在点(2,f (2))处的切线方程为7-4y -12=0. (1)求f ()的解析式;(2)证明曲线f ()上任一点处的切线与直线=0和直线y =所围成的三角形面积为定值,并求此定值.解 (1)方程7-4y -12=0可化为y =74-3, 当=2时,y =12.又f ′()=a +b x 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f ()=-3x . (2)设P (0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(-0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(-0).令=0,得y =-6x 0,从而得切线与直线=0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =,得y ==20,从而得切线与直线y =的交点坐标为(20,20).所以点P (0,y 0)处的切线与直线=0,y =所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|20|=6. 故曲线y =f ()上任一点处的切线与直线=0,y =所围成的三角形面积为定值,且此定值为6.18.如图,从点P 1(0,0)作轴的垂线交曲线y =e 于点Q 1(0,1),曲线在Q 1点处的切线与轴交于点P 2.再从P 2作轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P 点的坐标为(,0)(=1,2,…,n ).(1)试求与-1的关系(=2,…,n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.解 (1)设点P -1的坐标是(-1,0),∵y =e ,∴y ′=e ,∴Q -1(-1,e -1),在点Q -1(-1,e -1)处的切线方程是y -e -1=e -11(--1),令y =0,则=-1-1(=2,…,n ).(2)∵1=0,--1=-1,∴=-(-1),∴|PQ |=e =e -(-1),于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.。
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)

图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
浙江专用2020版高考数学一轮复习板块命题点专练五导数及其应用含解析

板块命题点专练(五) 导数及其应用命题点一导数的运算及几何意义1.(2018·全国卷Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-xC.y=2x D.y=x解析:选D ∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又∵f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.2.(2018·全国卷Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为________.解析:∵y=2ln(x+1),∴y′=2x+1.令x=0,得y′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),∴切线方程为y=2x.答案:y=2x3.(2018·全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=________.解析:∵y′=(ax+a+1)e x,∴当x=0时,y′=a+1,∴a+1=-2,解得a=-3.答案:-3命题点二函数单调性、极值、最值1.(2017·浙江高考)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )解析:选D 由f′(x)的图象知,f′(x)的图象有三个零点,故f(x)在这三个零点处取得极值,排除A、B;记导函数f′(x)的零点从左到右分别为x1,x2,x3,又在(-∞,x1)上f ′(x )<0,在(x 1,x 2)上f ′(x )>0,所以函数f (x )在(-∞,x 1)上单调递减,排除C ,故选D.2.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:选A 因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )ex -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]ex -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)ex -1=(x +2)(x -1)ex -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1.3.(2013·浙江高考)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1 处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C 当k =1时,f (x )=(e x-1)(x -1),0,1是函数f (x )的零点.当0<x <1时,f (x )=(e x -1)(x -1)<0,当x >1时,f (x )=(e x-1)(x -1)>0,1不会是极值点.当k =2时,f (x )=(e x -1)(x -1)2,零点还是0,1,但是当0<x <1,x >1时,f (x )>0,由极值的概念,知选C.4.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎪⎫-32×⎝⎛⎭⎪⎫1+12=-332. 答案:-3325.(2018·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R)在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:法一:f ′(x )=6x 2-2ax =2x (3x -a )(x >0). ①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增, 又f (0)=1,∴f (x )在(0,+∞)上无零点. ②当a >0时,由f ′(x )>0,得x >a3;由f ′(x )<0,得0<x <a3,∴f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a3,+∞上单调递增. 又f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,∴a =3. 此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 法二:令f (x )=2x 3-ax 2+1=0, 得a =2x 3+1x 2=2x +1x2.令g (x )=2x +1x 2,则g ′(x )=2-2x3.由g ′(x )<0,得0<x <1;由g ′(x )>0,得x >1, ∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∵f (x )在(0,+∞)内有且只有一个零点, ∴a =g (1)=3,此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减. 又f (1)=0,f (-1)=-4,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3. 答案:-36.(2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x. (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x, 所以f ′(x )=[ax 2-(2a +1)x +2]e x. 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x=(ax -1)(x -2)e x.若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.7.(2018·全国卷Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .解:(1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x. 设函数g (x )=ln(1+x )-x1+x , 则g ′(x )=x+x2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0, 故当x >-1时,g (x )≥g (0)=0,且仅当x =0时,g (x )=0,从而f ′(x )≥0,当且仅当x =0时,f ′(x )=0. 所以f (x )在(-1,+∞)上单调递增. 又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)①若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )ln(1+x )-2x >0=f (0), 这与x =0是f (x )的极大值点矛盾. ②若a <0, 设函数h (x )=f x 2+x +ax 2=ln(1+x )-2x2+x +ax2.由于当|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,2+x +ax 2>0, 故h (x )与f (x )符号相同. 又h (0)=f (0)=0, 故x =0是f (x )的极大值点, 当且仅当x =0是h (x )的极大值点.h ′(x )=11+x-+x +ax 2-2x+2ax+x +ax22=x 2a 2x 2+4ax +6a +x +ax 2+x +2. 若6a +1>0,则当0<x <-6a +14a, 且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )>0, 故x =0不是h (x )的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a |时,h ′(x )<0, 所以x =0不是h (x )的极大值点.若6a +1=0,则h ′(x )=x 3x -x +x 2-6x -2,则当x ∈(-1,0)时,h ′(x )>0; 当x ∈(0,1)时,h ′(x )<0. 所以x =0是h (x )的极大值点, 从而x =0是f (x )的极大值点.综上,a =-16.8.(2013·浙江高考)已知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax . (1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值. 解:(1)当a =1时,f ′(x )=6x 2-12x +6,所以f ′(2)=6. 又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值.f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ).令f ′(x )=0,得到x 1=1,x 2=a . 当a >1时,g (a )=⎩⎪⎨⎪⎧0,1<a ≤3,a 2-a ,a >3.当a <-1时,得综上所述,f (x )的闭区间[0,2|a |]上的最小值为 g (a )=⎩⎪⎨⎪⎧3a -1,a <-1,0,1<a ≤3,a 2-a ,a >3.命题点三 导数的综合应用1.(2013·浙江高考)设a ,b ∈R ,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =________.解析:由于不等式0≤x 4-x 3+ax +b ≤(x 2-1)2,即-x 4+x 3≤ax +b ≤x 3-2x 2+1,记f (x )=x 3-2x 2+1,g (x )=-x 4+x 3,显然f (x )-g (x )=x 4-2x 2+1=(x 2-1)2,所以当x ≥0时,f (x )≥g (x ),当且仅当x =1时取“=”,而f ′(x )=3x 2-4x ,g ′(x )=-4x 3+3x 2,f ′(1)=g ′(1)=-1,因此,当y =ax +b 为f (x )与g (x )在x =1处有公切线时,才能使0≤x 4-x 3+ax +b ≤(x 2-1)2恒成立,此时a =f ′(1)=-1,b =1(切点为(1,0)),所以ab =-1.答案:-12.(2018·浙江高考)已知函数f (x )=x -ln x .(1)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2; (2)若a ≤3-4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.证明:(1)函数f (x )的导函数为f ′(x )=12x -1x .由f ′(x 1)=f ′(x 2),得12x 1-1x 1=12x 2-1x 2. 因为x 1≠x 2, 所以1x 1+1x 2=12. 由基本不等式得12x 1x 2=x 1+x 2≥24x 1x 2.因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)=x 1-ln x 1+x 2-ln x 2=12x 1x 2-ln(x 1x 2).设g (x )=12x -ln x ,则g ′(x )=14x (x -4),当x 变化时,g ′(x ),g (x )的变化情况如表所示:所以g (x )在[256,+∞)上单调递增, 故g (x 1x 2)>g (256)=8-8ln 2, 即f (x 1)+f (x 2)>8-8ln 2. (2)令m =e-(|a |+k ),n =⎝⎛⎭⎪⎫|a |+1k 2+1,则f (m )-km -a >|a |+k -k -a ≥0,f (n )-kn -a <n ⎝ ⎛⎭⎪⎫1n -a n -k ≤n ⎝ ⎛⎭⎪⎫|a |+1n -k <0,所以存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =x -ln x -ax.设h (x )=x -ln x -ax,则h ′(x )=ln x -x2-1+ax2=-gx -1+ax 2,其中g (x )=x2-ln x .由(1)可知g (x )≥g (16),又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a =-3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减, 因此方程f (x )-kx -a =0有唯一一个实根.综上,当a ≤3-4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.3.(2017·浙江高考)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围. 解:(1)因为(x -2x -1)′=1-12x -1,(e -x )′=-e -x,所以f ′(x )=⎝ ⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x=-x2x -1--x2x -1⎝ ⎛⎭⎪⎫x >12.(2)由f ′(x )=-x2x -1--x2x -1=0,解得x =1或x =52.当x 变化时,f ′(x ),f (x )的变化情况如下表:又f (x )=12(2x -1-1)2e -x≥0,所以f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e 12-. 4.(2014·浙江高考)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ).(1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 解:(1)因为a >0,-1≤x ≤1,所以 (ⅰ)当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数;若x ∈[a,1],则f (x )=x 3+3x -3a ,f ′(x )=3x 2+3>0,故f (x )在(a,1)上是增函数; 所以g (a )=f (a )=a 3.(ⅱ)当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数,所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明:令h (x )=f (x )-g (a ), (ⅰ)当0<a <1时,g (a )=a 3. 若x ∈[a,1],h (x )=x 3+3x -3a -a 3, 得h ′(x )=3x 2+3, 则h (x )在(a,1)上是增函数,所以h (x )在[a,1]上的最大值是h (1)=4-3a -a 3,且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4;若x ∈[-1,a ],h (x )=x 3-3x +3a -a 3,得h ′(x )=3x 2-3,则h (x )在(-1,a )上是减函数, 所以h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.(ⅱ)当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x +2,得h ′(x )=3x 2-3,此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 5.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)上只有一个零点等价于h (x )在(0,+∞)上只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 故h (2)=1-4ae2是h (x )在(0,+∞)上的最小值.①当h (2)>0,即a <e24时,h (x )在(0,+∞)上没有零点.②当h (2)=0,即a =e24时,h (x )在(0,+∞)上只有一个零点.③当h (2)<0,即a >e24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点.由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e4a =1-16a32a2>1-16a3a4=1-1a>0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e24.6.(2018·全国卷Ⅰ)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2.解:(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明:由(1)知,当且仅当a >2时,f (x )存在两个极值点. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f x 1-f x 2x 1-x 2=-1x 1x 2-1+a ·ln x 1-ln x 2x 1-x 2=-2+a ·ln x 1-ln x 2x 1-x 2=-2+a ·-2ln x 21x 2-x 2,所以f x 1-f x 2x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减.又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f x 1-f x 2x 1-x 2<a -2.。
浙江专版2020年高考数学二轮专题复习知能专练五导数及其应用(20201124123049)

文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.知能专练(五)导数及其应用一、选择题1. 曲线f (x )=xlnx 在点(1, f (l ))处的切线的倾斜角为() JT兀解析:选B 因为A-Y ) =-rln w 所以f (x )=ln x+1,所以f 9(1)=1,所以曲线 = .rln x 在点(1, f (l ))处的切线的倾斜角为2. 已知e 为自然对数的底数,则函数y=xe ”的单调递增区间是() A. [ — 1, 4-°°) B. ( — 8, — 1] C. [1, +°°)D. (—8, 1]解析:选 A 令 ” =£(l + x )M0,又 J>0, /. 1+-Y ^0»—1.3. 函数/Cr )=3Y+ln x-2x 的极值点的个数是() A. 0 C. 2解析:选A 函数泄义域为(0, +8),C r / \ Q 」c 6Y —2-Y +1 且 f (x) =6x+一一2= ・由于 40,呂3=6丘一2%+1 中 J=-20<0, 所以g (£>0恒成立,故/ C Y )>0恒成立.即f (0在立义域上单调递增,无极值点.4. (2017 •浙江高考)函数y =f3的导函数3的图象如图所则函数y= f3的图象可能是()&)的图象有三个零点,故f (x )在这三个零点处取得极值,排除A 、B ;记导函数£ 3的零点从左到右分别为血 心4又在(一8,幻上£ &)〈0, 在(也 北)上f 6)>0,所以函数f (x )在(一8,山)上单调递减,排除C,故选D.B ・1D.无数个解析:选D 由£3的图象知,fA示I)版本可编辑.欢迎下载支持.5・已知常数a, b、c都是实数,fix) = ax 4-bx-\- ex— 34的导函数为£3, f 3W0的解集为{A<-2^A<3},若f(0的极小值等于一115,则A的值是()A -里22C. 2D. 5解析:选C由题意知,f值一115,“ 3=3/+2加+cW0的解集为[一2, 3],且在x=3处取得极小r3a>0.故有v 一2X3=子,3a3 =27a+9b+3c—34= —115,6.若0<-¥i<Ac<l ,则( )A・ e X1— e X| >ln 疋―In 羽B・ e x:—e A| <ln 疋—In 羽C・ A^e x, >-Yie X1D・挹e&〈*,e”2解析:选C构适函数f&)=e'—In”则f U)=e v-£=:---------------------------- ,令f &)=0,得昶‘x x-1 = 0,根据函数y=£与y=2的图象可知两函数图象的交点也丘(0,1),即Ax)=e x-ln 在■ A(0,1)上不是单调函数,无法判断f GO与f(疋)的大小,故A, B错:构造函数=-,则以 3xe x X—1 e x=—_= --------- ;-- •故函数g(x) =~在(0, 1)上单调递减,故gCrJ >g(上),上e “ >-vie 12 ,故选C.二、填空题7.设函数f(x) =Ar(e x-l) -|x=,则函数f(x)的单调增区间为_______________ •解析:因为f3 = Af(e x— 1)-討,所以f 3 = e r— 1+xe x—x= (e x— 1) (x+1).令f' C Y)>0,即(丁一1)・C Y+1)>0,解得曲(一 8, 一1)或曲(°, +8).所以函数f&)的单调增区间为(一8, — 1)和(0, +8).答案:(一8, — 1)和(0, +°°)解得a=2.版本可编辑.欢迎下载支持.8. 已知函数f(x)=*£+2ax-ln X,若f(x)在区间2上是增函数,则实数日的取值范 用为 _______ .解析:由题意知f' 3=卄2&—抑在[扌,2〕上恒成立,即2a2-x+*£, 2上恒成 立.又Ty= —x+£在#, 2上单调递减,.・.(一卄斗尸善,・・.2&諾,即aN#.答案:扌,+8)9. 已知函数fG")=/+2&f+1在x=l 处的切线的斜率为1,则实数日= ________________ ,此时函数y=f(x)在[0, 1]上的最小值为 _______ .解析:由题意得f 3=3/+仏,则有f (l)=3Xf+4aXl = l,解得尸一*,所以f(x) =・£ 一/+1, 则 f r3 =3/—2从当 xW [0, 1]时,2由 f r(X)=3左一 2x>0 得寸awi ;・ 2由 f r(-¥)=3”一2X0 得 0<X§,所以函数f3在(|,1上单调递增,在(0, |)上单调递减,所以函数f3在三处取得极 小值,即为最小值,所以最小值为彳|)=(|卜(|}+1=||.三. 解答题10. 已知函数 KY )=ln A^~l.X (1) 求函数f(x)的单调区间;(2) 设加GR,对任意的aE ( —1,1),总存在Ao 6 [1, e ],使得不等式aa —f(xo)< 0成立,求 实数也的取值范围.解:(D 函数的左义域为(0, +8), 又 f (-¥)= ---- =——.X X X令f rC Y )>0,得X >1,因此函数f(0的单调递增区间是(1, +8)・ 令f C Y XO,得0<Kl,因此函数的单调递减区间是(0,1).(2)依题意,[1, e ].答案:一* 2327版本可编辑.欢迎下载支持.由⑴知,fCv)在-re[b e]上是增函数, /• /'(-v)M x=/'(e) =ln e4--—1=-. e ee e加的取值范帀是一5 I11. 设函数 f3F —「21nx.⑴若f(x)在x=2时有极值,求实数a 的值和f3的单调区间;(2)若f(£在泄义域上是增函数,求实数a 的取值范用. 解:(1) •・•/(£在x=2时有极值,.•・£ ⑵=0,又 AT>0, .\X 9 (X ), f(x)关系如下表:X (°,1)12 (i 2)2 (2, +8)f' 3+—+f3・・.f(x)(0,[2, +8),E ,2).(2)若在泄义域上是增函数,则f' (-Y )20在-Y>0时恒成立,r( 、, a 2 ax — 2x+ avr 3=a+u —一= ----------- 5——•x x x•二转化为-Y>0时a.f —2w+a20恒成立, 即"2畫I 恒成立,9r 91当且仅当尸戶时等号成立,・・.a21.故实数日的取值范围为[1, +8).{血 x i —'wo,e血x —i -解得一X X□(2•辽一5/+2) >由 f' (.r) =0 有必=扌,xz=2,版本可编辑.欢迎下载支持.12.已知函数f(x)=eH+ax-a(aGR 且aHO).(1)若函数f(x)在.v=0处取得极值,求实数a的值:并求岀此时f(x)在[一2, 1]上的最大值:(2)若函数f(x)不存在零点,求实数a的取值范围.解:(1)函数f(£的定义域为R, f (£=£+&,f (O)=e°+a=O, .・.a= —1, :,F (x)=e"—l,•・•在(一 8, 0)上f (A-XO, f(x)单调递减,在(0, +8)上f' (x)>0, f(x)单调递增,・・.尸0时,f3取极小值.・"=一1符合要求.易知f(0在[一2, 0)上单调递减,在(0, 1]上单调递增,且f(一2) =Z+3, f(l)=e, f(—2)>f(l).e•'•fCr)在[―2, 1]的最大值为2+3.(2)T 3=e”+a,由于J>0・①当a>0时,Z C Y)>0, f(x)是增函数.且当%>1 时,f(£=£+a(x-l)>0・当M0时,取;v=—一•••函数存在零点,不满足题意.②当a<0 时,令f* Cv)=e'+a=0,得x=ln(—a)・在(一8, ln( —a))上f' (x)<0, f(x)单调递减,在(In(—a), +8)上F 3>0, f(x)单调递增,.\x=ln( — a)时,/(-Y)取最小值.函数f(*)不存在零点,等价于f(ln(—“))=』'+aln( —a) —a=—2a+aln( —a)>0,解得—e2<a<0.综上所述.所求的实数a的取值范用是(一『0)・。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5讲 导数的简单应用导数运算及其几何意义[核心提炼]1.导数公式 (1)(sin x )′=cos x ; (2)(cos x )′=-sin x ; (3)(a x )′=a x ln a (a >0); (4)(log a x )′=1x ln a(a >0,且a ≠1). 2.导数的几何意义函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[典型例题](1)(2019·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .-3B .2C .-3或2 D.12(2)已知f (x )=ln xx 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.【解析】 (1)设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 故选B.(2)因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln xx (x 2+1)2+2cos x +sin 2x .【答案】 (1)B (2)x 2+1-2x 2ln xx (x 2+1)2+2cos x +sin 2x利用导数几何意义解题的思路(1)利用导数的几何意义解题主要是利用导数、切点坐标、切线斜率之间的关系来转化. (2)以平行、垂直直线斜率间的关系为载体求参数的值,则根据平行、垂直与斜率之间的关系和导数联系起来求解.[对点训练]1.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x-1),令x =0,得y =1.故填1.答案:12.(2019·浙江省十校联合体期末检测)已知函数f (x )=a e x +x 2,g (x )=cos πx +bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b =________,直线l 的方程为________.解析:f ′(x )=a e x +2x ,g ′(x )=-πsin πx +b , f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a 1-0=a ,即a =b =-1, 则a +b =-2;所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=03.(2019·湖州期末)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:0利用导数研究函数的单调性[核心提炼]1.若求函数的单调区间(或证明单调性),只要在其定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可.2.若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.[典型例题](1)设函数f (x )=x e 2-x +e x ,求f (x )的单调区间.(2)设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…)若函数f (x )在区间⎣⎡⎦⎤1e ,e 上单调递减,求a 的取值范围.【解】 (1)因为f (x )=x e 2-x +e x . 由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞).(2)由题意可得f ′(x )=e x ⎝⎛⎭⎫ln x +1x -a ≤0在⎣⎡⎦⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎡⎦⎤1e ,e 上恒成立.令g (x )=ln x +1x . 因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1.x ⎝⎛⎭⎫1e ,1(1,e) g ′(x ) -+ g (x )g ⎝⎛⎭⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e , 所以g (x )max =g ⎝⎛⎭⎫1e =e -1. 故a ≥e -1.求解或讨论函数单调性问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论. [注意] 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.[对点训练]1.(2019·浙江新高考冲刺卷)已知定义在R 上的偶函数f (x ),其导函数f ′(x );当x ≥0时,恒有x2f ′(x )+f (-x )≤0,若g (x )=x 2f (x ),则不等式g (x )<g (1-2x )的解集为( )A .(13,1)B .(-∞,13)∪(1,+∞)C .(13,+∞)D .(-∞,13)解析:选A.因为定义在R 上的偶函数f (x ), 所以f (-x )=f (x ).因为x ≥0时,恒有x2f ′(x )+f (-x )≤0,所以x 2f ′(x )+2xf (x )≤0, 因为g (x )=x 2f (x ),所以g ′(x )=2xf (x )+x 2f ′(x )≤0, 所以g (x )在[0,+∞)为减函数, 因为f (x )为偶函数,所以g (x )为偶函数, 所以g (x )在(-∞,0)上为增函数, 因为g (x )<g (1-2x ),所以|x |>|1-2x |, 即(x -1)(3x -1)<0, 解得13<x <1,选A.2.(2019·湖州市高三期末)已知函数f (x )=x -1e x .(1)求函数f (x )的单调区间和极值;(2)若函数y =g (x )对任意x 满足g (x )=f (4-x ),求证:当x >2时,f (x )>g (x ); (3)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>4. 解:(1)因为f (x )=x -1e x ,所以f ′(x )=2-xe x .令f ′(x )=0,解得x =2.f ′(x ) + 0 - f (x )极大值1e2所以f (x )在(-∞,2)内是增函数,在(2,+∞)内是减函数. 所以当x =2时,f (x )取得极大值f (2)=1e 2.(2)证明:g (x )=f (4-x )=3-xe 4-x ,令F (x )=f (x )-g (x )=x -1e x -3-xe 4-x ,所以F ′(x )=2-x e x -2-x e 4-x =(2-x )(e 4-e 2x )e x +4.当x >2时,2-x <0,2x >4,从而e 4-e 2x <0, 所以F ′(x )>0,F (x )在(2,+∞)是增函数.所以F (x )>F (2)=1e 2-1e 2=0,故当x >2时,f (x )>g (x )成立.(3)证明:因为f (x )在(-∞,2)内是增函数,在(2,+∞)内是减函数. 所以若x 1≠x 2,且f (x 1)=f (x 2),x 1、x 2不可能在同一单调区间内. 不妨设x 1<2<x 2,由(2)可知f (x 2)>g (x 2), 又g (x 2)=f (4-x 2),所以f (x 2)>f (4-x 2). 因为f (x 1)=f (x 2),所以f (x 1)>f (4-x 2).因为x 2>2,4-x 2<2,x 1<2,且f (x )在区间(-∞,2)内为增函数, 所以x 1>4-x 2,即x 1+x 2>4.利用导数研究函数的极值(最值)问题[核心提炼]1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.[典型例题](1)已知函数f (x )=(x -2x -1)e -x (x ≥12).①求f (x )的导函数;②求f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围.(2)(2019·浙江名校协作体高三联考)已知a ∈R ,函数f (x )=2x +a ln x .①若函数f (x )在(0,2)上递减,求实数a 的取值范围; ②当a >0时,求f (x )的最小值g (a )的最大值;③设h (x )=f (x )+|(a -2)x |,x ∈[1,+∞),求证:h (x )≥2. 【解】 (1)①因为(x -2x -1)′=1-12x -1, (e -x )′=-e -x ,所以f ′(x )=⎝⎛⎭⎪⎫1-12x -1e -x-(x -2x -1)e -x =(1-x )(2x -1-2)e -x 2x -1⎝⎛⎭⎫x >12. ②由f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或x =52.因为 x 12 (12,1) 1 (1,52)52 (52,+∞) f ′(x ) -0 + 0 -f (x )12e -1212e -52又f (x )=12(2x -1-1)2e -x ≥0,所以f (x )在区间⎣⎡⎭⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. (2)①函数f (x )在(0,2)上递减⇔任取x ∈(0,2),恒有f ′(x )≤0成立,而f ′(x )=ax -2x 2≤0⇒任取x ∈(0,2),恒有a ≤2x 成立,而2x>1,则a ≤1满足条件. ②当a >0时,f ′(x )=ax -2x 2=0⇒x =2a .x (0,2a )2a (2a,+∞) f ′(x ) -0 + f (x )极小值f (x )的最小值g (a )=f (2a )=a +a ln 2a ,g ′(a )=ln 2-ln a =0⇒a =2.a (0,2) 2 (2,+∞)g ′(a ) +0 - g (x )极大值g (a )的最大值为g (2)=2.③证明:当a ≥2时,h (x )=f (x )+(a -2)x =2x +a ln x +(a -2)x ,h ′(x )=ax -2x2+a -2≥0,所以h (x )在[1,+∞)上是增函数,故h (x )≥h (1)=a ≥2. 当a <2时,h (x )=f (x )-(a -2)x =2x +a ln x -(a -2)x ,h ′(x )=ax -2x 2-a +2=((2-a )x +2)(x -1)x 2=0,解得x =-22-a <0或x =1,h (x )≥h (1)=4-a >2,综上所述:h (x )≥2.利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[对点训练](2019·嵊州模拟)已知函数f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l 的方程及g (x )的解析式;(2)若h (x )=f (x )-g ′(x )(其中g ′(x )是g (x )的导函数),求函数h (x )的极大值.解:(1)直线l 是函数f (x )=ln x 在点(1,0)处的切线,故其斜率k =f ′(1)=1,所以直线l 的方程为y =x -1.又因为直线l 与g (x )的图象相切,且切于点(1,0),所以g (x )=13x 3+12x 2+mx+n 在点(1,0)处的导数值为1,所以⎩⎪⎨⎪⎧g (1)=0,g ′(1)=1⇒⎩⎪⎨⎪⎧13+12+m +n =0,1+1+m =1⇒⎩⎪⎨⎪⎧m =-1,n =16,所以g (x )=13x 3+12x 2-x +16.(2)由(1)得h (x )=f (x )-g ′(x )=ln x -x 2-x +1(x >0), 所以h ′(x )=1x -2x -1=1-2x 2-x x =-(2x -1)(x +1)x .令h ′(x )=0,得x =12或x =-1(舍).当0<x <12时,h ′(x )>0,即h (x )在⎝⎛⎭⎫0,12上单调递增; 当x >12时,h ′(x )<0,即h (x )在⎝⎛⎭⎫12,+∞上单调递减. 因此,当x =12时,h (x )取得极大值,所以h (x )极大值=h ⎝⎛⎭⎫12=ln 12+14=14-ln 2. 专题强化训练1.函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A.因为f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.所以f (x )在x =1处取得最小值,且f (1)=12-ln 1=12.2.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫-43,0 B.⎝⎛⎭⎫0,43 C.⎝⎛⎭⎫-∞,-43,(0,+∞) D.⎝⎛⎭⎫-∞,-43∪(0,+∞) 解析:选C.因为f ′(x )=3x 2-2mx ,所以f ′(-1)=3+2m =-1,解得m =-2.所以f ′(x )=3x 2+4x .由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即f (x )的单调递增区间为⎝⎛⎭⎫-∞,-43,(0,+∞),故选C. 3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C.由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或a ≥-4⇔a≥-2 6.4.(2019·台州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C.因为f ′(x )=2x +b ,所以F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,所以⎩⎪⎨⎪⎧F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,所以f (x )=(x +2)2≥0,f (x )min =0.5.(2019·温州瑞安七校模拟)已知函数f (x )=(x -x 1)·(x -x 2)(x -x 3)(其中x 1<x 2<x 3),g (x )=e x -e -x ,且函数f (x )的两个极值点为α,β(α<β).设λ=x 1+x 22,μ=x 2+x 32,则( )A .g (α)<g (λ)<g (β)<g (μ)B .g (λ)<g (α)<g (β)<g (μ)C .g (λ)<g (α)<g (μ)<g (β)D .g (α)<g (λ)<g (μ)<g (β)解析:选D.由题意,f ′(x )=(x -x 1)(x -x 2)+(x -x 2)(x -x 3)+(x -x 1)(x -x 3), 因为f ′(x 1+x 22)=-(x 2-x 1)24<0,f ′(x 2+x 32)=-(x 2-x 3)24<0,因为f (x )在(-∞,α),(β,+∞)上递增,(α,β)上递减, 所以α<λ<μ<β,因为g (x )=e x -e -x 单调递增, 所以g (α)<g (λ)<g (μ)<g (β). 故选D.6.(2019·宁波诺丁汉大学附中高三期中考试)已知函数f (x )=x +2b x +a ,x ∈[a ,+∞),其中a >0,b ∈R ,记m (a ,b )为f (x )的最小值,则当m (a ,b )=2时,b 的取值范围为( )A .b >13B .b <13C .b >12D .b <12解析:选D.函数f (x )=x +2bx +a ,x ∈[a ,+∞),导数f ′(x )=1-2bx2,当b ≤0时,f ′(x )>0,f (x )在x ∈[a ,+∞)递增,可得f (a )取得最小值, 且为2a +2b a ,由题意可得2a +2ba=2,a >0,b ≤0方程有解;当b >0时,由f ′(x )=1-2bx 2=0,可得x =2b (负的舍去),当a ≥2b 时,f ′(x )>0,f (x )在[a ,+∞)递增,可得f (a )为最小值, 且有2a +2ba=2,a >0,b >0,方程有解;当a <2b 时,f (x )在[a ,2b ]递减,在(2b ,+∞)递增, 可得f (2b )为最小值,且有a +22b =2,即a =2-22b >0, 解得0<b <12.综上可得b 的取值范围是(-∞,12).故选D.7.(2019·浙江“七彩阳光”联盟模拟)函数f (x )=2x 2+3x2e x的大致图象是( )解析:选B.由f (x )的解析式知有两个零点x =-32与x =0,排除A ,又f ′(x )=-2x 2+x +32e x ,由f ′(x )=0知函数有两个极值点,排除C ,D ,故选B.8.(2019·成都市第一次诊断性检测)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝⎛⎭⎫4t ,2处的切线与曲线C 2:y =e x +1+1也相切,则t 的值为( )A .4e 2B .4e C.e 24 D.e4解析:选A.由y =tx ,得y ′=t 2tx ,则切线斜率为k =t 4,所以切线方程为y -2=t4⎝⎛⎭⎫x -4t ,即y =t4x +1.设切线与曲线y =e x +1+1 的切点为(x 0,y 0).由y =e x +1+1,得y ′=e x +1,则由e x 0+1=t 4,得切点坐标为⎝⎛⎭⎫ln t 4-1,t 4+1,故切线方程又可表示为y -t 4-1=t4⎝⎛⎭⎫x -ln t 4+1,即y =t 4x -t 4ln t 4+t 2+1,所以由题意,得-t 4ln t 4+t 2+1=1,即ln t4=2,解得t =4e 2,故选A. 9.(2019·金华十校高考模拟)已知函数f (x )=23x 3-x 2+ax -1,若曲线存在两条斜率为3的切线,且切点的横坐标都大于0,则实数a 的取值范围为____________.解析:由题意知,f (x )=23x 3-x 2+ax -1的导数f ′(x )=2x 2-2x +a .2x 2-2x +a =3有两个不等正根,则⎩⎪⎨⎪⎧Δ=4-8(a -3)>012(a -3)>0,得3<a <72.答案:⎝⎛⎭⎫3,72 10.(2019·湖州市高三期末)定义在R 上的函数f (x )满足:f (1)=1,且对于任意的x ∈R ,都有f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.解析:设g (x )=f (x )-12x ,因为f ′(x )<12,所以g ′(x )=f ′(x )-12<0,所以g (x )为减函数,又f (1)=1, 所以f (log 2x )>log 2x +12=12log 2x +12,即g (log 2x )=f (log 2x )-12log 2x >12=g (1)=f (1)-12=g (log 22),所以log 2x <log 22,又y =log 2x 为底数是2的增函数, 所以0<x <2,则不等式f (log 2x )>log 2x +12的解集为(0,2).答案:(0,2)11.(2019·绍兴、诸暨高考二模)已知函数f (x )=x 3-3x ,函数f (x )的图象在x =0处的切线方程是________;函数f (x )在区间[0,2]内的值域是________.解析:函数f (x )=x 3-3x ,切点坐标(0,0),导数为y ′=3x 2-3,切线的斜率为-3, 所以切线方程为y =-3x ;3x 2-3=0,可得x =±1,x ∈(-1,1),y ′<0,函数是减函数,x ∈(1,+∞),y ′>0函数是增函数,f (0)=0,f (1)=-2,f (2)=8-6=2,函数f (x )在区间[0,2]内的值域是[-2,2]. 答案:y =-3x [-2,2]12.(2019·台州市高三期末考试)已知函数f (x )=x 2-3x +ln x ,则f (x )在区间[12,2]上的最小值为________;当f (x )取到最小值时,x =________.解析:f ′(x )=2x -3+1x =2x 2-3x +1x(x >0),令f ′(x )=0,得x =12,1,当x ∈(12,1)时,f ′(x )<0,x ∈(1,2)时,f ′(x )>0,所以f (x )在区间[12,1]上单调递减,在区间[1,2]上单调递增,所以当x =1时,f (x )在区间[12,2]上的最小值为f (1)=-2.答案:-2 113.(2019·唐山二模)已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为________.解析:易知f (x )的定义域为(0,+∞). 因为f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1.设h (n )=g (n )-n +2=-ln n -n +1. 因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1).答案:(0,1)14.(2019·浙江东阳中学期中检测)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是________.解析:设g (x )=e x (2x -1),y =ax -a ,由题意存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,g (x )min =-2e -12,当x =0时,g (0)=-1,g (1)=e>0,直线y =ax -a恒过(1,0),斜率为a ,故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1.答案:32e≤a <115.设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max=-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).16.(2019·浙江金华十校第二学期调研)设函数f (x )=e x -x ,h (x )=-kx 3+kx 2-x +1. (1)求f (x )的最小值;(2)设h (x )≤f (x )对任意x ∈[0,1]恒成立时k 的最大值为λ,证明:4<λ<6. 解:(1)因为f (x )=e x -x ,所以f ′(x )=e x -1, 当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减, 当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )min =f (0)=1.(2)证明:由h (x )≤f (x ),化简可得k (x 2-x 3)≤e x -1, 当x =0,1时,k ∈R , 当x ∈(0,1)时,k ≤e x -1x 2-x3,要证:4<λ<6,则需证以下两个问题; ①e x -1x 2-x 3>4对任意x ∈(0,1)恒成立; ②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立.先证:①e x -1x 2-x 3>4,即证e x -1>4(x 2-x 3),由(1)可知,e x -x ≥1恒成立,所以e x -1≥x ,又x ≠0,所以e x -1>x , 即证x ≥4(x 2-x 3)⇔1≥4(x -x 2)⇔(2x -1)2≥0, (2x -1)2≥0,显然成立,所以e x -1x 2-x 3>4对任意x ∈(0,1)恒成立;再证②存在x 0∈(0,1),使得e x 0-1x 20-x 30<6成立. 取x 0=12,e -114-18=8(e -1),因为e <74,所以8(e -1)<8×34=6,所以存在x 0∈(0,1),使得e x 0-1x 20-x 30<6,由①②可知,4<λ<6.17.(2019·宁波市高考模拟)已知f (x )=x +a 2x ,g (x )=x +ln x ,其中a >0.若对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立,求实数a 的取值范围.解:对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)⇔当x ∈[1,e]有f (x )min ≥g (x )max , 当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在x ∈[1,e]上单调递增, 所以g (x )max =g (e)=e +1.当x ∈[1,e]时,f ′(x )=1-a 2x 2=x 2-a2x2,因为a >0,所以令f ′(x )=0得x =a .①当0<a <1时,f ′(x )>0,所以f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=a 2+1.令a 2+1≥e +1得a ≥e ,这与0<a <1矛盾. ②当1≤a ≤e 时,若1≤x <a ,则f ′(x )<0, 若a <x ≤e ,则f ′(x )>0,所以f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,所以f (x )min =f (a )=2a ,令2a ≥e +1得a ≥e +12,又1≤a ≤e , 所以e +12≤a ≤e.③当a >e 时,f ′(x )<0,所以f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=e +a 2e.令e +a 2e ≥e +1得a ≥e ,又a >e ,所以a >e.综合①②③得,所求实数a 的取值范围是⎣⎢⎡⎭⎪⎫e +12,+∞. 18.(2019·宁波九校联考)已知函数f (x )=e -x -11+x .(1)证明:当x ∈[0,3]时,e -x ≥11+9x; (2)证明:当x ∈[2,3]时,-27<f (x )<0.证明:(1)要证e -x ≥11+9x ,也即证e x ≤1+9x .令F (x )=e x -9x -1,则F ′(x )=e x -9.令F ′(x )>0,则x >2ln 3.因此,当0≤x <2ln 3时,有F ′(x )<0,故F (x )在[0,2ln 3)上单调递减;当2ln 3<x ≤3时,有F ′(x )>0,故F (x )在[2ln 3,3]上单调递增.所以,F (x )在[0,3]上的最大值为max{F (0),F (3)}. 又F (0)=0,F (3)=e 3-28<0.故F (x )≤0,x ∈[0,3]成立, 即e x ≤1+9x ,x ∈[0,3]成立.原命题得证.(2)由(1)得:当x ∈[2,3]时,f (x )=e -x -11+x ≥11+9x -11+x .令t (x )=11+9x -11+x,则t ′(x )=-(1+9x )-2·9+(1+x )-2=1(1+x )2-9(1+9x )2=(1+9x )2-9(1+x )2(1+9x )2(1+x )2=72x 2-8(1+9x )2(1+x )2≥0,x ∈[2,3].所以,t (x )在[2,3]上单调递增,即t (x )≥t (2)=-1657>-1656=-27,x ∈[2,3],所以f (x )>-27得证.下证f (x )<0. 即证e x >x +1令h (x )=e x -(x +1)则h ′(x )=e x -1>0, 所以h (x )在[2,3]上单调递增,所以,h (x )=e x -(x +1)≥e 2-3>0,得证.另证:要证11+9x -11+x>-27,即证9x 2-18x +1>0,令m (x )=9x 2-18x +1=9(x -1)2-8在[2,3]上递增,所以m (x )≥m (2)=1>0得证.。