2.2用样本估计总体
高中数学2.2.2 用样本的数字特征估计总体的数字特征1

2.(1)由平均数公式得 x=
(182×27+80×21)≈81.13(分).
48
(2)因为男生的中位数是75分,所以至少有14人得分不超过75
分.
又因为女生的中位数是80分,所以至少有11人得分不超过80分.
所以全班至少有25人得分不超过80分.
(3)男生的平均分与中位数的差别较大,说明男生中两极分化现
2.2.2 用样本的数字特征估计总体的数字特征
1.正确理解样本数据标准差的意义和作用,学会计算数据的标 准差. 2.能根据实际问题的需要合理地选取样本,从样本数据中提取 基本的数字特征(如平均数、标准差),并作出合理的解释. 3.会用样本的基本数字特征估计总体的基本数字特征,形成对 数据处理过程进行初步评价的意识.
x1 x2 xn
则 x =_______n_______.
2.方差、标准差 假设样本数据是x1,x2,x3,…,xn, x 是平均数,则 (1)方差是
s2=__n1[___x1___x_2____x_2 __x__2 ______x_n__x__2_].
(2)标准差为
s=__n1_[__x_1__x__2___x_2___x_2____ __x_n___x__2 ]_.
【解题指南】1.由平均数和方差的定义直接求解.
2.先画出茎叶图,再利用平均数和方差结合的形式分析稳定性.
【自主解答】1.
s2
1 [ 21
a1
x
2
a2 x
2
a20 x
2
xx
2
]
1 20 0.20 4 0.19.
21
21
答案:0.19
2.(1)作出茎叶图如下:
(2)派甲参赛比较合适.理由如下:
高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9
叶
茎
叶
统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计
2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差

2.2.2 用样本的数字特征估计总体的数字特征(二) 标准差 ●学习目标1、能从样本数据中求出标准差,并做出合理解释;2、进一步体会用样本估计总体的思想,会用样本的标准差估计总体的特征;3、注意对样本标准差的随机性的体会,并能够正确利用标准差解决一些简单的实际问题. ●学习重点从样本数据中求出标准差并做出合理解释;样本估计总体的思想. ●学习难点体会统计的作用和样本标准差的随机性,并利用标准差解决一些简单的实际问题. ●学习过程 一.温故知新1、众数、中位数和平均数都是描述一组数据_________的量.2、两名射击运动员在一次射击测试中各射靶10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 分别求出这两名运动员射击成绩的众数、中位数和平均数,对这次射击情况应如何评价?二.走进课堂1、极差:反映一组数据的变化的___________,它对一组数中的______非常敏感,由此可以得到一种“______________,______________”的统计策略.2、标准差:考察样本数据的______________最常用的统计量,是样本数据到_______的一种____________,一般用s 表示.(1)标准差的表达式:______________________s =;变形得:s = (2)标准差的大小,受样本中每个数据的影响,如果数据间变异大,则标准差也大,反之则小.因此,标准差越大,数据的离散程度_____,标准差越小,数据的离散程度_____; (3)标准差的取值范围是:______s ∈;(4)标准差常被理解为稳定性,标准差的单位与原数值的单位相同. 如何对上面甲、乙两名射击运动员做出评价?3、方差:即标准差的平方2s .(1)方差的表达式:2________________________________s =;(2)方差也是反映数据离散程度的特征数字,它的单位是原数值的单位的平方. 【夯实基础】(1)甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,下列说法正确的有( )①甲队的技术比乙队好; ②乙队发挥比甲队稳定 ③乙队几乎每场都进球; ④甲队的表现时好时坏A.1个 B.2个 C.3个 D.4个 (2)某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现记录有误,某甲得70分却记为40分,某乙50分误记为80分,更正后重新计算得标准差为1s ,则s 与1s 之间的大小关系是( )A.s =1s B.s <1s C.s >1s D.不能确定 (3)已知一个样本为:x ,1,y ,5,其中x ,y 是方程组222,10x y x y +=⎧⎨+=⎩的解,则这个样本的标准差是( )A.2 C.5(4)一组数据的方差是2s ,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( ) A.212s B.22s C.24s D.2s(5)一组数据中的每一个数都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.81.2,4.4 B.78.8,4.4 C.81.2,84.4 D.78.8,75.6 (6)五个数1,2,3,4,a 的平均数是3,,则a =____,这五个数的标准差是_____.(7)若1a ,2a ,…,20a ,这20个数据的平均数为x ,方差为0.20,则数据1a ,2a ,…,20a ,x 这21个数据的方差约为__________(保留2位有效 ).4、典例精析【例1】从一批棉花中抽取9根棉花的纤维,长度如下:(单位:mm ) 82,202,352,321,25,293,86,206,115. 求样本的平均数、样本的方差和样本的标准差.【例2】现有A 、B 两个班级,每个班级有45名学生参加一次测验,每名参加者可获得0,1B 班的测试结果如右图:(1)你认为哪个班级的成绩比较稳定?(2)若两班共有60人及格,则参加者最少获得 多少分才可能及格?5、课堂小结:(1)众数、中位数和平均数都是描述一组数据集中趋势的特征数;标准差、方差都是用来描述一组数据波动情况的特征数,标准差更具无偏性.(2)当两个样本的平均数相等或相差无几时,就要用标准差来反映样本数据的离散程度. 作业:。
2.2.2 用样本的数字特征估计总体的数字特征(2)

x甲 x乙
∴乙种玉米的苗长得高.
(2)由方差公式得:
1 s甲= [(25-30)2+(41-30)2+…+(42-30)2]=104.2, 10
2
2 同:乙种玉米苗长得高,甲种玉米苗长得齐.
2
2
课后作业
1.甲、乙两种水稻试验品种连续 5 年的平均单位面积产量如 下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产 量比较稳定.
课堂练习
1.如图是某校举行的元旦诗歌朗诵比赛中, 七位评委为某位选手打出分数的茎叶统计图 ,
去掉一个最高分和一个最低分,所剩数据
的平均数和方差分别为( (A)84,4.84 (B)84,1.6 )
(C)85,1.6
(D)85,0.4
【解析】选C.得分是79,84,84,86,84,87,93,最高分是93,最低分 是79,则去掉一个最高分和一个最低分后该选手得分是84,84, 86,84,87,计算得平均数是85,方差是1.6.
(2)因平均数为300,由表格中所列出的数据可见,只有经理 在平均数以上,其余的人都在平均数以下,故用平均数不能 客观真实地反映该工厂的工资水平.
因此,在例子中的解答过程可表述为: 解:由数据可得:
1 1 7 x甲 (7 8 7 4) 7, x乙 (9 5 7 7) 10 10
x甲 x乙
∴从平均成绩看甲、乙二人的成绩无明显差异。
1 7 72 8 72 4 72 2 s甲 10
|x1- x |+|x2- x |+„+|xn- x | S= .由于上式含有绝对值, n
运算不太方便,因此,通常改用如下公式来计算标准差:
s= 1 2 2 2 [ x - x + x - x +„+ x - x ]. 2 n n 1
2.2.2用样本的数字特征估计总体的数字特征课件人教新课标

三数的优缺点
样本的众数、中位数和平均数常用来表示 样本数据的“中心值”.
1.众数和中位数容易计算,不受少数几个极端 值的影响,但只能表达样本数据中的少量信息.
2.平均数代表了数据更多的信息,但受样本中 每个数据的影响,越极端的数据对平均数的影 响也越大.
一天 10名工人生产的零件的中位数是( C )
A.14 B.16 C.15 D.17 【解析】选C.把件数从小到大排列为10,12,14, 14,15,15,16,17,17,19,可知中位数为15.
2.甲、乙两个班各随机选出 15名同学进行测验,所得成 绩的茎叶图如图.从图中看, _____班的平均成绩较高. 【解析】结合茎叶图中成绩的情况可知,
频率散布直方图中,你认为众数应在哪个
小矩形内?由此估计总体的众数是什么?
频率/组距
注意:哪段范围的数最多?
0.5
0
取最高矩形下端中点的
0.4
横坐标2.25作为众数.
0
0.3
0O 0.2
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
0
?由直方图看出众数是2.25,可
是抽样的数据中没有2.25,为什么 区间的中点值2.25是众数呢?
3.平均数的定义:一组数据的和除以数据的 个数所得到的数.
小练 习
求下列一组数的众数、中位数、平均数
(1)2,2,3,3,5,6,7
(2)2,3,5,5
判一判(正确的打“√”,错误的打“×”) (1)中位数一定是样本数据中的某个数.(× ) (2)在一组样本数据中,众数一定是唯一的.( × )
必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。
通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。
为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。
一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。
二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。
b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。
用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。
c. 引导学生讨论点估计的优点和缺点。
3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。
b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。
c. 引导学生讨论区间估计的优点和缺点。
4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。
要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。
b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。
c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。
5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。
b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。
三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。
必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。
2.2.2 用样本的数字特征估计总体的数字特征标准差

标准差
平均数向我们提供了样本数据的重要信息,但是 平均数向我们提供了样本数据的重要信息 但是 平均有时也会使我们作出对总体的片面判断. 平均有时也会使我们作出对总体的片面判断.因 为这个平均数掩盖了一些极端的情况, 为这个平均数掩盖了一些极端的情况,而这些极 端情况显然是不能忽的.因此, 端情况显然是不能忽的.因此,只有平均数还难 以概括样本数据的实际状态. 以概括样本数据的实际状态. 如:有两位射击运动员在一次射击测试中各 射靶10次 每次命中的环数如下: 射靶 次,每次命中的环数如下:
考察样本数据的分散程度的大小, 考察样本数据的分散程度的大小,最常用的统计量是 标准差. 标准差. 标准差是样本平均数的一种平均距离,一般用s表示 表示. 标准差是样本平均数的一种平均距离,一般用 表示. 所谓“平均距离” 其含义可作如下理解: 所谓“平均距离”,其含义可作如下理解: 假设样本数据是 x1 , x 2 ,⋅ ⋅ ⋅, x n , x 表示这组数据的平均 的距离是: 数,则 x i 到 x 的距离是: 则 的平均距离是: 于是样本数据 x1 , x 2 ,⋅ ⋅ ⋅, x n 到 x 的平均距离是:
甲 25.46, 25.32, 25.45, 25.39, 25.36 25.34, 25.42, 25.45, 25.38, 25.42 25.39, 25.43, 25.39, 25.40, 25.44 乙 25.40, 25.42, 25.35, 25.41, 25.39 25.40, 25.43, 25.44, 25.48, 25.48 25.47, 25.49, 25.49, 25.36, 25.34 25.33, 25.43, 25.43, 25.32, 25.47 25.31, 25.32, 25.32, 25.32, 25.48
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
拓展、延伸、补充
正 正正正 正正正正 正正正正正 正正 正 一
8 15 22 25 14 6 4 2 100
0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1.00
审阅人 年
月
日
康乐一中教导处制
教学活动设计
后,原有的具体数据信息就被抹掉了. 总结:频率分布直方图的作图步骤. 第一步,画平面直角坐标系. 第二步,在横轴上均匀标出各组分点,在纵轴上标出频率/组距. 第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组 对应的小长方形,各小长方形的面积表示相应各组的频率. (三)讲练结合,巩固提高 探究:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得 到的图的形状也会不同. 不同的形状给人以不同的印象,这种印象有时 会影响我们对总体的判断. 分别以 0.1 和 1 为组距重新作图,然后谈谈 你对图的印象. (四)小结 1、什么是频率分布表和频率分布直方图? 2、作频率分布表和频率分布直方图的步骤. 3、通过作图既可以从数据中提取信息,又可以利用图形传递信息. 4、我们通常用样本的频率分布表或频率分布直方图去估计总体的 分布. (五)布置作业: P71 练习:1.(1). P81 习题 2.2A 组:2.
教学重点
教学难点
教学设想
教学用具
2.2 用样本估计总体 1、用样本的频率分布估计总体分布 板 书 设 计 例题解析 课堂练习 2、用样本的数字特征估计总体的数字特征 课时小结 课后作业教 学 反 思源自教学设计(首页)1
康乐一中教导处制
教学活动设计 2.2.1 用样本的频率分布估计总体分布
第一课时 (一)创设情景、导入课题 探究: 我国是世界上严重缺水的国家之一, 城市缺水问题较为突出, 某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理, 即确定一个居民月用水量标准 a,用水量不超过 a 的部分按平价收费, 超出 a 的部分按议价收费. 如果希望大部分居民的日常生活不受影响, 那么标准 a 定为多少比较合理呢?你认为, 为了较为合理地确定出这个 标准,需要做哪些工作? (让学生展开讨论) 如果标准太高,会影响居民正常生活;如果标准太低,则不利于节 水.为了确定一个较为合理的标准,必须先了解全市居民日常用水量分 布情况. (二)师生互动、探究新知 通过抽样调查, 获得 100 位居民 2007 年的月均用水量如下表 (单位: : t) 3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2 我们很难从随意记录的数据中直接看出规律,为此,我们要对数据 进行整理与分析. 分析数据的方法:
教学设计(续页)
2
拓展、延伸、补充
审阅人 年
月
日
康乐一中教导处制
教学活动设计
1、用图将它们画出来, 目的:一是从数据中提取信息,二是利用图形传递信息. 2、用紧凑的表格改变数据的排列方式. 目的:通过改变数据的构成形式,为我们提供解释数据的新方式. 分析数据的具体做法: 1、求极差(样本数据中的最大值和最小值的差称为极差). 例如上述 100 个数据中的最小值和最大值分别是 0.2、4.3 由此说明样本数据的变化范围是 4.3-0.2=4.1 2、决定组距与组数. 组距与组数没有固定标准,常常需要一个尝试和选择的过程.将数 据分组时组数应力求合适, 太多或太少,都会影响我们对数据分布情况 的了解. 数据分组的组数与样本容量有关,一般样本容量越大,所分组数越 多. 当样本容量不超过 100 时,按照数据多少,常分为 5-12 组. 为方便起见,组距的选择应力求“取整”. 例如将上述 100 个数据 按组距为 0.5 进行分组,那么这些数据共分为(4.3-0.2)÷0.5=8.2 设 k=极差÷组距,若 k 为整数,则组数=k,否则,组数=k+1 所以以组距为 0.5 进行分组,上述 100 个数据共分为 9 组. 3、将数据进行分组 例如以组距为 0.5 进行分组,上述 100 个数据共分为 9 组,各组数 据的取值范围可以如何设定? [0,0.5) ,[0.5,1) ,[1,1.5) ,„,[4,4.5]. 4、列频率分布表 频数=样本数据落在各小组内的个数, 频率=频数÷样本容量. 100 位居民月均用水量的频率分布表 分 组 频数累计(略) 频数 4 频率 0.04
拓展、延伸、补充
类似于频数分布折线图, 在频率分布直方图中,依次连接各小长方 审阅人
年 月 日
形上端的中点,就得到频率分布折线图.
教学设计(续页)
6
康乐一中教导处制
教学活动设计
你认为频率分布折线图能大致反映样本数据的频率分布吗? 尝试:当总体中的个体数较多时,抽样时样本容量就不能太小(如 抽样调查一个省乃至全国居民月均用水量) ,随着样本容量的增加,作 图时所分的组数增多, 组距减少, 你能想象出相应的频率分布折线图会 发生什么变化吗? 随着样本容量的增加,作图时所分的组数增加,组距减小,相应的 频率分布折线图越来越接近于一条光滑曲线. 统计中称这条光滑曲线为总体密度曲线. 总体密度曲线反映了总体在各个范围内取值的百分比, 它能给我们 提供更加精细的信息. 问题1.图中阴影部分的面积有何实际意义? 问题 2.对于任何一个总体,它的密度曲线是不是一定存在?为什 么? 当总体中的个体数比较少或样本数据不密集时, 不存在总体密度曲 线,因为组距不能任意缩小. 问题 3.对于任何一个总体,它的密度曲线是否可以被非常准确地 画出来?为什么? 实际上, 尽管存在总体密度曲线,但在实际应用中需要用样本来估 计.由于样本是随机的,不同的样本得到的频率分布折线图不同;即便 对于同一样本,不同的分组情况得到的频率分布折线图也不同.这条曲 线并不惟一,所以不能通过样本数据准确地画出总体密度曲线? 频率分布表、 频率分布直方图和折线图的主要作用是表示样本数据 的分布情况,此外,我们还可以用茎叶图来表示样本数据的分布情况. 例:某赛季甲、乙两名篮球运动员每场比赛的得分情况如下: 甲 运动员得分:13,51,23,8,26,38,16,33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44,36,15,37, 25,36,39. 用茎叶图表示, (见课本 P70)
教学设计(续页)
7
拓展、延伸、补充
审阅人 年
月
日
康乐一中教导处制
教学活动设计
茎叶图也是表示样本数据分布情况的一种方法. 对比数据与茎叶图,说明茎叶图与数据是怎样对应的. “茎”指的是中间的一列数,表示得分的十位数; “叶” 指的是从茎的旁边生长出来的数,分别表示两人得分的个位 数. 你能通过该图说明哪个运动员的发挥更稳定吗? 讨论:画出一组样本数据的茎叶图的步骤如何? 第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分; 第二步,茎是中间的一列数,按从小到大的顺序排列; 第三步,将各个数据的叶按大小次序写在茎右(左)侧. 用茎叶图表示数据有两个优点: 一是从统计图上没有原始数据信息 的损失, 所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可 以随时记录,随时添加,方便记录与表示. 思考: 对任意一组样本数据, 是否都适合用茎叶图表示?适合什么 情况? 不适合样本容量很大或茎、叶不分明的样本数据.适合样本数据较 少的情况. 便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数 据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观, 清晰. (三)讲练结合,巩固提高 P71 练习:1、2. (四)小结 1、总体分布指的是总体取值的频率分布规律,由于总体分布不易 知道,因此我们往往用样本的频率分布去估计总体的分布 . 2、总体密度曲线可看成是函数的图象,对一些特殊的密度曲线, 其函数解析式是可求的. 3、总体的分布分两种情况:当总体中的个体取值很少时,可用茎
拓展、延伸、补充
审阅人 年 教学设计(续页)
5
月
日
康乐一中教导处制
教学活动设计 2.2.1 用样本的频率分布估计总体分布
第二课时 (一)创设情景、导入课题 1.频率分布是指一个样本数据在各个小范围内所占比例的大小. 一 般用频率分布直方图反映样本的频率分布. 其一般步骤为: ⑴计算一组数据中最大值与最小值的差,即求极差 ⑵决定组距与组数 ⑶将数据分组 ⑷列频率分布表 ⑸画频率分布直方图 2.频率分布直方图中横轴表示月均用水量,纵轴表示频率/组距.这 些小长方形的宽、高和面积在数量上分别表示 组距、频率除以组距、频率. 3.我们可以用样本数据的频率分布表和频率分布直方图估计总体 的频率分布. 4.如果当地政府希望使 85%以上的居民每月的用水量不超出标准, 根据频率分布表 2-2 和频率分布直方图 2.2-1, (见课本 P67)你能对制 定月用水量标准提出建议吗? (二)师生互动、探究新知 (让学生仔细观察表和图) 从 图 中 可 以 看 出 , 月 用 水 量 在 3t 以 上 的 居 民 所 占 的 比 例 为 6%+4%+2%=12%,即大约有 12%的居民月用水量在 3t 以上,88%的居 民月用水量在 3t 以下.因此, 居民月用水量标准定为 3t 是一个可以考虑 的标准. 讨论:3t 这个标准一定能够保证 85%以上的居民用水不超标吗? 如果不一定,那么哪些环节可能会导致结论的差别?