福建省厦门市2012届高三3月质量检查数学(文)试题(扫描版)
福州市2012届第一学期高三期末质量检查数学(理科)试卷

福州市2012届第一学期期末高三数学(理科)模拟试卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 参考公式:样本数据12,,,n x x x 的标准差s =x 为样本平均数.第Ⅰ卷 (选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.已知集合{|3}A x x =>,{}24B x x =<<,那么集合()R A B ð等于 A .{|3}x x ≤B .{|23}x x <≤C .{|34}x x <<D .{|4}x x <2.复数21i i +(i 为虚数单位)等于A .1122i +B .1122i -C .1122i --D .1122i -+ 3.“3c o s 5α=”是 “7cos 225α=-”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.执行如图所示的程序框图,若输入x =0.1,则输出m 的值是A .0B .0.1C .1D .1-5.将函数()x x f 2sin =(x ∈R )的图象向右平移4π个单位,则所得到的图象对应的函数在下列区间中单调递增的是A .(,0)4π-B .(0,)2πC .3(,)24ππD .3(,)4ππ 6.已知||1a = ,||2b = ,a 与b 的夹角为120︒,0a c b ++= ,则a 与c 的夹角为A .150︒B .90︒C .60︒D . 30︒7.已知()g x 为三次函数32()3a f x x ax cx =++的导函数,则它们的图象可能是 第4题图图甲图乙A .B.C.D.8.在三次独立重复试验中,事件A 在每次试验中发生的概率相同,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为 A .14B .34C .964D .27649.直线y =与椭圆2222:1x y C a b+=(0a b >>)交于A B 、两点,以线段AB 为直径的圆恰好经过椭圆的右焦点,则椭圆C 的离心率为ABC1 D.4-10.设Q 为有理数集,函数1(),R Q Q x f x x ∈⎧=⎨∈⎩,,-1,ð()11x xe g x e -=+,则函数 ()()()h xf xg x =⋅A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数第Ⅱ卷 (非选择题 共100分)二、填空题(本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置上.) 11.计算1213x dx -⎰的值等于 ★★★ .12.在24(1(1-+的展开式中,x 的系数等于★★★ .(用数字作答)13.在圆224x y +=所围成的区域内随机取一个点(,)P x y ,则2x y +≤的概率为 ★★★ .14.“无字证明”(proofs without words), 就是将数学命题用简单、有创意而且易于理解的几何图形来呈现.请利用图甲、图乙中阴影部分的面积关系,写出该图所验证的一个三角恒等变换公式: ★★★ .15.如图的倒三角形数阵满足:⑴ 第1行的n 个数,分别是1,3,5,…,21n -;⑵ 从第二行起,各行中的每一个数都等于它肩上的两数之和;⑶ 数阵共有n 行.问:当2012n =时,第32行的第17个数是 ★★★ .三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算过程)第14题图第15题图16.(本小题满分13分)在数列{}n a 中,12a =,1n n a a cn +=+(*Νn ∈,常数0c ≠),且1a ,2a ,3a 成等比数列. (Ⅰ)求c 的值;(Ⅱ)求数列{}n a 的通项公式.17.(本小题满分13分)某学院为了调查本校学生2011年9月“健康上网”( 健康上网是指每天上网不超过两小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得数据分成以下六组:[](](]0,5,5,10,,25,30⋅⋅⋅,由此画出样本的频率分布直方图,如图所示.(Ⅰ)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(Ⅱ)现从这40名的学生中任取2名,设Y 为健康上网天数超过20天的人数,求Y 的分布列及其数学期望E (Y ).18.(本小题满分13分) 如图,在△ABC 中,已知3B π=,34=AC ,D 为BC 边上一点.(Ⅰ)若2AD =,DAC S ∆=,求DC 的长;(Ⅱ)若AB AD =,试求ADC ∆的周长的最大值.19.(本小题满分13分)某种商品原来每件售价为25元,年销售8万件. (Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到.x 元.公司拟投入21(600)6x -万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入...与总投入...之和?并求出此时商品的每件定价.20.(本小题满分14分)在平面直角坐标系xOy 中,已知点A ()1,1-,P 是动点,且三角形POA的三边所在直线的斜率满足OP OA PA k k k +=.(Ⅰ)求点P 的轨迹C 的方程;第18题图第17题图(Ⅱ)若Q 是轨迹C 上异于点P 的一个点,且PQ OA λ=,直线OP 与QA 交于点M ,问:是否存在点P 使得PQA ∆和PAM ∆的面积满足2PQA PAM S S ∆∆=?若存在,求出点P 的坐标;若不存在,说明理由.21.(本小题满分14分) 已知函数()ln f x x =,()xg x e =.(Ⅰ)若函数()1()1x x f x x ϕ+=--,求函数()x ϕ的单调区间; (Ⅱ)设直线l 为函数()f x 的图象上一点00(,())A x f x 处的切线.证明:在区间1,+∞()上存在唯一的0x ,使得直线l 与曲线()y g x =相切.福州市2012届第一学期期末高三数学(理科)模拟试卷参考答案一、选择题(本大题共10小题,每小题5分,共50分. 在每小题所给的四个答案中有且只有一个答案是正确的.)1.B 2.D 3.A 4.A 5.B 6.B 7.D 8.C 9.C 10.A 二、填空题(本大题共5小题,每小题4分,共20分.)11.2 12.3- 13.2π14.sin()sin cos cos sin αβαβαβ+=+ 15.372 三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算过程.)16.(本小题满分13分)解:(Ⅰ)由题知,12a =,22a c =+,323a c =+, ………2分 因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+, ………4分 解得0c =或2c =,又0c ≠,故2c =. ………6分 (Ⅱ)当2n ≥时,由1n n a a cn +=+得21a a c -=, 322a a c -=,…1(1)n n a a n c --=-,以上各式相加,得1(1)[12...(1)]2n n n a a n c c --=+++-=, ………9分 又12a =,2c =,故22(2)n a n n n =-+≥, ………11分 当1n =时,上式也成立, ………12分 所以数列{}n a 的通项公式为22n a n n =-+(*Νn ∈). ………13分17.(本小题满分13分)解:(Ⅰ)由图可知,健康上网天数未超过20天的频率为(0.010.020.030.09)50.1550.75+++⨯=⨯=, ………2分∴ 健康上网天数超过20天的学生人数是第20题图40(10.75)400.2510⨯-=⨯=.………4分(Ⅱ)随机变量Y的所有可能取值为0,1,2.………5分P(Y=0)=2302402952CC=, P(Y=1)=111030240513C CC=, P(Y=2)=210240352CC=.……8分所以Y的分布列为11分∴E(Y)=0×2952+1×513+2×352=12.………………………………13分18.(本小题满分13分)解:(Ⅰ)DACS∆=1sin2AD AC DAC∴⋅⋅⋅∠=,∴1sin2DAC∠=.………2分∵233DAC BACπππ∠<∠<-=,∴6DACπ∠=.………3分在△ADC中,由余弦定理,得6cos2222πACADACADDC⋅-+=, ……4分24482228DC∴=+-⨯⨯=,DC∴=………6分(Ⅱ)∵AB AD=,3Bπ=,∴ABD∆为正三角形,在ADC∆中,根据正弦定理,可得,⎪⎭⎫⎝⎛-==CDCCAD3sin32sin34sinππ, ………7分8sinAD C∴=,8sin3DC Cπ⎛⎫=-⎪⎝⎭, ………8分∴ADC∆的周长为8sin8sin3AD DC AC C Cπ⎛⎫++=+-+⎪⎝⎭34cos 23sin 21834sin 21cos 23sin 8+⎪⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛-+=C C C C C …9分 343sin 8+⎪⎭⎫ ⎝⎛+=πC , …………………………………10分22033333ADC C C πππππ∠=∴<<∴<+<,,, ………11分 () 3.326C C f A πππ∴+=当,即=时,有最大值16+8 ADC∆的周长最大值为348+. ……13分 19.(本小题满分13分) 解:(Ⅰ)设每件定价为x 元, 依题意,有25(80.2)2581x x --⨯≥⨯, ………3分 整理得26510000x x -+≤,解得2540x ≤≤. ………5分 ∴ 要使销售的总收入不低于原收入,每件定价最多为40元. ………6分 (Ⅱ)依题意,25>x 时,不等式21125850(600)65ax x x ≥⨯++-+有解, ………8分 等价于25>x 时,1501165a x x ≥++有解, ………9分()150110306x x x +≥==当且仅当时,等号成立 , ………11分 10.2a ∴≥. ………12分. ∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元. ………13分20.(本小题满分14分)解:(Ⅰ)设点(,)P x y 为所求轨迹上的任意一点,则由OP OA PA k k k +=得,1111y y x x -+=-+, 整理得轨迹C 的方程为2y x =(0x ≠且1x ≠-). ………4分 (Ⅱ)方法一、设22112200(,),(,),(,)P x x Q x x M x y , 由PQ OA λ=可知直线//PQ OA ,则PQ OA k k =,故2221211010x x x x --=---,即211x x +=-, ………6分 由O M P 、、三点共线可知, 00(,)OM x y = 与211(,)OP x x =共线, ∴ 201100x x x y -=,由(Ⅰ)知10x ≠,故001y x x =, ………8分同理,由00(1,1)AM x y =+- 与222(1,1)AQ x x =+- 共线,∴ 20220(1)(1)(1)(1)0x x x y +--+-=,即2020(1)[(1)(1)(1)]0x x x y ++---=,由(Ⅰ)知21x ≠-,故020(1)(1)(1)0x x y +---=, ………10分 将001y x x =,211x x =--代入上式得0101(1)(2)(1)0x x x x +----=, 整理得0112(1)1x x x -+=+,由11x ≠-得012x =-, ………12分由2PQA PAM S S ∆∆=,得到2QA AM =,因为//PQ OA ,所以2OP OM =,由2PO OM =,得11x =,∴P 的坐标为(1,1). ………14分方法二、设221122(,),(,),P x x Q x x由PQ OA λ=可知直线//PQ OA ,则PQ OA k k =,故2221211010x x x x --=---,即211x x =--, ………6分 ∴直线OP 方程为:1y x x = ①; …………8分直线QA 的斜率为:2111(1)1211x x x ---=----+,∴直线QA 方程为:11(2)(1)y x x -=--+,即11(2)1y x x x =-+--, ② …10分 联立①②,得12x =-,∴点M 的横坐标为定值12-. ……………12分 由2PQA PAM S S ∆∆=,得到2QA AM =,因为//PQ OA ,所以2OP OM =,由2PO OM =,得11x =,∴P 的坐标为(1,1). ………14分21.(本小题满分14分) 解:(Ⅰ) ()1()1x x f x x ϕ+=--11ln -+-=x x x , ()()()22211121-⋅+=-+='x x x x x x ϕ.……………………2分∵0x >且1x ≠, ∴()0x ϕ'>,∴函数()x ϕ的单调递增区间为()()∞+,和11,0. ……………………4分(Ⅱ)∵1()f x x'=,∴001()f x x '=,∴ 切线l 的方程为0001ln ()y x x x x -=-, 即001ln 1y x x x =+-, ① ……………………6分设直线l 与曲线()y g x =相切于点11(,)xx e ,∵()x g x e '=,∴101xe x =,∴10ln x x =-. ……………………8分∴直线l 的方程为()00011ln y x x x x -=+, 即0000ln 11x y x x x x =++, ② ……………………9分由①②得 0000ln 1ln 1x x x x -=+, ∴0001ln 1x x x +=-. …………………11分 下证:在区间1,+∞()上0x 存在且唯一: 由(Ⅰ)可知,()x ϕ11ln -+-=x x x 在在区间1,+∞()上递增. 又12()ln 011e e e e e ϕ+-=-=<--,22222213()ln 011e e e e e e ϕ+-=-=>--, ……………13分 结合零点存在性定理,说明方程()0x ϕ=必在区间2(,)e e 上有唯一的根,这个根就是所求的唯一0x .故结论成立.………………14分。
福建省七地市2024届高三上学期第一次质量检测数学含答案解析

厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞ B.(1,2]C.[1,2]D.(1,)+∞3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4 C.3π4 D.5π64.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3D.3π45.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-6.已知1a x x=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c> B.[1,1]x ∃∈-,b c>C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.1178.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2- B.4- C.2D.4二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.15.已知平面α的一个法向量为(1,0,1)n = ,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.【答案】B 【解析】【分析】先求出复数z ,再求||z .【详解】由i 1z z ⋅=+,得()i 11z -=,即()()()i 1111i i 1i 1i 122z --===------,所以||2z ==,故选:B2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞B.(1,2]C.[1,2]D.(1,)+∞【答案】A 【解析】【分析】由指数函数值域求集合N ,应用集合并运算求结果.【详解】由题设{|1}N y y =>,故M N ⋃={}{}221{|2}x x y y x x -≤≤⋃=≥-.故选:A3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4C.3π4 D.5π6【答案】C 【解析】【分析】利用导数几何意义求直线的斜率,进而确定倾斜角.【详解】由231y x '=-,则0|1x y ='=-,即直线l 的斜率为1-,根据倾斜角与斜率关系及其范围知:l 的倾斜角为3π4.故选:C4.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3 D.3π4【答案】B 【解析】【分析】根据已知,应用向量数量积的运算律求()()a b a b +⋅-即可判断夹角大小.【详解】由题意22()()0a b a b a b +⋅-=-= ,则a b + 与a b - 的夹角为π2.故选:B5.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-【答案】D 【解析】【分析】根据奇函数的定义求解即可.【详解】当0x <时,2()21f x x x =-+,所以()()()2222219f -=--⨯-+=,因为()f x 为定义在R 上的奇函数,所以()()229f f =--=-,且()00f =,所以(2)(0)9f f +=-故选:D6.已知1a xx=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c >B.[1,1]x ∃∈-,b c >C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<【答案】D 【解析】【分析】举例即可判断ABC ;再根据基本不等式及三角函数的性质即可判断D.【详解】对于A ,当π6x =时,π63626π64a =+>+=,13222c =+=,此时a c >,所以[1,1]x ∃∈-,a c >,故A 正确;对于B ,当0x =时,2b =,c =b c >,所以[1,1]x ∃∈-,b c >,故B 正确;对于C ,当π6x =-时,π606πa =--<,13122c =-+=,此时a c <,所以[1,1]x ∃∈-,a c <,故C 正确;对于D ,当[]1,1x ∈-时,2e e x x b -=≥=+,当且仅当e e x x-=,即0x =时取等号,πsin 2sin 3c x x x ⎛⎫=+=+ ⎪⎝⎭,由[]1,1x ∈-,得πππ1,1333x ⎡⎤+∈-++⎢⎥⎣⎦,而ππππ1π,012332<+<<-+<,所以当π3x +,即π6x =时,πsin 2sin 23c x x x ⎛⎫=+=+= ⎪⎝⎭,所以2≤c ,当且仅当π6x =时取等号,而π06≠,所以[1,1]x ∀∈-,b c >,故D 错误.故选:D.7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.117【答案】C 【解析】【分析】根据题图及前4个五边形数找到规律,即可得第8个数.【详解】由题图及五边形数知:后一个数与前一个数的差依次为4,7,10,13,16,19,22, ,所以五边形数依次为1,5,12,22,35,51,70,92, ,即第8个数为92.故选:C8.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2-B.4- C.2D.4【答案】A 【解析】【分析】利用赋值法对,x y 进行赋值结合函数的周期可得答案.【详解】令0x y ==,得()()()()11000f f f f ⋅=-=,即()10f =,令0x =,得()()()()110f f y f y f y ⋅+=--=,得()()-=f y f y ,所以函数()f x 为偶函数,令1x y ==,得()()()2220ff f =-,令1x y ==-,得()()()()()202020f f f f f =--=-,()()2220f f ∴=,()()20f f ∴=或()()20f f =-,若()()20f f =,解得()00f =与已知()00f ≠矛盾,()()20f f ∴=-,即()()2222f f =,解得()22f =,()02f =-,令1y =,得()()()()1211f x f f x f x +⋅=+--,()()()2111f x f x f x ∴+=+--,()()11f x f x ∴+=--,()()2f x f x ∴+=-,∴()()4f x f x +=,所以函数()f x 的周期为4.()()202402f f ∴==-.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=-⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =【答案】BC 【解析】【分析】根据正弦型函数的性质,结合代入法、整体法逐一判断各项正误.【详解】由π()2sin 23f x x ⎛⎫=-⎪⎝⎭,最小正周期2ππ2T ==,A 错;由2π2ππ()2sin 20333f ⎛⎫=⨯-= ⎪⎝⎭,即2π,03⎛⎫⎪⎝⎭是对称中心,B 对;由π0,3x ⎡⎤∈⎢⎥⎣⎦,则πππ2[,]333x -∈-,显然()f x 在区间π0,3⎡⎤⎢⎥⎣⎦上单调递增,C 对;由题意00ππ5π2π2π326x k x k -=+⇒=+,故01sin 22x =±,D 错.故选:BC10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同【答案】BD 【解析】【分析】根据已知平均数的关系求得28a =,再由极差、中位数、方差求法判断各项正误即可.【详解】由题设,2021222324252324252627366a ++++++++++=-,所以28a =,甲组数据中670% 4.2⨯=,故第70百分位数为24,A 错;甲乙组数据的极差都为5,B 对;乙组数据从小到大为23,24,25,26,27,28,故其中位数为252625.52+=,C 错;由上易知:甲的平均数为22.5,乙的平均数为25.5,所以甲的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,乙的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,故两组数据的方差相同,D 对.故选:BD11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角【答案】AC 【解析】【分析】根据已知可得1c =、2a =,进而有12e =,结合椭圆性质求相交弦长的范围及焦点三角形内角的范围判断各项的正误.【详解】由12221F F c c ==⇒=,如下图2ABF △周长为482a a =⇒=,故2223b a c =-=,所以,椭圆离心率为12e =,A 对,B 错;当AB x ⊥轴,即AB 为通径时2min 2||3b AB a==,且||24AB a <=,所以3||4AB ≤<,故||AB 可以为π,C 对;由椭圆性质知:当A 为椭圆上下顶点时2BAF ∠最大,此时222222c 41os 2a a F c a BA +∠-==,且2(0,π)BAF ∈∠,故2max π)3(BAF =∠,即2BAF ∠不可能为直角,D 错.故选:AC12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且23AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD 【解析】【分析】A 由线面平行的判定证明;B 设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI EKJ -,取,AB GI 的中点,M H ,设π(0)2FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,结合()2FGI EKJ F ABIG V x V V --=-并应用导数研究最值;D 先分析特殊情况:ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设//BC AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则//BC 面ADEF ,由面BCEF 面ADEF EF =,BC ⊂面BCEF ,则//BC EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则//EF 平面ABCD ,对;B :设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF x BC ==时tan α取最小值,即α取最小值,即二面角A EF B --取最小值,所以EF x =∈(0,)+∞,二面角先变小后变大,错;C :当2BC =,如图,把五面体ABCDEF 补成直三棱柱FGI EKJ -,分别取,AB GI 的中点,M H ,易得FH ⊥面ABCD ,3FM =,设π(02FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,()2ABCDEFFGI EKJ F ABIG V x V V V --==-=113sin (26cos )23sin 3cos 23θθθθ⨯⨯+-⨯⨯⨯cos θθθ=+,令()cos f θθθθ=+,则()2f θθθ'=+,令2()02cos cos 10f θθθ'=⇒+-=,可得1cos 2θ=或cos 1θ=-(舍),即π3θ=,π03θ<<,()0f θ'>,()f θ递增,ππ32θ<≤,()0f θ'<,()f θ递减,显然π3θ=是()f θ的极大值点,故max 127()2222f θ=+=.所以五面体ABCDEF 的体积(x)V 最大值为272,C 对;D :当32BC =时,ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,此时正三棱柱内最大的求半径342r =<,故半径为2的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当π3FMH ∠=时,3339,22FH IH IF ===,设FIG 的内切圆半径为1r ,则113313922222r ⨯⨯=⨯⨯,可得12r =>,另外,设等腰梯形EFMN 中圆的半径为2r ,则213π33tan434r r ==>=所以,存在x 使半径为2的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设π(02FMH θθ∠=<≤得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于2为关键.三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.【答案】35-##0.6-【解析】【分析】应用诱导公式有ππππcos cos[()]sin()4424ααα⎛⎫-=+-=+ ⎪⎝⎭,即可求值.【详解】ππππ3cos cos[()sin()44245ααα⎛⎫-=+-=+=- ⎪⎝⎭.故答案为:35-14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.【答案】24【解析】【分析】先求出三人选书没有要求的选法,再排除三人选择的书完全相同的选法即可.【详解】若三人选书没有要求,则有3327=种,若三人选择的书完全相同,则有3种,所以三人选择的书不全相同,不同的选法有27324-=种.故答案为:24.15.已知平面α的一个法向量为(1,0,1)n =,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.【答案】【解析】【分析】由题设得(0,1,2)BA =,应用向量法求点面距离即可.【详解】由题设(0,1,2)BA = ,则点(1,1,1)B 到α的距离为||||BA n n ⋅==16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.【答案】①.②.(2)5【解析】【分析】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,根据已知得001||||12y x =-、2200(1)10x y -+=,即可得04x =,0||1y =,应用两点距离公式求||PA ;根据PA PB a -=确定P 的轨迹曲线,并写出方程,利用曲线性质列不等式求参数范围.【详解】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,则101||2S x =,20||S y =,所以001||||12x y -=,则001||||12y x =-,当||PB =,||||PA PB >时,00x >,即22200||(1)10PB x y =-+=,所以22001(1)(1)102x x -+-=,即200512320x x --=,可得04x =(负值舍),则0||1y =,故||PA ==若0PA PB a -=>,结合双曲线定义知:P 在以,A B 为焦点的双曲线上,但不含顶点,该双曲线为22221()1()22x y a a -=-,即22224414x y a a -=-,双曲线顶点的横坐标的绝对值小于半焦距1,则双曲线与曲线1||||12x y -=有交点,即双曲线的渐近线和曲线1||||12x y -=有交点,则双曲线的渐近线斜率的绝对值小于12,所以221115160424165a a <<⇒<<⇒<<,故4525a <<,所以实数a的取值范围为(,2)5.,(2)5【点睛】关键点点睛:第二空,注意P 在以,A B 为焦点的双曲线上,但不含顶点,将问题化为双曲线的渐近线斜率的绝对值小于12为关键.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.【答案】(1)2a =;(2)4.【解析】【分析】(1)应用正弦边角关系及和角正弦公式有sin()2sin a A B C +=,再由三角形内角性质即可求边长;(2)应用余弦定理及已知得224b c bc ++=且b c +=1bc =,最后应用面积公式求面积.【小问1详解】由题设(cos cos )2a a B b A c +=,由正弦定理有(sin cos sin cos )2sin a A B B A C +=,所以sin()2sin a A B C +=,而πA B C +=-,故sin 2sin a C C =,又sin 0C >,所以2a =.【小问2详解】由(1)及已知,有2222241cos 222b c a b c A bc bc +-+-===-,可得224b c bc ++=,又2a b c ++=+,即b c +=,所以2()541b c bc bc bc +-=-=⇒=,故13sin 24ABC S bc A ==△.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.【答案】(1)证明见详解(2)277【解析】【分析】(1)利用三角形相似及等量代换得AC BD ⊥,利用线面垂直得EA BD ⊥,进而得BD ⊥平面EAC ,结合已知条件得证;(2)利用空间向量法可求【小问1详解】设AC 与BD 的交点为O ,连接OF ,因为AD BC ∥,且AB AD ⊥,所以AB BC ⊥,因为22AD =,所以1AD =,AB =,AB AD ⊥,且AB =,2BC =,AB BC ⊥,所以ABD BCA ,所以ABD BCA ∠=∠,所以BAC ABD BAC BCA ∠+∠=∠+∠,因为AB BC ⊥,所以90BAC BCA ∠+∠=︒,所以90BAC ABD ∠+∠=︒,即90BAO ABO ∠+∠=︒,所以90AOB ∠=︒,所以AO OB ⊥,即AC BD ⊥,因为EA ⊥平面ABCD ,BD ⊂平面ABCD ,所以EA BD ⊥,因为EA AC A = ,,EA AC ⊂平面EAC ,所以BD ⊥平面EAC ,又因为平面BD α⊥,且B ∉平面EAC ,所以平面//α平面EAC 【小问2详解】因为AB AD ⊥,EA ⊥平面ABCD ,所以,,AB AD EA 两两垂直,如图,以A 为原点,,,AB AD EA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz -,则()0,0,0A ,()0,1,0D ,()()(),0,0,2,2,0B E C ,所以())())0,1,0,,0,2,0,2AD BD BC BE ====,因为点F 为棱EC 的中点,所以()1,1,122BF BC BE ⎛⎫=+= ⎪ ⎪⎝⎭,设平面FBD 的一个法向量为(),,n x y z =,则00BD n BF n ⎧⋅=⎪⎨⋅=⎪⎩,所以0202y x y z +=++=⎪⎩,取2x =,得y z =-=,所以平面FBD的一个法向量为(2,n =-,记直线AD 与平面FBD 所成角为θ,则27sin cos ,7AD n AD n AD n θ⋅===,所以直线AD 与平面FBD 所成角的正弦值为277.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)由题设112()n n n n S S S S +--=-,结合已知得到12n n a a +=在*n ∈N 上都成立,即可证结论;(2)由(1)得()()122121nn n n b +=--,裂项相消法求n T ,根据不等式关系得221m ->,即可确定正整数m 的最小值.【小问1详解】当2n ≥时,1111322()n n n n n n n S S S S S S S +-+-=-⇒-=-,即12n n a a +=,又2124a a ==,故12n n a a +=在*n ∈N 上都成立,且12a =,所以{}n a 是首项、公比均为2的等比数列.【小问2详解】由(1)知:2n n a =,则()()1121121212121n n n n n n b ++==-----,所以11111111212121211111133712n n n n n n T -++=-+-+--=----+-+- ,则21211117221712m m m m T -+-+=-+>⨯-⨯,即2121722182m m m -+-⨯-⨯<-=,所以221m ->,可得m>2,而*m ∈N ,故3m ≥,正整数m 的最小值为3.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .【答案】(1)215;(2)3835.【解析】【分析】(1)由题意,,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,分别求出a 被分至甲队即a 摸出红球的概率、b 被分至甲队即b 摸出红球的概率、c 被分至甲队即c 摸出红球的概率,再应用条件概率公式及互斥事件加法求,,a b c 三人均被分至同一队的概率;(2)根据题意有X 可能取值为4,2,0,分析X 各对应值的实际含义,并求出对应概率,进而求期望即可.【小问1详解】,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,记事件A =“a 被分至甲队”,事件B =“b 被分至甲队”,事件C =“c 被分至甲队”,当a 即将摸球时,箱中有2个红球和2个黑球,则a 被分至甲队即a 摸出红球的概率为1()2P A =;当a 被分至甲队时,箱中有2个红球和3个黑球,则b 被分至甲队即b 摸出红球的概率为2(|)5P B A =;当,a b 均被分至甲队时,箱中有2个红球和4个黑球,则c 被分至甲队即c 摸出红球的概率为1(|)3P C AB =;所以121()()(|)255P AB P A P B A ==⨯=,则111()()(|)5315P ABC P AB P C AB ==⨯=,同理知:新增登山爱好者,,a b c 均被分至乙队的概率也为115,所以,,a b c 三人均被分至同一队的概率为215.【小问2详解】由题设,X 可能取值为4,2,0,4X =为新增的4名登山爱好者被分至同一队,则22224(4)24567105P X ⨯⨯⨯==⨯=⨯⨯⨯,2X =为新增的4名登山爱好者中有3名均被分至同一队,其余1名被分至另一队,设新增的第(1,2,3,4)k k =名登山爱好者被单独分至甲队或乙队,则123339(1)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,223339(2)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,322434(3)2456735P P k ⨯⨯⨯===⨯=⨯⨯⨯,422252(4)2456721P P k ⨯⨯⨯===⨯=⨯⨯⨯,所以12347(2)15P X P P P P ==+++=,X 0=为新增的4名登山爱好者中各有2名被分至甲队和乙队,则52(0)1(2)(4)105P X P X P X ==-=-==,所以475238()4201051510535E X =⨯+⨯+⨯=.21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.【答案】(1)1(0,2;(2)证明见解析.【解析】【分析】(1)利用导数,结合()f x 的极值点个数,得到0a >且1x ,2x 是22(1)0ax a x a +-+=的两个不同根,列不等式组求参数范围;(2)设1201x x <<<,应用分析法将问题化为证11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,再由12a =对应()f x 单调性即可证结论.【小问1详解】由题设22222(1)()(1)(1)a ax a x a f x x x x x +-+'=-=++且0x >,若0a ≤,则()0f x '<在(0,)+∞上恒成立,即()f x 递增,不可能有两个极值点,不符;故0a >,又()f x 有两个极值点,则1x ,2x 是22(1)0ax a x a +-+=的两个不同正根,所以()()22Δ4144120100a a a a aa ⎧=--=->⎪-⎪->⎨⎪>⎪⎩,可得102a <<,即实数a 的取值范围是1(0,2.【小问2详解】由(1)102a <<且122(1)a x x a-+=,121=x x ,不妨设1201x x <<<,则()()1212f x f x x x -=-1212121211ln ln 11x x a x a x x x x x ----+++-112212122()ln (1)(1)x x x a x x x x x --++=-121212121212ln (ln ln )21x a x a x x a x x x x x x x x -=-=--+++-,要证()()2121221f x f x a a x x a -->--,需证1212ln ln 1211x x a x x a --->--,即1212ln ln 1x x a x x a ->--,只需证121212ln ln 2x x x x x x ->-+,即11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,由(1),12a =时2212(1)(1)02ax a x a x +-+=-≥,即()0f x '≥,所以11()ln 21x f x x x -=-+在(0,)+∞上递增,又01t <<,故()(1)0f t f <=,即11ln 21t t t -<+,综上,()()2121221f x f x a a x x a -->--.【点睛】关键点点睛:第二问,设1201x x <<<,应用分析法将问题转化为证11212211ln 21x x x x x x -<+为关键.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.【答案】(1)24y x=(2)证明见详解;32,2⎛⎫+∞ ⎪ ⎪⎝⎭【解析】【分析】(1)设(),A x y ,根据已知条件列出方程化简即得;(2)(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x ⎧+++=⎨=⎩,得()42416160y d y ey +++=,结合重心公式可得证;(ii )记,OAB ABC △△的面积分别为12,S S ,用已知条件分别表示出12,S S ,进而表示出面积为S 的表达式,然后利用导数求最值即得.【小问1详解】设(),A x y ,则线段AP 的中点坐标为1,22x y +⎛⎫ ⎪⎝⎭,因为以线段AP 为直径的圆与y 轴相切,所以1122x AP +==,化简,得24y x =.【小问2详解】(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得()42416160y d y ey +++=,即()()3416160y y d y e +++=,所以123,,y y y 即为关于y 的方程()3416160y d y e +++=的3个根,则()()()()312341616y d y e y y y y y y +++=---,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y ---=-+++++-,由2y 的系数对应相等得,1230y y y ++=,即()123103y y y ++=,因为ABC 的重心的纵坐标为()12313y y y ++,所以ABC 的重心在定直线0y =上.(ii )记,OAB ABC △△的面积分别为12,S S ,由已知得直线AB 的斜率不为0设直线AB :1x my =+,联立241x xy y m =+=⎧⎨⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,所以1121122S OP y y =⋅⋅-==,由(i )得,()3124y y y m =-+=-,所以()22233114444x y m m ==⨯-=,即()24,4C m m -,因为()212122444AB x x m y y m =++=++=+,点C 到直线AB的距离d =,所以()22211448122S AB d m m =⋅⋅=⋅+=-,所以)221281181S S S m m =+=-=+-不妨设0m >,且A 在第一象限,即120,0y y ><,340y m =-<,依次连接O ,A ,C ,B 构成凸四边形OACB ,所以()3122y y y y =-+<,即122y y -<,又因为124y y ⋅=-,2242y y <,即222y <,即20y <<,所以122244m y y y y =+=->+=,即24m >,即218m >,所以)218116S m m=+-=,设t =,则324t >,令()()2161f t t t =-,则()()()2221611614816f t t t t t '='=-+--,因为324t >,所以()248160f t t -'=>,所以()f t 在区间32,4∞⎛⎫+ ⎪ ⎪⎝⎭上单调递增,所以()323242f t f ⎛⎫>= ⎪ ⎪⎝⎭,所以S 的取值范围为32,2∞⎛⎫+ ⎪ ⎪⎝⎭【点睛】第二问:(i )关键是把证明ABC 的重心在定直线上转化为方程根的问题,利用韦达定理以及重心公式可得.(ii )关键是把四边形OACB 拆成两个三角形,然后用相同的变量分别表示两个三角形的面积以及变量的取值范围的确定,进而得到四边形OACB 面积的表达式,然后利用导数求最值即得.。
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案

2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .
【恒心】【好卷速递】福建省福州市2012届高中毕业班质量检查试卷(word版)_数学文

2012年福州市高中毕业班质量检查数学(文科)试卷(完卷时间:1 20分钟;满分:1 50分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.)1.抛物线y 2=4x 的焦点坐标为A .(1,0)B .(-l ,0)C .(0,1)D .(0,-1) 2.命题“$x ∈R ,x 3>0”的否定是RA .$x ∈R ,x 3≤0B ."x ∈R ,x 3≤0C .$x ∈R ,x 3<0D ."x ∈R ,x 3>0 3.集合M={ x ∈N *| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4根据频数分布表,可以估计在这堆苹果中,质量大于140克的苹果数约占苹果总数的A .10%B .30%C .70%D .80% 5.执行如下程序框图后,若输出结果为-1,则输入x 的值不可能...是 A .2 B .1 C .-1 D .-26.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .2a 2 D 2 7.在区间(0,2p)上随机取一个数x ,使得0<tan x <1成立的概率是 A .18 B .13 C .12 D .2p8.若x 、y ∈R ,且1,,230,x y x x y ì³ïï³íï-+ ïî,则k=y x 的最大值等于A .3B .2C .1D .129.在△ABC 中,点O 在线段BC 的延长线上,且与点C 不重合,若AO =x AB+(1-x ) AC ,则实数x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-1,0)D .(0,1)10.若双曲线2222x y a b-=1(a>0,b>0)的渐近线与圆(x -2)2+y 2=2相交,则此双曲线的离心率的取值范围是A .(2,+∞)B .(1,2)C .(1D .+∞)11.函数f (x )=2cos(ωx+φ)( ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A 、B 分别为该部分图象的最高点与最低点,且|ABf (x )图象的一条对称轴的方程为A .x =2B .x =2πC .x =12 D .x =2p 12.已知函数 f (x )的定义域为R ,其导函数f '(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是 ①f (x )< 0恒成立;②(x 1-x 2)[ f (x 1)-f (x 2)] < 0; ③(x 1-x 2)[ f (x 1)-f (x 2)] > 0;④122x x f 骣+琪琪桫> 12()()2f x f x +; ⑤122x x f 骣+琪琪桫 < 12()()2f x f x +.A .①③B .①③④C .②④D .②⑤ 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.) 13.已知i 是虚数单位,则复数11ii+-=___________ 14.已知函数f (x )=2x 满足f (m )·f (n )=2,则m n 的最大值为_________15.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若a =2,B=60°,则sinC=____________.16.对一个边长为1的正方形进行如下操作:第一步,将它分割成3×3方格,接着用中心和四个角的5个小正方形,构成如图①所示的几何图形,其面积S 1=59;第二步,将图①的5个小正方形中的每个小正方形都进行与第一步相同的操作,得到图②;依此类推,到第n 步,所得图形的面积59nn S 骣琪=琪桫.若将以上操作类比推广到棱长为1的正方体中,则到第n 步,所得几何体的体积V n =____________.三、解答题(本大题共6小题,共79分,解答应写出文字说明、证明过程或演算过程.) 17.(本小题满分12分)在数列{a n }中,a 1=12,点(a n ,a n+1)(n ∈N *)在直线y=x +12上 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)记b n =11n n a a +×,求数列{b n }的前n 项和T n .18.(本小题满分12分)某教室有4扇编号为a 、,b 、c 、d 的窗户和2扇编号为x 、y 的门,窗户d 敞开,其余门和窗户均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇. (Ⅰ)记“班长在这些关闭的门和窗户中随机地敞开2扇”为事件A ,请列出A 包含的基本事件;(Ⅱ)求至少有1扇门被班长敞开的概率.19.(本小题满分12分)已知函数f (x )=cos 2sin()4xp . (Ⅰ)求函数f (12p)的值; (Ⅱ)求函数f (x )的单调递减区间. 20.(本小题满分12分)在直角坐标系xOy 中,已知椭圆C :22219x y a +=(a >0)与x 轴的正半轴交于点P .点Q 的坐标为(3,3),OP OQ ×=6.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点Q且斜率为32的直线交椭圆C于A、B两点,求△AOB的面积.21.(本小题满分12分)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(Ⅰ)求证:BD⊥平面POA;(Ⅱ)记三棱锥P- ABD体积为V1,四棱锥P—BDEF体积为V2.求当PB取得最小值时的V1:V2值.22.(本小题满分14分)已知函数f(x)=-x2+2ln x.(Ⅰ)求函数f(x)的最大值;(Ⅱ)若函数f(x)与g(x)=x+ax有相同极值点,(i)求实数a的值;’(ii)若对于"x1 ,x2∈[1e,3 ],不等式12()()1f xg xk--≤1恒成立,求实数k的取值范围.找家教,可以找柯南东升,可以关注824135830空间,更多精彩请加8214358302012年福州市高中毕业班质量检查数学(文科)试卷参考答案及评分标准一、选择题(本大题共12小题,每小题5分.)1.A 2.B 3.D 4.B 5.D 6.C7.C 8.B 9.A 10.C 11.A 12.D二、填空题(本大题共4小题,每小题4分,共16分.)13.i14.1415.116.1()3n三、解答题(本大题共6小题,共74分.) 17.解:(Ⅰ)由已知得112n n a a +=+,即112n n a a +-=. ········································· 1分 ∴ 数列{}n a 是以12为首项,以12d =为公差的等差数列. ···································· 2分∵ 1(1),n a a n d =+- ·································································································· 3分 ∴ 11(1)222n na n =+-=(*n N ∈). ········································································ 6分 (Ⅱ)由(Ⅰ)得141(1)22n b n n n n ==++⋅, ·························································· 7分 ∴ 114()1n b n n =-+. ···························································································· 9分 ∴ 111114[(1)()()]2231n T n n =-+-++-+ 14(1)1n =-+41n n =+. ······················· 12分 18.解:(Ⅰ)事件A 包含的基本事件为:{,}a b 、{,}a c 、{,}a x 、{,}a y 、{,}b c 、{,}b x 、{,}b y 、{,}c x 、{,}c y ,{,}x y ,共10个. ······································································· 6分注:⑴ 漏写1个情形扣2分,扣完6分为止;多写情形一律扣3分.(Ⅱ)方法一:记 “至少有1扇门被班长敞开”为事件B .∵ 事件B 包含的基本事件有{,}a x 、{,}a y 、{,}b x 、{,}b y 、{,}c x 、{,}c y ,{,}x y ,共7个. ······························································································································ 9分∴ 7()10P B =. ······································································································· 12分 方法二:事件“2个门都没被班长敞开” 包含的基本事件有{,}a b 、{,}a c 、{,}b c ,共3个. ··············································································· 8分∴ 2个门都没被班长敞开的概率1310P =, ··························································· 10分 ∴ 至少有1个门被班长敞开的概率23711010P =-=.·········································· 12分 19.方法一:由sin()04x π-≠,得4x k ππ-≠(k ∈Z ),即4x k ππ≠+(k ∈Z ),∴ 函数()f x 定义域为{|,}4x x k k ππ≠+∈Z . ······················································· 2分∵cos 2(),)4x f x x π=-22cos sin ()cos sin )cos sin 4x x f x x x x x x π-∴==+=+-, ·············································· 5分 注:以上的5分全部在第Ⅱ小题计分.(Ⅰ)()sin()121243fππππ=+=== ·····································8分(Ⅱ)令322(242Z)k x k kπππππ+<+<+∈,·················································10分得522(44Z),k x k kππππ+<<+∈ ······································································11分∴函数()f x的单调递减区间为5(2,2)44k kππππ++(Z)k∈. ······················12分注:学生若未求函数的定义域且将单调递减区间求成闭区间,只扣2分.方法二:由sin()04xπ-≠,得4x kππ-≠(k∈Z),即4x kππ≠+(k∈Z),∴函数()f x定义域为{|,}4x x k kππ≠+∈Z. ·····················································2分∵cos2(),)4xf xxπ=-sin2()2sin()cos()444())4sin()sin()44x x xf x xx xππππππ---∴===---, ····························5分(Ⅰ)()cos())121246fππππ=-=-==;································8分(Ⅱ)令22()4k x k k Zππππ<-<+∈, ···························································10分得522(44Z)k x k kππππ+<<+∈,····································································11分∴函数()f x的单调递减区间为5(2,2)44k kππππ++(Z)k∈. ······················12分方法三:(Ⅰ)∵cos(2)cos126ππ⨯==,1sin()sin41262πππ-==,∴2()1122fπ=·······················································································3分下同方法一、二.20.解:(Ⅰ)依题意,点P坐标为(,0)a. ·························································1分∵6OP OQ⋅=,点Q坐标为(3,3),∴ 3306a +⨯=,解得2a =. ················································································ 3分∴ 椭圆C 的方程为22149x y +=.············································································ 4分 (Ⅱ)过点Q (3,3)且斜率为32的直线AB 方程为33(3)2y x -=-,即3230x y --=. ······································································································ 5分 方法一:设点A 、B 的坐标分别为11(,)x y 、22(,)x y ,由221,493230,x y x y ⎧+=⎪⎨⎪--=⎩消去x 并整理得,2812270y y +-=. ········································ 6分 ∴ 1212327,28y y y y +=-=-, ················································································· 7分∴ 2212121295463()()4444y y y y y y -=+-=+=, ∴12||y y -=. ································································································ 9分 ∵ 直线AB 与x 轴的交点为(1,0)M , ∴ AOB ∆的面积AOB OMA OMBS S S ∆∆∆=+121211||(||||)1||22OM y y y y =⋅+=⨯⨯-=. ·············· 12分 方法二:设点A 、B 的坐标分别为11(,)x y 、22(,)x y ,由221,493230,x y x y ⎧+=⎪⎨⎪--=⎩消去y 并整理得22230x x --=, ············· 6分 ∴12,x x == ·················································· 7分 ∴12||||AB x x =-== ·· 9分∵ 点O 到直线AB的距离d ===, ·········································· 10分 ∴ AOB ∆的面积1122AOB S AB d ∆=⋅⋅== ······························ 12分 方法三:设点A 、B 的坐标分别为11(,)x y 、22(,)x y ,由221,493230,x y x y ⎧+=⎪⎨⎪--=⎩消去y 并整理得22230x x --=, ············· 6分∴12,x x == ·················································· 8分 ∵ 直线AB 与y 轴的交点为3(0,)2M -,∴ AOB ∆的面积 AOB OMA OMB S S S ∆∆∆=+12113||(||||)222OM x x =⋅+=⨯⨯=.…12分 方法四:设点A 、B 的坐标分别为11(,)x y 、22(,)x y ,由221,493230,x y x y ⎧+=⎪⎨⎪--=⎩消去y 并整理得22230x x --=, ··············································· 6分 ∴ 121231,2x x x x +=⋅=-, ······················································································ 7分∴12||AB x x =-=,····································································································································· 9分 ∵ 点O 到直线AB的距离d ==········································ 10分 ∴ AOB ∆的面积1122AOB S AB d ∆=⋅⋅== ······························ 12分 21.(Ⅰ)证明:在菱形ABCD 中,∵ BD AC ⊥,∴ BD AO ⊥. ··········································································································· 1分 ∵ EF AC ⊥,∴PO EF ⊥,∵ 平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF , ∴ PO ⊥平面ABFED , ························································································· 2分 ∵ BD ⊂平面ABFED ,∴ PO BD ⊥. ··········································································································· 3分 ∵ AO PO O = ,所以BD ⊥平面POA . ································································ 4分 (Ⅱ)连结OB ,设AO BD H = . 由(Ⅰ)知,AC BD ⊥. ∵ 60DAB ∠=︒,4BC =,∴ 2BH =,CH = ························································································ 5分 设OH x =(0x <<.由(Ⅰ)知,PO ⊥平面ABFED ,故POB ∆为直角三角形.∴ 222222()PB OB PO BH OH PO =+=++,∴222224)2162(10PB x x x x =++=-+=+. ·························· 7分当x =PB 取得最小值,此时O 为CH 中点. ··············································· 8分 ∴ 14CEF BCD S S ∆∆=, ·································································································· 9分∴ 3344BCD ABD BFED S S S ∆∆==梯形, ············································································ 10分∴ 1211,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形. ························································· 11分∴ 1243ABD BFED V S V S ∆==梯形.∴ 当PB 取得最小值时,12:V V 的值为4:3. ······················································· 12分 22.解:(Ⅰ)22(1)(1)()2x x f x x x x+-'=-+=-(0x >), ····································· 1分 由()0,0f x x '>⎧⎨>⎩得,01x <<;由()0,f x x '<⎧⎨>⎩得,1x >.∴ ()f x 在(0,1)上为增函数,在(1,)+∞上为减函数. ············································ 3分 ∴ 函数()f x 的最大值为(1)1f =-. ······································································· 4分 (Ⅱ)∵ ()a g x x x =+, ∴ 2()1ag x x'=-. (ⅰ)由(Ⅰ)知,1x =是函数()f x 的极值点, 又∵ 函数()f x 与()ag x x x=+有相同极值点, ∴ 1x =是函数()g x 的极值点,∴ (1)10g a '=-=,解得1a =. ············································································· 7分 经检验,当1a =时,函数()g x 取到极小值,符合题意. ········································ 8分 (ⅱ)∵ 211()2f e e=--,(1)1f =-,(3)92ln3f =-+,∵ 2192ln321e -+<--<-, 即 1(3)()(1)f f f e<<, ∴ 11[,3]x e∀∈,1min 1max ()(3)92ln3,()(1)1f x f f x f ==-+==-. ························ 9分由(ⅰ)知1()g x x x =+,∴21()1g x x '=-. 当1[,1)x e∈时,()0g x '<;当(1,3]x ∈时,()0g x '>.故()g x 在1[,1)e为减函数,在(1,3]上为增函数.。
2024届福建省部分地市高三下学期4月诊断检测(三模)数学数学答案

绝密★启用前试卷类型:A2023-2024学年福州市高三年级第三质量检测评分参考数学2024.4一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(i 是虚数单位),则z =A .1-B .1C .i-D .i解析:∵i i 1i z +=+,∴i 1z =,即i z =-,故选C.2.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,cos α=,(,2)P m 为其终边上一点,则m =A .4-B .4C .1-D .1解析:∵cos α=,∴2tan 2m α==,∴1m =,故选D .解析:结合该函数为偶函数,及()03f =可判断应选A.4.在菱形ABCD 中,若||||AB AD AB -= ,且AD 在AB 上的投影向量为AB λ,则λ=A .12-B .12C .22-D .22解析:由已知AB AD AB -=知该菱形中AB AD BD ==,∴由D 向AB 作垂线,垂足即为AB 中点,∴12λ=,故选B .5.已知5log 2a =,2log b a =,1(2bc =,则A.c b a >>B.c a b>> C.a b c >> D.b c a>>解析:∵55log 2log 51a =<=,∴2log 0b a =<,1(12b c =>,∴c a b >>,故选B.6.棱长为1的正方体1111ABCD A B C D -中,点P 为1BD 上的动点,O 为底面ABCD 的中心,则OP 的最小值为 A.33B.63C.66D.32解析:在正方体中,易知AC BD ⊥,1AC DD ⊥,且1BD DD D = ,∴AC ⊥平面1BDD ,易知当OP ⊂平面1BDD ,且1OP BD ⊥时,OP 的长度最小,在1RT BDD △中,不难求得66OP =,故选C.7.若直线y ax b =+与曲线e xy =相切,则a b +的取值范围为A .(,e]-∞B .[2,e]C .[e,)+∞D .[2,)+∞解析:设切点为00(,e )x x ,则0e ,x a =∴切线方程为000e ()e x x y x x =-+,则00(1)e x b x =-,∴00(2)e x a b x +=-,设00()(2)e x f x x =-,则00()(1)e x f x x '=-,易知函数()(1)e f x f ≤=,又(2)02f =<,故可判断选A.(由图象知当且仅当切线与曲线相切于()1,e 时,11e e a b a b +=⨯+==最大,亦可知选A.)8.已知函数()2sin cos )f x x x x ωωω=+(0)ω>在π(0,)3上单调递增,且对任意的实数a ,()f x 在(,π)a a +上不单调,则ω的取值范围为A .5(1,]2B .5(1,]4C .15(,22D .15(,]24解析:∵π()2sin cos )2sin(2)3f x x x x x ωωωω=+=-+∵()f x 在π(0,3上单调递增,∴πππ2332ω⋅-≤,∴54ω≤,∵对任意的实数a ,()f x 在区间(,π)a a +上不单调,∴()f x 的周期2πT <,∴2π2π2T ω=<,∴12ω>,∴1524ω<≤,故选D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDACDBC9.双曲线2222:13x y C a a-=(0)a >的左、右焦点分别为1F ,2F ,且C 的两条渐近线的夹角为θ,若12||2F F e =(e 为C 的离心率),则解析:易知该双曲线实半轴为a ,半焦距为2a ,∴离心率22ae a==,∴焦距44a =,即1a =,∴选项A 正确,选项C 错误;易知C 的两条渐近线的斜率为3k a=±=,∴这两条渐近线的倾斜角分别为π3和2π3,∴C 的两条渐近线的夹角为π3,∴选项B ,D 正确;综上所述,应选ABD .10.定义在R 上的函数()f x 的值域为(,0)-∞,且(2)()()0f x f x y f x y ++-=,则A .(0)1f =-B .2(4)[(1)]0f f +=C .()()1f x f x -=D .()()2f x f x +-≤-解析:令0x y ==,则()()2000f f+=,∵函数()f x 的值域为(,0)-∞,∴(0)1f =-,选项A 正确;令1x =,0y =,则2(2)[(1)]f f =-,令2x =,0y =,则24(4)[(2)][(1)]f f f =-=-,∴选项B 错误;令0x =,则(0)()()0f f y f y +-=,∴()()(0)1f y f y f -=-=,即()()1f x f x -=,∴选项C 正确;∵()0f x ->,()0f x -->,∴[()()]2f x f x -+-≥∴()()2f x f x +-≤-,故选项D 正确;综上所述,应选ACD .11.投掷一枚质地均匀的硬币三次,设随机变量1,1,(1,2,3)n n n X n ⎧==⎨-⎩第次投出正面,第次投出反面,.记A 表示事件“120X X +=”,B 表示事件“21X =”,C 表示事件“1231X X X ++=-”,则A .B 和C 互为对立事件B .事件A 和C 不互斥C .事件A 和B 相互独立D .事件B 和C 相互独立解析:考查选项A ,事件B 和C 均会出现“反,正,反”的情况,故选项A 错误;考查选项B ,事件A 和C 均会出现“反,正,反”的情况,故选项B 正确;考查选项C ,易知12211()(22P A C ==,1()2P B =,事件AB 为前两次投出的硬币结果为“反,正”,则1()4P AB =,∴1()()()4P AB P A P B ==,故选项C 正确;考查选项D ,由选项AC 可知311()(28P BC ==,1()2P B =,在事件C 中三次投出的硬币有一次正面,两次反面,则23313()(28P C C ==,∴()()()P BC P B P C ≠,故选项D 错误;综上所述,应选BC .三、填空题:本题共3小题,每小题5分,共15分.12.160;13.2;14.22mm +;1或2.12.62()x x+的展开式中常数项为.解析:易知该二项展开式通项为662()r r r C x x-,∴当3r =时,得到常数项为160,故应填160.13.某圆锥的体积为π3,其侧面展开图为半圆,则该圆锥的母线长为.解析:设该圆锥的母线长为l ,底面圆半径为r ,根据侧面展开图为半圆得2ππr l =,即2l r =,又根据圆锥体积得1ππ33r =,解得1r =,2l =,故应填2.14.设n T 为数列{}n a 的前n 项积,若n n T a m +=,其中常数0m >.则2a =(结果用m 表示);若数列1{}nT 为等差数列,则m =.解析:易知112m T a ==,∴12221)(2m a a a a m =+=+,解得222a m m =+,故应填22m m +;(方法一)211111111111111n n n n n n n n T T m a m a m a m ma a m m m a ---------=-=-=-----+(2)n ≥,若数列1{}n T 为等差数列,则2111n n m ma a ----为常数d ,①若0d =,则11n a -=(2)n ≥恒成立,即1n a =(1)n ≥恒成立,∴2m =;②若0d ≠,则1211n n dm dm a a --=--,∴2,,11dm dm ==⎧⎨⎩解得1,1,d m ==⎧⎨⎩综上所述,若数列1{}nT 为等差数列,则1m =,或2m =,故应填1或2.(方法二)∵1{}n T 为等差数列,∴111n n d T T -=+(2)n ≥,易知112T m =,且12(1)n n d T m=+-,当2n ≥时,∵n n T a m +=,∴1n n n T T m T -+=,∴111n n m T T -=+,∴由12(1)n n d T m =+-,可得22(1)1(2)m n d n d m+-=++-,∴2(1)1(2)m dn m d m-=-++-对于任意n 恒成立,∴1,21(2)0,m m d m =⎧⎪⎨-++-=⎪⎩或0,21(2)0,d m d m =⎧⎪⎨-++-=⎪⎩解得1,1,m d =⎧⎨=⎩或0,2,d m =⎧⎨=⎩综上所述,若数列1{}nT 为等差数列,则1m =,或2m =,故应填1或2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且sin sin a C c B =,2π3C =.(1)求B 的大小;(2)若ABC △的面积为4,求BC 边上中线的长.解:(1)∵sin sin a C c B =,∴由正弦定理,得sin sin sin sin A C C B =,…………2分∵0πC <<,∴sin 0C >,∴sin sin A B =,………………………………………3分∵0πA <<,0πB <<,∴A B =,……………………………………………………5分∵πA B C ++=,且2π3C =,∴π6B =.……………………………………………6分(2)依题意1sin 42ab C =,………………………………………………………………7分∵A B =,∴a b =,………………………………………………………………8分212πsin 23a ==,解得a =,…………………………………………10分设边BC 的中点为D ,∴32CD AC ==∴在ACD △中,由余弦定理知2222cos AD AC CD AC CD C=+-⋅⋅332π2132cos4234=+-⨯=,………………………………………………………12分∴BC 边上中线的长为212.……………………………………………………………13分16.(15分)如图,在三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,12AB AC BC AA ====,1A B =.(1)设D 为AC 中点,证明:AC ⊥平面1A DB ;(2)求平面11A AB 与平面11ACC A 夹角的余弦值.(第16题图)解:(1)∵D 为AC 中点,且2AB AC BC ===,∴在ABC △中,有BD AC ⊥,且BD =……………………………………………1分∵平面11ACC A ⊥平面ABC ,且平面11ACC A 平面ABC AC =,∴BD ⊥平面11ACC A ,………………………………………………………………………2分∵1A D ⊂平面11ACC A ,∴1BD A D ⊥,……………………………………………………3分∵1A B =,BD =1A D ,……………………………………………………4分∵1AD =,12AA =,1A D =,∴由勾股定理,有1AC A D ⊥,……………………………………………………………6分∵AC BD ⊥,1A D BD D = ,∴AC ⊥平面1A DB ,…………………………………………………………………………7分(2)如图所示,以D 为原点,DA ,DB ,1DA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,可得(1,0,0)A,1A,B ,………………………………………………9分∴1(AA =-,(AB =-,…………………………………………………10分设平面11A AB 的法向量为(,,)x y z =n ,则由10,0,A A B A ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0,x x ⎧-+=⎪⎨-+=⎪⎩令x =1y =,1z =,∴=n ,…………………………………………12分由(1)可知,BD ⊥平面11ACC A ,∴平面11ACC A的一个法向量为(0,BD =,…………………………………………13分记平面11A AB 与平面11ACC A 的夹角为α,∴5cos ||5||BD BD α⋅==n |n |,∴平面11A AB 与平面11ACC A 夹角的余弦值为5.………………………………………15分17.(15分)从一副扑克牌中挑出4张Q 和4张K ,将其中2张Q 和2张K 装在一个不透明的袋中,剩余的2张Q 和2张K 放在外面.现从袋中随机抽出一张扑克牌,若抽出Q ,则把它放回袋中;若抽出K ,则该扑克牌不再放回,并将袋外的一张Q 放入袋中.如此操作若干次,直到将袋中的K 全部置换为Q.(1)在操作2次后,袋中K 的张数记为随机变量X ,求X 的分布列及数学期望;(2)记事件“在操作1n +()n *∈N 次后,恰好将袋中的K 全部置换为Q .”为n A ,记()n n P P A =.(i )在第1次取到Q 的条件下,求总共4次操作恰好完成置换的概率;(ii )试探究1n P +与n P 的递推关系,并说明理由.解:(1)由题意X 的取值可能为0,1,2,……………………………………………1分当0X =时,即第一次取出K ,第二次也取出K ,∴211(0)22318P X ==⨯=++,…………………………………………………………2分当1X =时,即第一次取出Q ,第二次取出K ,或第一次取出K ,第二次取出Q ,∴2223135(1)22222231488P X ==⨯+⨯=+=++++,……………………………3分当2X =时,即第一次取出Q ,第二次也取出Q ,∴221(2)22224P X ==⨯=++,…………………………………………………………4分∴X 的概率分布列为…………………………………………………………………5分∴X 的数学期望1519()0128848E X =⨯+⨯+⨯=.……………………………………6分(2)(i )记事件“第1次取到Q ”为B ,事件“总共4次操作恰好完成置换”为C ,则1()2P B =,………………………………………………………………………………7分依题意,若第1次取出Q ,则剩余的3次操作,须将袋中K 全部置换为Q ,①若第2次亦取出Q ,则第3次和第4次均须取出K ,X 012P185814其概率为1221122+22+23+132⨯⨯⨯=;………………………………………………………8分①若第2次取出K ,则第3次须取出Q ,第4次须取出K ,其概率为1231322+23+13+164⨯⨯⨯=;………………………………………………………9分∴13()53264(|)1()322P CB P C B P B +===,即在第1次取到Q 的条件下,总共4次操作恰好完成置换的概率为532.…………………………………………………………………………10分(ii )(方法一)由题可知若事件1n A +发生,即操作2n +次后,恰好将袋中的K 全部置换为Q ,①当第1次取出Q ,则剩余的1n +次操作,须将袋中K 全部置换为Q ,概率为212+22n n P P ⨯=;……………………………………………………………………12分②当第1次取出K ,则从第2次起,直到第1n +次均须取出Q ,且第2n +次取出K ,概率为23113(()2+23+13+184n n⨯⨯=⨯;………………………………………………………14分∴1+113(284n n n P P +⨯=.…………………………………………………………………15分(方法二)由题可知若事件1n A +发生,即操作2n +次后,恰好将袋中的K 全部置换为Q ,则一定有第2n +次(最后一次)取出K ,①当第1n +次(倒数第二次)取出Q ,则须在之前的n 次操作中的某一次取出K ,概率为333+14n n P P ⨯=;……………………………………………………………………12分②当第1n +次(倒数第二次)取出K ,则从第1次起,直到第n 次均须取出Q ,概率为3221111()((2+22+23+1822n n n +⨯⨯=⨯=;…………………………………………14分∴133+1(42n n n P P ++=.……………………………………………………………………15分18.(17分)在直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点为F ,过F 的直线l 与C 交于M ,N 两点,且当l 的斜率为1时,|8MN =|.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点).记线段MN 的中点为R ,若||3QR ≤,求MNQ △面积的取值范围.解:(1)不妨设l 的方程为2px my =+,11(,)M x y ,22(,)N x y ,联立l 与C 的方程,得2220y mpy p --=,…………………………………………1分∴122y y mp +=,212y y p =-,…………………………………………………………2分则21212||()22(1)MN x x p m y y p p m =++=++=+,…………………………………3分∴由题可知当1m =时,||8MN =,∴2p =,…………………………………………4分∴C 的方程为24y x =.……………………………………………………………………5分(2)由(1)知1222R y y y m +==,将R 的纵坐标2m 代入1x my =+,得2(21,2)R m m +,……………………………6分易知C 的准线方程为1x =-,又l 与C 的准线交于点P ,∴2(1,)P m--,……………7分则直线OP 的方程为2mx y =,………………………………………………………………8分联立OP 与C 的方程,得22y my =,∴2(,2)Q m m ,……………………………………9分∴Q ,R 的纵坐标相等,∴直线QR x ∥轴,……………………………………………11分∴222|||21|1QR m m m =+-=+,…………………………………………………………12分∴MNQ QRM QRN S S S =+△△△121||||2QR y y =-3222(1)2||m QR =+,…………14分∵点Q (异于原点),∴0m ≠,…………………………………………………………15分∵||3QR ≤,∴13||QR <≤,∴3222||QR <≤即MNQ S ∈△.…………………………………………17分19.(17分)若实数集A ,B 对a A ∀∈,b B ∀∈,均有(1)1b a ab +≥+,则称A B →具有Bernoulli 型关系.(1)判断集合{|1}M x x =>,{1,2}N =是否具有Bernoulli 型关系,并说明理由;(2)设集合{|1}S x x =>-,{|}T x x t =>,若S T →具有Bernoulli 型关系,求非负实数t 的取值范围;(3)当*n ∈N时,证明:1158n k k n -=<+∑.解:(1)依题意,M N →是否具有Bernoulli 型关系,等价于判定以下两个不等式对于1x ∀>是否均成立:①1(1)1x x +≥+,②2(1)12x x +≥+,…………………………………2分∵1x ∀>,1(1)1x x +=+,22(1)1212x x x x+=++>+∴M N →具有Bernoulli 型关系.………………………………………………………4分(2)(方法一)令()(1)1b f x x bx =+--,x S ∈,(0,)b ∈+∞,则1()[(1)1]b f x b x -'=+-,…………………………………………………………………5分①当1b =时,显然有(1)1b a ab +=+,∴(1)1b x xb +≥+成立;………………………6分②当1b >时,若10x -<<,则10(1)(1)1b x x -+<+=,即()0f x '<,∴()f x 在区间(1,0)-上单调递减,若0x =,则1(10)10b -+-=,即(0)0f '=,若0x >,则10(1)(1)1b x x -+>+=,即()0f x '>,∴()f x 在区间(0,)+∞上单调递增,∴()f x 的最小值为(0)0f =,∴()(0)0f x f ≥=,∴(1)(1)0b x bx +-+≥,∴(1)1b x xb +≥+成立;………………………………………………………………8分③当01b <<时,若10x -<<,则10(1)(1)1b x x -+>+=,即()0f x '>,∴()f x 在区间(1,0)-上单调递增,若0x =,则1(10)10b -+-=,即(0)0f '=,若0x >,则10(1)(1)1b x x -+<+=,即()0f x '<,∴()f x 在区间(0,)+∞上单调递减,∴()f x 的最大值为(0)0f =,∴()(0)0f x f ≤=,∴(1)(1)0b x bx +-+≤,即(1)1b x bx +≤+,∴当x S ∈,且01b <<时,(1)1b x xb +≥+不能恒成立,…………………………10分综上所述,可知若S T →具有Bernoulli 型关系,则{|1}T x x ⊆≥,∴非负实数t 的取值范围为[1,)+∞.……………………………………………………11分(方法二)当1b =,或01b <<时,与方法一相同;…………………………………8分当1b >时,若10ab +≤,∵(1)01b a ab +>≥+,∴(1)1b a ab +≥+,若10ab +>,则1ab >-,又1b >,∴101b <<,∴由方法一的结论,可知11(1)11b ab ab a b +≤+⋅=+,即1(1)1b ab a +≤+,…………………………………………………………………………9分∵10ab +>,且(1,)a ∈-+∞,∴1[(1)](1)b b b ab a +≤+,即1(1)b ab a +≤+,即(1)1b a ab +≥+;………………………10分∴若集合{|1}S x x =>-,{|}T x x t =>具有Bernoulli 型关系,则{|1}T x x ⊆≥,∴非负实数t 的取值范围为为[1,)+∞.…………………………………………………11分(3)∵1112222211((1)k k k k k k-+==+,…………………………………………12分显然211k >-,且1012k<<,由(2)中的结论:当01b <<时,(1)1b x xb +≤+,可知122231111(1)1+122k k k k k +≤⋅=+,………………………………………………………………………………………13分当2k ≥时,33121(1)111[]24()4(1)(1)4(1)(1)k k k k k k k k k k k k +--≤==---+-+,∴1221111(1)1[4(1)(1)k k k k k k +≤+--+,2k ≥,………………………………………15分当1n =时,1158n k k n -=<+∑显然成立;…………………………………………16分当2n ≥时,11122311[1]24(1)4(1)n n n k k k k k k k k k --====+<++--+∑∑∑211111111515[[24(1)(1)242(1)84(1)8n k n n n n k k k k n n n n ==++-=++⋅-=+-<+-+++∑,综上所述,当*n ∈N时,1158n k k n -=<+∑.……………………………………17分。
2012届高三第三次月考 数学(文)试题(A卷)

2012届高三第三次月考数学试题(文科)(A 卷)第Ⅰ卷一、选择题. 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.o660sin 等于( )A . 23-B . 21-C .21D .23 2.设πln =a ,2ln =b ,)2ln(ln =c ,则( )A . b c a <<B . c b a <<C . c b a >>D . b c a >>3. 函数x x y 22)23lg(-+-=的定义域是( )A .⎪⎭⎫ ⎝⎛1,32B . ⎥⎦⎤ ⎝⎛1,32C .⎪⎭⎫⎢⎣⎡1,32D .⎥⎦⎤⎢⎣⎡1,324.已知20πβα<<<,则)2cos(βα-的取值范围是( )A . ()1,0B . (]1,0C . ()1,1-D . (]1,1-5.某商店拟对店中A ,B 两种商品进行调价销售.A 种商品拟降价%20,B 种商品拟提价%20,调价后两种商品的单价都是360元.假设这两种商品的销量相同,则与调价前相比,该商店销售这两种商品的总利润 ( ) A .增加 B .不变 C .减少 D .与进货价格有关 6.已知βα,()π,0∈,51)sin(=+βα,75sin =β,则αcos 等于 ( )A . 3529-B . 3519-C .3529 D .3529或3519- 7.为了得到函数)42sin(π-=x y 的图像,可以将函数x y 2cos =的图像( )A .向右平移83π个长度单位 B .向右平移43π个长度单位 C .向左平移83π个长度单位D .向左平移43π个长度单位8. 已知ABC ∆的三边边长a ,b ,c 满足 ab cc a b a -=++,则ABC ∆是( ) A .钝角三角形 B .直角三角形C .锐角三角形D .以上三种情况都有可能9.已知定义在R 上的函数)(x f 满足)(1)23(x f x f -=+π.若2)2(=πf ,则)11(πf 等于( )A .2-B .2C .21D . 21-10.已知函数x y 2=图像上四个不同点的纵坐标分别为d c b a ,,,,这四个点在x 轴上的投影点分别为D C B A ,,,.假设AB AC λ=,BA BD λ=(λ为实数),若||||d c b a ->-,则( ) A .0=λB . 0<λC . )1,0(∈λD .1>λ第II 卷本卷包括填空题和解答题两部分,共100分.二、填空题. 本大题共5小题,每小题5分,共25分. 11. 如果函数)2cos()(φπ+=x x f )20(πφ<<当3=x 时取得最大值,那么=φ_____.12.=+-12tan31312tanπ_____.13. 若扇形的面积和弧长都是10,则这个扇形中心角的弧度数是_____. 14.已知函数1sin cos sin )(++=x b x x a x f ,且3)4(=πf ,则=-)4(πf _____.15.函数)3()(2++=ax x e x f x在区间()1,1-内存在零点,则实数a 的取值范围是_____.三、解答题. 本大题共6小题,共75分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)化简:++++θθθθ2cos cos 12sin sin θθθθ2cos sin 12sin cos -++.17.(本题满分12分)已知向量 )sin ,sin 2(x x -=,)sin 2,cos 3(x x =,(R x ∈).函数x f ∙=)(.(1)求函数)(x f 的最小正周期及最大值;(2)用“五点法”做出函数)(x f 在一个周期内的图像,并根据图像写出满足不等式0)(≥x f (R x ∈)的所有x 的集合.18.(本题满分12分)已知2627)4sin(=+πx ,(),2(ππ∈x ).(1)求x 2sin 的值; (2)求)42tan(π-x 的值.19. (本题满分12分 )在△ABC 中,内角C B A ,,所对边的边长分别是c b a ,,.已知13=c ,3π=C ,3=∆ABC S ,且b a >.(1)求b a ,;(2)设D 是边AB 的中点,求ADC sin .20.(本题满分12分)某建材商店经销某种品牌的防盗门,每年预计销量为1600套.分n 次从厂家进货,且每次进货量相同.如果每次进货不超过200套,一次进货手续费为3000元;如果超过200套,一次进货手续费要再增加1500元.对购进而未销售的防盗门每套每年要付20元的库存费,可以认为平均库存量是每次进货量的一半.问每年进几次货费用(进货手续费和库存费)最小. 21.(本题满分15分)已知函数xxx f 2cos 3sin )(+=,([]π,0∈x ).(1)讨论函数)(x f 的单调性;(2)若)()(sin x f x g =([]π,0∈x ),求证:对于区间[]1,0上任意的数m ,n 不等式)2(2)()(nm g n g m g +≥+恒成立.。
福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷

福建省厦门市(新版)2024高考数学部编版质量检测(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,若对任意的,当时,都有,则实数的取值范围为()A.B.C.D.第(2)题双曲线的顶点到渐近线的距离为()A.2B.C.D.1第(3)题已知直线与圆相交于A,B两点,当取得最大值时,则m=()A.B.C.1D.3第(4)题执行下面的程序框图,如果输入三个实数、、,要求输出这三个数中最小的数,那么空白的判断框中应填入()A.B.C.D.第(5)题若,则()A.B.C.D.第(6)题2020年1月17日,国家统计局发布了2019年全国居民人均消费支出及其构成的情况,并绘制了如图的饼图.根据饼图判断,下列说法不正确的是()A.2019年居民在“生活用品及服务”上人均消费支出的占比为6%B.2019年居民人均消费支出为21350元C.2019年居民在“教育文化娱乐”上人均消费支出小于这8项人均消费支出的平均数D.2019年居民在“教育文化娱乐”、“生活用品及服务”、“衣着”上的人均消费支出之和大于在“食品烟酒”上的人均消费支出复数对应的点在第三象限内,则实数m的取值范围是()A.B.C.D.无解第(8)题已知集合,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,,,则()A.的取值范围为B.存在,,使得C.当时,D.t的取值范围为第(2)题盒中有编号为1,2,3,4的四个红球和编号为1,2,3,4的四个白球,从盒中不放回的依次取球,每次取一个球,用事件表示“第次首次取出红球”,用事件表示“第次取出编号为1的红球”,用事件表示“第次取出编号为1的白球”,则()A.B.C.D.第(3)题设动直线l:()交圆C:于A,B两点(点C为圆心),则下列说法正确的有()A.直线l过定点(2,3)B.当取得最大值时,C.当∠ACB最小时,其余弦值为D.的最大值为24三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若对于任意,都有,则实数的取值范围是___________.第(2)题若函数在区间内恰有一个零点,则实数a的取值范围是___.第(3)题设复数,若复数对应的点在直线上,则的最小值为___________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线的虚轴长为,点在上.设直线与交于A,B两点(异于点P),直线AP与BP的斜率之积为.(1)求的方程;(2)证明:直线的斜率存在,且直线过定点.第(2)题已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:.第(3)题记的内角,,的对边分别为,,,已知,.(1)若,求的面积;(2)若,求.如图,为圆锥的顶点,是底面圆的一条直径,,是底面圆弧的三等分点,,分别为,的中点.(1)证明:点在平面内.(2)若,求平面与平面夹角的余弦值.第(5)题已知函数,且.(1)证明:曲线在点处的切线方程过坐标原点.(2)讨论函数的单调性.。