数模混合电路设计的技术难点

合集下载

中国高性能模拟及数模混合集成电路行业相关政策汇总明确集成电路等电子核心产业地位

中国高性能模拟及数模混合集成电路行业相关政策汇总明确集成电路等电子核心产业地位

中国高性能模拟及数模混合集成电路行业相关政策汇总明确集成电路等电子核心产
业地位
根据中国证监会发布的上市公司行业分类指引(2012年修订),高性能模拟及数模混合集成电路行业归属于信息传输、软件和信息技术服务业(I)中的软件和信息技术服务业(I65)。

根据国民经济行业分类(GB/T4754-2017),高性能模拟及数模混合集成电路行业属于“软件和信息技术服务业”中的“集成电路设计”,行业代码“6520”。

1、行业主管部门及监管体制
显示,高性能模拟及数模混合集成电路行业的主管部门主要
为中华人民共和国工业和信息化部,行业自律组织为中国半
导体行业协会。

2、行业主要法律法规及行业政策。

基本电子电路

基本电子电路

TP2172007020946基于M E M S技术的复合型智能传感器设计/曲国福,刘宏昭(西安理工大学机仪学院)//传感器与微系统.―2006,25(3).―86~88.把微机电系统(MEMS)技术的加速度敏感元件和微处理器有机结合,借助智能算法,设计了一种多功能的复合传感器,可同时测量运动物体的的振动、冲击和倾斜角度。

试验表明:该传感器能够足够同时精确地检测运动物体的振动、冲击和倾斜角度信息,用于汽车中时,能够及时检测汽车的动态信息与车体的姿态。

图5表1参510、基本电子电路TN7022007020947一种具有双PC I接口的A SIC验证系统/何妍,李树国,羊性滋(清华大学微电子学研究所)//微电子学.―2006,36(2).―162~166.针对集成PCI接口功能的ASIC的设计开发,提出了一种具有双PCI接口的ASIC验证系统。

该系统充分复用软硬件资源,可应用于开发流程的全过程,有效地缩短了开发时间,降低了成本。

文章最后给出了高速RSA 加密芯片验证系统的应用实例。

图5表1参8TN7072007020948几种求取电路最小测试集算法的比较研究/张菲菲,鲁昌华,王妍妍(合肥工业大学)//电测与仪表.―2006,43(3).―43~45,39.近年来发展的离散事件系统(DES)为数模混合电路中数字信号和模拟信号提供了一种统一的测试方法,而求取电路的最小测试集一直是该研究领域的重点和难点。

该文阐述了目前学者提出的几种求取最小测试集算法的基本思想,分析了各算法的优缺点,并深入地比较了各个算法,通过具体实验说明了各算法的优劣性,最后指出了该学科今后的发展方向。

图1表1参15TN7072007020949电子系统的潜通路分析技术/张大庆,宋斌(东北电子技术研究所)//光电技术应用.―2006,21(2).―43~46.阐述了潜通路的基本概念,说明了产生潜通路的原因及种类,并指出了它在电子系统中造成的巨大危害。

在PCB上怎样设计“数字地和模拟地”

在PCB上怎样设计“数字地和模拟地”

在PCB上怎样设计“数字地和模拟地”?来源于:/thread-294768-1-1.html方法一:按电路功能分割接地面分割是指利用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。

按电路功能分割地线例如图所示,利用分割技术将4个不同类型电路的接地面分割开来,在接地面用非金属的沟来隔离四个接地面。

每个电路的电源输入都采用LC滤波器,以减少不同电路电源面间的耦合。

对于各电路的LC滤波器的L和C来说,为了给每个电路提供不同的滤波特性,最好采用不同数值。

高速数字电路由于其具有高的瞬时功率,高速数字电路放在电源入口处。

接口电路考虑静电释放(ESD)和暂态抑制的器件或电路等因素,位于电源的末端。

在一块印刷电路板上,按电路功能接地布局的设计例如图所示,当模拟的、数字的、有噪声的电路等不同类型的电路在同一块印刷电路板上时,每一个电路都必须以最适合该电路类型的方式接地。

然后再将不同的地电路连接在一起。

二.采用局部接地面振荡器电路、时钟电路、数字电路、模拟电路等可以被安装在一个单独的局部接地面上。

这个局部接地面设置在PCB的顶层,它通过多个通孔与PCB的内部接地层(0V参考面)直接连接,一个设计例如图5.7.20所示。

将振荡器和时钟电路安装在一个局部接地面上,可以提供一个镜像层,捕获振荡器内部和相关电路产生的共模RF电流,这样就可以减少RF辐射。

当使用局部接地面时,注意不要穿过这个层来布线,否则会破坏镜像层的功能。

如果一条走线穿过局部化接地层,就会存在小的接地环路或不连续性电位。

这些小的接地环路在射频时会引起一些问题。

如果某器件应用不同的数字接地或不同的模拟接地,该器件可以布置在不同的局部接地面,通过绝缘的槽实现器件分区。

进入各部件的电源电压使用铁氧体、磁珠和电容器进行滤波。

一个设计例如图5.7.21和图5.7.22所示。

三:PCB采用“无噪声”的I/O地与“有噪声”的数字地分割设计为了使用电缆去耦或屏蔽技术来抑制共模噪声,在PCB设计时,需要考虑为电缆的去耦(将电流分流到地)和屏蔽提供没有受到数字逻辑电路噪声污染的“无噪声”或者“干净”的地。

二.二阶RC有源滤波器的设计—— MultiSim仿真

二.二阶RC有源滤波器的设计—— MultiSim仿真

湖南人文科技学院毕业设计二阶RC有源滤波器的设计报告滤波器是一种能够使有用频率信号通过,而同时抑制(或衰减)无用频率信号的电子电路或装置,在工程上常用它来进行信号处理、数据传送或抑制干扰等。

有源滤波器是由集成运放、R、C组成,其开环电压增益和输入阻抗都很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用,但因受运算放大器频率限制,这种滤波器主要用于低频范围。

设计几种典型的二阶有源滤波电路:二阶有源低通滤波器、二阶有源高通滤波器、二阶有源带通滤波器,研究和设计其电路结构、传递函数,并对有关参数进行计算,再利用multisim 软件进行仿真,组装和调试各种有源滤波器,探究其幅频特性。

经过仿真和调试,本次设计的二阶RC有源滤波器各测量参数均与理论计算值相符,通频带的频率响应曲线平坦,没有起伏,而在阻频带则逐渐下降为零,衰减率可达到|-40Db/10oct|,滤波效果很理想。

1965年单片集成运算放大器的问世,为有源滤波器开辟了广阔的前景;70年代初期,有源滤波器发展引人注目,1978年单片RC有源滤波器问世,为滤波器集成迈进了可喜的一步。

由于运放的增益和相移均为频率的函数,这就限制了RC有源滤波器的频率范围,一般工作频率为20kHz左右,经过补偿后,工作频率也限制在100kHz以内。

1974年产生了更高频的RC有源滤波器,使工作频率可达GB/4(GB为运放增益与带宽之积)。

由于R的存在,给集成工艺造成困难,于是又出现了有源C滤波器:就是滤波器由C和运放组成。

这样容易集成,更重要的是提高了滤波器的精度,因为有源C滤波器的性能只取决于电容之比,与电容绝对值无关。

由RC有源滤波器为原型的各类变种有源滤波器去掉了电感器,体积小,Q值可达1000,克服了RLC无源滤波器体积大,Q值小的缺点。

但它仍有许多课题有待进一步研究:理想运放与实际特性的偏差的研究;由于有源滤波器混合集成工艺的不断改进,单片集成有待进一步研究;应用线性变换方法探索最少有源元件的滤波器需要继续探索;元件的绝对值容差的存在,影响滤波器精度和性能等问题仍未解决;由于R存在,集成占芯片面积大,电阻误差大(20%~30%),线性度差等缺点,使大规模集成仍然有困难。

CMOS运算放大器失调电压消除设计

CMOS运算放大器失调电压消除设计

CMOS运算放大器失调电压消除设计肖本;肖明【摘要】基于直流对称偏置技术、版图的对称布局布线和先进的CMOS工艺技术.文中设计了一种低失调电压的高性能运算放大器.测试结果表明,在负载电容100 pF 和电阻10 kΩ的情况下,最大失调电压<2 mV;开环增益为98 dB;单位增益带宽达到10.4 MHz;相位裕度为55°;电源抑制比为-87 dB.该电路可广泛用于高性能数模混合电路、高性能模拟、计算、控制等系统中.【期刊名称】《电子科技》【年(卷),期】2015(028)002【总页数】4页(P139-142)【关键词】对称偏置;运算放大器;失调;CMOS【作者】肖本;肖明【作者单位】广东机电职业技术学院电气学院,广东广州510051;深圳芯卓微科技有限公司,广东深圳518100【正文语种】中文【中图分类】TN432高精度ADC、DAC以及滤波电路中运算放大器的电压失调问题已经成为了一个处理的难点。

一方面失调电压直接影响数模或者模数转换器的精度,另一方面失调电压通常又无法避免。

运算放大器电压失调包括系统失调电压和随机性失调电压。

通常采用Bipolar工艺设计的运算放大器,其失调电压都够达到比较理想的效果,但是采用Bipolar工艺成本高、功耗大,在实际应用中很少采用。

当今主流CMOS工艺集成度高、版图面积小、成本低、而且功耗也低,但CMOS工艺设计出的运算放大器,如果不进行特殊处理,其失调电压通常达到10 mV以上。

本文提出了一种新颖的CMOS运算放大器失调电压降低技术,对电路进行了仿真验证,并进行流片测试。

1 工作原理和电路设计1.1 运算放大器失调电压产生机理放大器的失调电压主要由两部分组成:随机失调电压与系统失调电压。

随机失调电压主要由本应匹配的器件在制造过程中的工艺的缺陷造成不匹配,或由本应匹配的器件在工作过程中受到不同影响而引起;系统失调电压主要由输入级或有源负载M O S管的漏极电压的不同造成。

IC设计流程之实现篇——全定制设计

IC设计流程之实现篇——全定制设计

IC设计流程之实现篇——全定制设计要谈IC设计的流程,⾸先得搞清楚IC和IC设计的分类。

集成电路芯⽚从⽤途上可以分为两⼤类:通⽤IC(如CPU、DRAM/SRAM、接⼝芯⽚等)和专⽤IC(ASIC)(Application Specific Integrated Circuit),ASIC是特定⽤途的IC。

从结构上可以分为数字IC、模拟IC和数模混合IC三种,⽽SOC(System On Chip,从属于数模混合IC)则会成为IC设计的主流。

从实现⽅法上IC设计⼜可以分为三种,全定制(full custom)、半定制(Semi-custom)和基于可编程器件的IC设计。

全定制设计⽅法是指基于晶体管级,所有器件和互连版图都⽤⼿⼯⽣成的设计⽅法,这种⽅法⽐较适合⼤批量⽣产、要求集成度⾼、速度快、⾯积⼩、功耗低的通⽤IC或ASIC。

基于门阵列(gate-array)和标准单元(standard-cell)的半定制设计由于其成本低、周期短、芯⽚利⽤率低⽽适合于⼩批量、速度快的芯⽚。

最后⼀种IC 设计⽅向,则是基于PLD或FPGA器件的IC设计模式,是⼀种“快速原型设计”,因其易⽤性和可编程性受到对IC制造⼯艺不甚熟悉的系统集成⽤户的欢迎,最⼤的特点就是只需懂得硬件描述语⾔就可以使⽤EDA⼯具写⼊芯⽚功能。

从采⽤的⼯艺可以分成双极型(bipolar),MOS和其他的特殊⼯艺。

硅(Si)基半导体⼯艺中的双极型器件由于功耗⼤、集成度相对低,在近年随亚微⽶深亚微⽶⼯艺的的迅速发展,在速度上对MOS管已不具优势,因⽽很快被集成度⾼,功耗低、抗⼲扰能⼒强的MOS管所替代。

MOSFET⼯艺⼜可分为NMOS、PMOS和CMOS三种;其中CMOS⼯艺发展已经⼗分成熟,占据IC市场的绝⼤部分份额。

GaAs器件因为其在⾼频领域(可以在0.35um下很轻松作到10GHz)如微波IC中的⼴泛应⽤,其特殊的⼯艺也得到了深⼊研究。

⽽应⽤于视频采集领域的CCD传感器虽然也使⽤IC⼀样的平⾯⼯艺,但其实现和标准半导体⼯艺有很⼤不同。

Altium Designer中的电路仿真技巧

Altium Designer中的电路仿真技巧

Altium Designer中的电路仿真技巧Altium DesignerAltium Designer的混合电路混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。

Altium Designer 可以在原理图中提供完善的混合信号电路仿真电路仿真功能,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。

Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。

仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。

SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。

五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFETs。

XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。

包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。

局部电路模型是指更复杂的器件,如用局部电路语法描述的操作运放、时钟、晶体等。

每个局部电路都下在*.ckt文件中,并在模型名称的前面加上大写的X。

数字器件模型是用数字SimCode语言编写的,这是一种由事件驱动型XSPICE模型扩展而来专门用于仿真数字器件的特殊的描述语言,是一种类C语言,实现对数字器件的行为及特征的描述,参数可以包括传输时延、负载特征等信息;行为可以通过真值表、数学函数和条件控制参数等。

它来源于标准的XSPICE代码模型。

在SimCode中,仿真文件采用ASCII码字符并且保存成.TXT后缀的文件,编译后生成*.scb模型文件。

可以将多个数字器件模型写在同一个文件中。

集成电路版图设计方法及发展趋势

集成电路版图设计方法及发展趋势

摘要:随着微电子工艺特征尺寸的不断缩小,集成电路技术的发展呈现部分新的特征。

顺应时代技术潮流,我们将带领大家一起深入了解一下集成电路发展技术及发展趋势。

集成电路的应用范围广泛,门类繁多。

其分类方法也多种多样,大体上可以按照结构、规模和功能三方面来进行分类。

目前集成电路设计有几种主要设计方法,包括全定制设计方法、定制设计方法、半定制设计方法和可编程逻辑电路设计方法。

然后,让我们一起总结一下版图设计中的技巧,诸如:合并公共区域、减线法等。

最后我们将回顾一下集成电路的发展历程及趋势,有针对性地设想一下版图设计技术的未来动态,为将来的就业做好准备。

关键词:集成电路设计、版图设计、定制版图设计、SC设计方法、BLL设计方法、GA设计方法、IS技术等一、引言纵观人类文明发展历程,科学技术手段解放人类生产力,人类创造科技,科技反过来推进人类文明发展的进程。

18世纪末至19世纪初,以伽利略自由落体定律、开普勒行星运动三大定律和牛顿力学为理论基础,以“瓦特发明蒸汽机”为标志的第一次产业革命,产生了近代纺织业和机械制造业,是人类进入利用机器延伸和发展人类体力劳动的时代。

19世纪末至20世纪初,以1820年奥斯特、法拉第的电磁理论和麦克斯韦发现的电磁波理论为基础,以实用的发电机应用于工业为标志的第二次技术革命。

当前,我们正在经历着以电子信息技术为代表的新的技术革命。

有人认为,从20世纪中期,人类进入了继石器时代、青铜器时代、铁器时代之后的硅器时代。

随着新世纪的到来微电子技术已经成为了整个信息时代的标志和基础。

顺应时代潮流,版图设计基于集成设计诸多方法中的一种,具有它独特的存在价值和优势。

结合自身实际情况,版图设计是我们电子信息科学与技术专业的基础课,且是我们将来从事就业的主要方向。

不管是个人兴趣还是以后就业需求,完成版图设计这一课题的论文设计,将有助于自身加深对该领域的了解与认识,一边印证自己上课所学的内容,一边不断地扩充新的领域和知识,更重要的是通过这次论文设计将有助于自己加深对该专业课程的总结和提炼,并在所学内容的基础上不断凝练和升华,提供了很好的“学有所用,学以致用”实践平台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数模混合电路设计的技术难点
除了器件工艺,算法的进步会影响系统数模变换的精度外,现实世界中众多干扰,噪声也是困扰数模电路性能的主要因素。

数模混合电路设计当中,干扰源、干扰对象和干扰途径的辨别是分析数模混合设计干扰的基础。

通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰更敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是变化沿速度快,还有较高的高频谐波成分,对外释放能量,通常作为干扰源。

作为干扰源的数字电路部分多采用CMOS工艺,从而导致数字信号输入端极高的输入电阻,通常在几十k欧到上兆欧姆。

这样高的内阻导致数字信号上的电流非常微弱,因而只有电压有效信号在起作用,在数模混合干扰分析中,这类信号可以作为电压型干扰源,如CLK信号,Rese t等信号。

除了快速交变的数字信号,数字信号的电源管脚上,由于引脚电感和互感引起的同步开关噪声(SSN),也是数模混合电路中存在的重要一类电压型干扰源。

此外,电路中还存在一些电流信号,特别是直流电源到器件负载之间的电源信号上有较大的电流,根据右手螺旋定理,电流信号周围会感应出磁场,进而引起变化的电场,在分析时,直流电源作为电流型干扰源。

无论电压型还是电流型的干扰源,在耦合到被干扰对象时,既可能通过电路传导耦合,也可能通过空间电磁场耦合,或者二者兼有。

然而一般的仿真分析工具,往往由于功能所限,只能分析其中一种。

例如在传统的SPICE电路仿真工具中,只考虑电路传导型的干扰,并不考虑空间电磁场的耦合;而一般的PCB信号完整性(SI)分析工具,只考察空间电磁场耦合,将所有的电源、地都看作理想DC直流,不予分析考虑。

耦合路径提取的不完整,也是困扰数模混合噪声分析的重要原因。

数模混合设计中,电源和地的划分,是业内争论的焦点。

传统的设计中,数字模拟部分被严格分开;然而随着系统越来越复杂,数模电路集成度不断提高,分割又会造成数字信号跨分割,信号回流不完整,进而影响信号完整性,另外,电源的分割还造成电源分配系统的阻抗过高;有人提出“单点连接”:还是做分割,但是在跨分割的信号下方单点连接以避免跨分割问题;但是如果数模之间信号很多,难于分开,这种“单点连接”也存在困难,因而又有人提出不分割,只是保持数字和模拟部分不要交叉;还有一些资料介绍,在跨分割的信号旁边包地线或者并联电容,用来提供完整回流路径。

无论哪种方法,似乎都有一定道理,而且都有成功的先例,然而所有这些分割方案的有效性以及可能存在的问题,一直没有检验的标准。

数模混合电路的仿真,还存在模型的问题。

业界普遍接受的模拟电路仿真模型还是SPICE模型,数字电路信号完整性分析使用IBIS模型。

多家EDA公司的仿真软件已经推出支持多种模型的混合模型仿真器,然而摆在设计师案头的主要困难是器件模型,特别是模拟器件模型很难得到。

在数字设计看来,时域的瞬态分析,即某一时间点上确定的电压值,是仿真的主要手段,就像调试中的示波器那样直观。

没有精确的模型,瞬态分析就无法实现。

然而对模拟设计,特别是噪声分析,激励源在时间轴上难于描述或很难预测,只知道他的频率带宽范围和大致幅度,这时候我们通常会引入频域扫频分析,考察扫频信号在关注点的变化,如同频谱分析仪的作用。

或者干脆如网络分析仪(NA)那样考察信号或噪声通过的通道的频域SYZ参数,进而预测干扰发生的频率和幅度。

可见,数模混合噪声分析,既需要支持混合模型的仿真器,也需要仿真器同时支持时域分析和频域分析。

通过Ansoft公司的“AD-Mix Signal Noise Design Suites” 数模混合噪声仿真设计软件的对数模混合设计PCB的仿真,探索分析数模混合电路的噪声干扰和优化设计的途径,以达到改善系统性能目的。

相关文档
最新文档