圆锥曲线常用方法试题

合集下载

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。

假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。

如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。

方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。

方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

圆锥曲线测试题 小题

圆锥曲线测试题 小题

圆锥曲线测试题 小题一、选择题(本大题共10小题,每小题5分,共50分) 1.抛物线)0(42≠=a ax y 的焦点坐标为 ( )A .(0,41a) B .)161,0(a C .)161,0(a-D .)0,161(a2.中心在原点,准线方程是4±=x ,离心率是21的椭圆方程为 ( )A .1422=+y x B .14322=+y x C .13422=+y x D .1422=+y x 3.双曲线与椭圆1522=+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为( )A .1322=-x y B .1322=-x y C .1322=-y x D .1322=-y x 4.过抛物线x y 42=的焦点F 作倾斜角为3π的弦AB ,则|AB|的值为 ( )A .738B .316 C .38 D .73165.ab ay bx b y ax b a =+=+-≠≠220,0,0和则方程所表示的曲线可能是 ( )A B C D6.已知双曲线)0,0(1122222222>>>=+=-b m a by m x b y a x 和椭圆的离心离互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 7.已知椭圆121)(1222=-+t y x 的一条准线方程为y=8,则t 为 ( )A .7或-7B .4或12C .1或15D .08.给出下列曲线①0124=-+y x ,②322=+y x ,③1222=+y x ,④1222=-y x其中与直线32--=x y 有交点的所有曲线是( )A .①③B .②④C .①②③D .②③④9.已知F 1、F 2为椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足|PF 1|=e|PF 2|,则e 的值为 ( )A .22B .32-C .33 D .22-10.已知双曲线)0,0(12222>>=-b a by a x 的离心率为,215+A ,F 分别是它的左顶点和右焦点,设B 点坐标为(0,b ),则∠ABF 等于( )A .45°B .60°C .90°D .120°二、填空题(本大题共4小题,每小题6分,共24分)11.已知方程11222=+-+λλy x 表示双曲线,则λ的取值范围为 . 12.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .13.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,若实数λ使得|AB|=λ的直线恰有3条,则λ= .14.抛物线)0(22>=p px y 的动弦长|PQ|为8p ,当PQ 的中点M 到y 轴的距离最小时,直线PQ 的倾斜角为 .一、1.C 2.C 3.C 4.B 5.C 6.B 7.C 8.D 9.C 10.C 二、11.),1()2,(+∞---∞ 12.x y 542-= 13.4 14.656ππ或。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

圆锥曲线 习题及答案

圆锥曲线 习题及答案

金材教育 圆锥曲线未命名一、解答题1.过抛物线L :x y 42=的焦点F 的直线l 交此抛物线于A 、B 两点, ①求||||||||FB FA FB FA ⋅+;②记坐标原点为O ,求△OAB 的重心G 的轨迹方程.③点),(00y x P 为抛物线L 上一定点,M 、N 为抛物线上两个动点,且满足0=⋅,当点M 、N 在抛物线上运动时,证明直线MN 过定点。

【答案】①||||1||||FA FB FA FB +=⋅②98342-=x y ③证明见解析。

【解析】①由F (1,0),设直线l 的方程为 x y x k y 4)1(2=-=与联立得1,42 0422122212222=+=+∴=+--x x k k x x k x x k x k ……2分由222121242||||1||1||kk x x FB FA x FB x FA +=++=++=+=,得, 1||||||||44||||22=⋅++=⋅FB FA FB FA kk FB FA ,所以 …………4分②设3,3423),(212221y y y k k x x x y x G +=+=+=,则 …………5分 由kk x x k x k x k y y 42)()1()1(212121=-+=-+-=+ ……7分 化简得轨迹方程为 98342-=x y …………9分 ③证明:由直线MN 的方程不可能与x 轴平行可设直线MN 的方程为),(),,(),,(,002211y x P y x N y x M a my x +=202221214,4,4x y x y x y ===分别相减得202020101014,4y y x x y y y y x x y y +=--+=--由 1002020101-=--⋅--=⋅x x y y x x y y PM 有,∴1440201-=+⋅+y y y y即 016)(2021021=++++y y y y y y (*式) …………11分联立 044422=--⎩⎨⎧=+=a my y x xy amy x 得,消去 有01644 )*(442002121=++⋅+-⎩⎨⎧-==+y m y a ay y m y y 得式,代入,所以 44020++=my y a ,代入直线MN 的方程有 44020=++=my y my x 2.如图,DP y ⊥轴,点M 在DP 的延长线上,且3DM DP=.当点P 在圆221x y +=上运动时,(1)求点M 的轨迹方程.(2)过点1(1,)3Q 作直线l 与点M 的轨迹相交于A 、B 两点,使点Q 被弦AB 平分,求直线l 的方程.【答案】(1)221(0)9x y x +=≠(2)320x y +-=【解析】 【分析】(1)设()()00,,,M x y P x y ,3DMDP =,所以03x x =,()0,D y ,0y y =,003x x y y⎧=⎪⎨⎪=⎩,代入圆的方程得到轨迹方程,抠掉不满足题意的点即可;(2)设出直线l 的方程为()113y k x =-+,联立直线和椭圆,根据韦达定理列式即可.【详解】(1)解析:设()()00,,,M x y P x y ,则()0,D y ,0y y =,0DP x =,DM x = ∵3DM DP=,所以03x x =∵003x x y y =⎧⎨=⎩∴003x x y y⎧=⎪⎨⎪=⎩①∵P 在圆221x y +=上,∴2201x y +=,代入①得2219x y +=3,0DM DP DP=∴≠Q,∴0x ≠,∴()22109x y x +=≠.(2)由题意知直线l 的斜率存在,l 过点11,3⎛⎫ ⎪⎝⎭,设直线l 的方程为()113y k x =-+,设()()1122,,,A x y B x y ,联立()2211319y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得,()22211191899033k x k k x k ⎛⎫⎛⎫++-++-+-= ⎪ ⎪⎝⎭⎝⎭∵点11,3⎛⎫⎪⎝⎭在椭圆内部,∴不论k 取何值,必定有0∆>.由韦达定理知212218619k kx x k -++=-+ ∵()()1122,,,A x y B x y 的中点是11,3⎛⎫ ⎪⎝⎭,∴122x x +=,即2122186219k kx x k-++=-=+,解得13k =-, ∴直线l 的方程为320x y +-=. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.3.设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于,A B两点,线段AB 的长度为8, AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且抛物线交于,P Q 两点,连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.【答案】(1)24x y =; (2)162y x =±+. 【解析】【试题分析】(1)依据题设条件,直接运用抛物线的定义分析求解;(2)依据题设建立直线方程,再与抛物线方程联立,借助坐标之间的关系,建立方程求解:(1)设所求抛物线方程为()()211222(0),,,,x py p A x y B x y =>, 则128AB AF BF y y p =+=++=,又1232y y +=,所以2p =. 即该抛物线的标准方程为24x y =.(2)由题意,直线m 的斜率存在,不妨设直线:6m y kx =+,()()3344,,,P x y Q x y ,由26{4y kx x y =+=消y 得24240x kx --=,即34344{·24x x k x x +==-(*) 抛物线在点233,4x P x ⎛⎫ ⎪⎝⎭处的切线方程为()233342x xy x x -=-, 令1y =-,得23342x x x -=,所以2334,12x R x ⎛⎫--⎪⎝⎭, 而,,Q F R 三点共线,所以QFFR k k =及()0,1F ,得242343111442x x x x ---=-. 即()()22343444160x x x x --+=,整理得()()22343434344216160x x x x x x x x ⎡⎤-+-++=⎣⎦,将(*)式代入上式得214k =,即12k =±, 所以所求直线m 的方程为162y x =±+.4.已知椭圆)0(12222>>=+b a by a x 长轴上有一顶点到两个焦点之间的距离分别为:3+,3-. (1)求椭圆的方程;(2)如果直线 )(R t t x ∈=与椭圆相交于A,B ,若C (-3,0),D(3,0),证明:直线CA 与直线BD 的交点K 必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l (与x 轴不垂直)与椭圆交于M,N 两点,与y 轴交于点R ,若RM μλ==,,求证:μλ+为定值.【答案】(1)1922=+y x (2)直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. (3)49-=+μλ 【解析】(1)由题意可知a+c,和a-c,所以可求出a,c 的值,进而求出b 的值.(2) 依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,然后求出CA 、DB 的方程,解出它们的交点再证明交点坐标是否满足双曲线1922=-y x 的方程即可.(3) 设直线l 的方程为)1(-=x k y ,再设),(33y x M 、),(44y x N 、),0(5y R ,然后直线方程与椭圆C 的方程联立,根据λ=,可找到)1(33x x -λ=,331x x -=λ,同理441x x -=μ,则443311x x x x -+-=μ+λ34343434()21()x x x x x x x x +-=-++,然后再利用韦达定理证明(1)由已知⎪⎩⎪⎨⎧-=-+=+223223c a c a ,得⎪⎩⎪⎨⎧==223c a ,1222=-=c a b ,所以椭圆方程为1922=+y x 4分(2)依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,又)3(3:0++=x t y y CA ,)3(3:0---=x t y y DB ,)9(922202---=x t y y , 将19202=+y t 代入即得19,)9(912222=--=y x x y 所以直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. 9分(3)依题意,直线l 的斜率存在,则设直线l 的方程为)1(-=x k y ,设),0(,),(,),(54433y R y x N y x M ,则N M ,两点坐标满足方程组⎪⎩⎪⎨⎧=+-=19)1(22y x x k y , 消去y 整理得9918)91(2222=-+-+k x k x k ,所以224322439199,9118k k x x k k x x +-=+=+,① 因为RM λ=,所以()[]),(0,1),(33533y x y y x -=-λ,即⎩⎨⎧-=--=35333)1(y y y x x λλ,因为l 与x 轴不垂直,所以13≠x ,则331x x -=λ,又μ=,同理可得441x x -=μ,所以434343434433)(1211x x x x x x x x x xx x ++--+=-+-=+μλ由①式代人上式得49-=+μλ 5.在平面直角坐标系xOy 中, ,M N 是x 轴上的动点,且228OM ON +=,过点,M N分别作斜率为22-的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅰ)22143x y +=;(Ⅱ)直线AB 的斜率为定值34-. 【解析】试题分析:(Ⅰ)设(),P m n,直线):PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭,同理得,0N m ⎛⎫ ⎪ ⎪⎝⎭,根据22228OM ON m m ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,可得1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②,以上两式结合点差法,可得34C D C D y y x x -=--.试题解析:(Ⅰ)设(),P m n ,直线():2PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭直线):PN y n x m -=-,令0y =,得,0N m ⎛⎫ ⎪ ⎪⎝⎭.∴22222222828133343n m n OM ON m n m n m ⎛⎫⎛⎫+=-++=+=⇒+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r . ∴曲线E 的方程是22143x y +=; (Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得2222143{143A AB B x y x y+=+=,化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.即34C D C D y y x x -=--,∴直线AB 的斜率为定值34-. 【方法点睛】本题主要考查椭圆标准方程、直线的斜率、韦达定理、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C .(1)求曲线C 的方程;(2)若()()1122,,,A x y B x y 为曲线C 上的两点,记11,2y m x ⎛⎫= ⎪⎝⎭v, 22,2y n x ⎛⎫= ⎪⎝⎭v ,且m n ⊥v v,试问AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】(1) 2214y x +=;(2)答案见解析. 【解析】试题分析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,由两圆相内切,得122OM FP =-,又12OM PF =',从而得4PF PF FF +=>'',由椭圆定义得椭圆方程;(2)当AB x ⊥轴时,易得1AOB S ∆=,当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,与椭圆联立得()2224240k x kmx m +++-=,由0m n ⋅=v v,得121240y y x x +=,结合韦达定理得2224m k =+,由1212AOB S m x x ∆=⋅-利用韦达定理求解即可. 试题解析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切, ∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',∴点P 的轨迹是以,F F '为焦点的椭圆,其中24,2a c ==2,a c ==,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=. (2)当AB x ⊥轴时,有12x x =, 12y y =-,由m n ⊥v v,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=. 当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,由22{ 14y kx my x =++=得()2224240k x kmx m +++-=,则12224kmx x k -+=+, 212244m x x k -=+,由0m n ⋅=v v,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,∴2224m k =+,∴1212AOBS m x x ∆=⋅-12=21m==, 综上所述, AOB ∆的面积为定值1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.7.已知椭圆E 的中心在原点,焦点在x 轴上,且其焦点和短轴端点都在圆C :222x y +=上.(1)求椭圆E 的标准方程;(2)点P 是圆C 上一点,过点P 作圆C 的切线交椭圆E 于A ,B 两点,求|AB |的最大值.【答案】(1)22142x y +=;(2)2 【解析】 【分析】(1)由题意设出椭圆的标准方程,由于椭圆焦点和短轴端点都在圆C :222x y +=上,可得到b ,c 的值,即可求出椭圆方程。

圆锥曲线基础测试题及答案

圆锥曲线基础测试题及答案

圆锥曲线基础测试1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .35.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±7.若椭圆221x my +=的离心率为2,则它的长半轴长为_______________. 8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。

9.若曲线22141x y k k +=+-表示双曲线,则k 的取值范围是 。

10.抛物线x y 62=的准线方程为 .11.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

12.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点? 13.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。

14.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。

圆锥曲线技巧-齐次化处理

圆锥曲线技巧-齐次化处理

圆锥曲线技巧---齐次化处理一、解答题1.如图,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB.求点M的轨迹方程,并说明它表示什么曲线.【答案】M的轨迹是以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.【解析】试题分析:由OA⊥OB可得A、B两点的横坐标之积和纵坐标之积均为定值,由OM⊥AB可用斜率处理,得到M的坐标和A、B坐标的联系,再注意到M在AB上,由以上关系即可得到M点的轨迹方程;此题还可以考虑设出直线AB的方程解决.解:如图,点A,B在抛物线y2=4px上,设,OA、OB的斜率分别为k OA、k OB.∴由OA⊥AB,得①依点A在AB上,得直线AB方程②由OM⊥AB,得直线OM方程③设点M(x,y),则x,y满足②、③两式,将②式两边同时乘以,并利用③式,可得﹣•(﹣)+=﹣x 2+,整理得④由③、④两式得由①式知,y A y B =﹣16p 2∴x 2+y 2﹣4px=0因为A 、B 是原点以外的两点,所以x >0所以M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.考点:轨迹方程;抛物线的应用.2.已知椭圆C:22221(0)x y a b a b+=>>的焦点是(、,且椭圆经过点2)2。

(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆右顶点M ,求证:直线l 恒过定点.【答案】(1)2214x y +=(2)详见解析【解析】试题分析:(1)设出椭圆方程,由题意可得223a b -=,再由椭圆的定义可得2a=4,解得a=2,b=1,进而得到椭圆方程;(2)由题意可知,直线l 的斜率为0时,不合题意.不妨设直线l 的方程为x=ky+m ,代入椭圆方程,消去x ,运用韦达定理和由题意可得MA ⊥MB ,向量垂直的条件:数量积为0,化简整理,可得65m =或m=2,即可得到定点试题解析:(1)椭圆C 的方程为22221(0)x y a b a b+=>>∴223a b -=,24a =+=+=所以所求椭圆C 的方程为2214x y +=(2)方法一(1)由题意可知,直线l 的斜率为0时,不合题意.(2)不妨设直线l 的方程为x ky m =+.由22,14x ky m x y =+⎧⎪⎨+=⎪⎩消去x 得222(4)240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224kmy y k +=-+……①,212244m y y k -=+………②因为以AB 为直径的圆过点M ,所以0MA MB ⋅=.由1122(2,),(2,)MA x y MB x y =-=- ,得1212(2)(2)0x x y y --+=.将1122,x ky m x ky m =+=+代入上式,得221212(1)(2)()(2)0k y y k m y y m ++-++-=.………③将①②代入③,得225161204m m k -+=+,解得65m =或2m =(舍).综上,直线l 经过定点6(,0).5方法二证明:(1)当k 不存在时,易得此直线恒过点6(,0)5.(2)当k 存在时.设直线l y kx m =+的方程为,1122(,),(,)A x y B x y ,(2,0)M .由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,可得222(41)84120k x kmx m +++-=.2216(41)0k m ∆=-+>1228,41km x x k -+=+……①21224441m x x k -=+…….②由题意可知0MA MB ⋅=,1122(2,),(2,),MA x y MB x y =-=- 1122,.y kx m y kx m =+=+可得1212(2)(2)0x x y y -⋅-+=.整理得221212(2)()(1)40km x x k x x m -+++++=③把①②代入③整理得222121650,41k km m k ++=+由题意可知22121650,k km m ++=解得62,.5m k m k =-=-(i )当2,(2)m k y k x =-=-即时,直线过定点(2,0)不符合题意,舍掉.(ii )65m k =-时,即6(5y k x =-,直线过定点6(,0)5,经检验符合题意.综上所述,直线l 过定点6(,0)5考点:1.椭圆方程;2.直线和椭圆相交的综合问题3.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.【答案】(1)2212y x -=;(2)36(1)02x y ---=,或36(1)02x y +--=..【解析】试题分析:(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y ==时00x y 有最大值,即S 有最小值,因此点P得坐标为,由题意知解得221,2a b ==,即可求出1C 的方程;(2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,显然,l 不是直线y=0.设l 的方程为1122(,),(,)A x y B x y由22{163x my x y =++=得22(2)30m y ++-=,因1122),,)AP x y BP x y == 由题意知0AP BP ⋅=,所以12121212))40x x x x y y y y -++-++=,将韦达定理得到的结果代入12121212))40x x x x y y y y -++-++=式整理得22110m -+=,解得12m =-或3612m =-+,即可求出直线l 的方程.(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为00x y -,切线方程为000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y ==时00x y 有最大值,即S 有最小值,因此点P得坐标为,由题意知解得221,2a b ==,故1C 方程为2212y x -=.(2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,显然,l 不是直线y=0.设l 的方程为1122(,),(,)A x yB x y由22{163x my x y =++=得22(2)30m y ++-=,又12,y y是方程的根,因此1221222{32y y m y y m +=-+-=+①②,由1122x my x my =+=+得12122221212122()2{66()32x x m y y m m x x m y y y y m +=++=+-=++=+③④因1122),,)AP x y BP x y =-= 由题意知0AP BP ⋅=,所以12121212))40x x x x y y y y -++++=⑤,将①,②,③,④代入⑤式整理得22110m -+-=,解得3612m =-或3612m =-+,因此直线l的方程为(1)02x y ---=,或(1)02x y +--=.考点:1.椭圆的方程;2.直线与椭圆的位置关系.4.(2015•山西四模)分别过椭圆E :=1(a >b >0)左、右焦点F 1、F 2的动直线l 1、l 2相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为k 1、k 2、k 3、k 4,且满足k 1+k 2=k 3+k 4,已知当l 1与x 轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.【答案】(1).(2)存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.【解析】试题分析:(1)由已知条件推导出|AB|=2a=2,|CD|=,由此能求出椭圆E的方程.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,由此利用韦达定理结合题设条件能推导出存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.解:(1)当l1与x轴重合时,k1+k2=k3+k4=0,即k3=﹣k4,∴l2垂直于x轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E的方程为.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.考点:直线与圆锥曲线的综合问题.5.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(Ⅰ)求C的方程;(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.【答案】(1)221 4x y+=.(2)证明见解析.【详解】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t ,2),(t,2-).则1222122k k t t-++=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.6.已知点P 3(1,2-是椭圆C :22221(0)x y a b a b +=>>上一点,F 1、F 2分别是椭圆的左、右焦点,124PF PF +=(1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线PA 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论【答案】(1)22143x y +=;(2)直线l 过定点(40)-,.证明见解析.【分析】(1)由椭圆定义可知2a =,再代入P 3(1,2-即可求出b ,写出椭圆方程;(2)设直线l 的方程y kx m =+,联立椭圆方程,求出k 和m 之间的关系,即可求出定点.【详解】(1)由12||||4PF PF +=,得2a =,又312P ⎛⎫- ⎪⎝⎭,在椭圆上,代入椭圆方程有221914a b+=,解得b =,所以椭圆C 的标准方程为22143x y +=.(2)证明:当直线l 的斜率不存在时,11()A x y ,,11()B x y -,,11121332211y y k k x ---+==+,解得14x =-,不符合题意;当直线l 的斜率存在时,设直线l 的方程y kx m =+,11()A x y ,,22()B x y ,,由2234120y kx m x y =+⎧⎨+-=⎩,整理得222(34)84120k x kmx m +++-=,122834km x x k -+=+,212241234m x x k-=+,22430k m ∆=-+>.由121k k +=,整理得12125(21)()2402k x x k m x x m ⎛⎫-++-++-= ⎪⎝⎭,即(4)(223)0m k m k ---=.当32m k =+时,此时,直线l 过P 点,不符合题意;当4m k =时,22430k m ∆=-+>有解,此时直线l :(4)y k x =+过定点(40)-,.【点睛】本题考查椭圆方程的求法,考查椭圆中直线过定点问题,属于中档题.7.如图,椭圆2222:1(0)x y E a b a b +=>>经过点()0,1A -,且离心率为22.(1)求椭圆E 的方程;(2)若经过点()1,1,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.【答案】(1)2212x y +=;(2)所以直线AP 、AQ 斜率之和为定值2.【分析】(1)运用离心率公式和a ,b ,c 的关系,解方程可得a ,进而得到椭圆方程;(2)把直线PQ 的方程代入椭圆方程,运用韦达定理和直线的斜率公式,化简计算即可得到结论.【详解】解:(1)由题意知22c a =,1b =,结合222a b c =+,解得a =,∴椭圆的方程为2212x y +=;(2)由题设知,直线PQ 的斜率不为0,则直线PQ 的方程为(1)1y k x =-+(2)k ≠,代入2212x y +=,得22(12)4(1)2(2)0+--+-=k x k k x k k ,由已知0∆>,设11(,)P x y ,22(,)Q x y ,120x x ≠,则1224(1)12k k x x k -+=+,1222(2)12k k x x k-=+,从而直线AP 与AQ 的斜率之和:121212121122AP AQ y y kx k kx k k k x x x x +++-+-+=+=+121212112(2)()2(2)x x k k k k x x x x +=+-+=+-4(1)2(2)22(1)22(2)k k k k k k k k -=+-=--=-.所以直线AP 、AQ 斜率之和为定值2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.8.已知椭圆方程为2218y x +=,射线y =(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ).(1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.【答案】(Ⅰ)证明见解析;(Ⅱ.【分析】(1)设0k >,求得M 的坐标,则可表示出AM 的直线方程和BM 的直线方程,分别与椭圆的方程联立求得A x 和B x ,进而求得AB 的斜率;(2)设出直线AB 的方程与椭圆方程联立消去y ,利用判别式大于0求得m 的范围,进而表示出三角形AMB 的面积,利用m 的范围确定面积的最大值.【详解】(Ⅰ)斜率k 存在,不妨设k >0,求出M(2,2).直线MA 方程为22()2y k x -=-,分别与椭圆方程联立,可解出22482A k x k -=-+,同理得,直线MB 方程为22(2y k x -=--.2224282B k x k +=-+∴A B AB A By y k x x -==-.(Ⅱ)设直线AB方程为y m =+,与2218y x +=联立,消去y得216x +2(8)0m +-=.由∆>0得一4<m <4,且m ≠0,点M 到AB 的距离为3md =.3AB ===设△AMB 的面积为S .∴()22222211116||162432322S AB d m m ⎛⎫==-≤⋅= ⎪⎝⎭.当m =±max S =.【点睛】本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.9.已知椭圆两焦点分别为F 1、F 2、P 是椭圆在第一象限弧上一点,并满足,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点(1)求P 点坐标;(2)求证直线AB 的斜率为定值;(3)求△PAB 面积的最大值.【答案】(1)(.(2.(3.【解析】【分析】(1)根据121PF PF ⋅= ,用坐标表示,结合点P (x ,y )在曲线椭圆22124x y +=上,即可求得点P 的坐标;(2)设出BP 的直线方程与椭圆方程联立,从而可求A 、B 的坐标,进而可得AB 的斜率为定值;(3)设AB的直线方程:y m =+,与椭圆方程联立,可确定m -<,求出P 到AB 的距离,进而可表示△PAB 面积,利用基本不等式可求△PAB 面积的最大值.【详解】(1)由题可得(10F,(20F ,设P 0(x 0,y 0)(x 0>0,y 0>0)则()100PF x y =--,()200PF x y =- ,∴()22120021PF PF x y ⋅=--= ,∵点P (x 0,y 0)在曲线上,则2200124x y +=,∴220042y x -=,从而()22004212y y ---=,得0y =则点P的坐标为(1.(2)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为k (k >0),则BP的直线方程为:()1y k x =-.由()221124y k x x y ⎧=-⎪⎨+=⎪⎩得())22222)40k x k k x k ++-+-=,设B (x B ,y B ),则((222222211222B B k k k k k x x k k k ---+===+++,,同理可得2222A k x k +-=+,则22A B x x k-=+,()()28112A B A B k y y k x k x k -=----=+.所以AB的斜率A B AB A By y k x x -==-为定值.(3)设AB的直线方程:y m =+.由22124y m x y ⎧=+⎪⎨+=⎪⎩,得22440x m ++-=,由()22)1640m =-->,得m -<P 到AB的距离为d =则12PAB S AB d =⋅==≤=.当且仅当(2m =±∈-取等号∴△PAB.【点睛】本题以椭圆的标准方程及向量为载体,考查直线与椭圆的位置关系,考查三角形的面积计算及利用基本不等式求最值,解题的关键是直线与椭圆方程联立,利用韦达定理进行解题.10.已知中心在原点的椭圆C 的一个焦点为,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 作倾斜角互补的两条不同直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率是定值.【答案】(Ⅰ)22142y x +=;(Ⅱ)见解析.【解析】【分析】(1)设椭圆C 的方程为:()222210y x a b a b+=>>,利用已知条件,求出a ,b ,即可得出椭圆C 的方程;(2)设出直线PA 、PB 的方程与椭圆方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线AB 的斜率为定值.【详解】(Ⅰ)设椭圆方程为22221y x a b+=(0a b >>)则有22211a b +=又222a b =+∴222112b b +=+∴4220b b --=解得22b =∴24a =∴椭圆C 的方程为22142y x +=或解:椭圆的另一焦点为(0,由24a ==得2a =又c =∴22b =∴椭圆C 的方程为22142y x +=(Ⅱ)依题意,直线PA ,PB 都不垂直于x 轴设直线PA方程为()1y k x -=-,则直线PB方程为()1y k x =--由()22124y k x y x ⎧=-⎪⎨+=⎪⎩得()22222))40k x k k x k ++-++-=∵22(2)412A k x k -⋅=+∴22(2)42A k x k +-=+同理22(2)42B k x k --=+∴(2)(2)()2A B A B A B AB A B A B A By y kx k kx k k x x k k x x x x x x -+---+-===---故直线AB 的斜率是定值【点睛】本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线的斜率公式,考查学生的计算能力,正确运用韦达定理是关键.11.已知椭圆两焦点1F 、2F 在y 轴上,短轴长为,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ⋅= ,过P 作关于直线1F P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值.【答案】(1)(;(2)证明见解析.【分析】(1)由已知可解出椭圆方程,然后设出()00P x y ,,结合121PF PF ⋅= ,即可解出点P 的坐标;(2)由(1)知1//PF x 轴,直线PA ,PB 斜率互为相反数,设PB 的直线方程为()1y k x -=-,与椭圆方程联立,即可解出222222B k x k--=+,同理可得222222A k x k +-=+,然后解出A B y y -,即可算出AB 的斜率AB k =【详解】解:(1)设椭圆的方程为22221y x a b+=,由题意可得b =,22c a =,即a =,222a c -=c ∴=,2a =∴椭圆方程为22142y x +=,∴焦点坐标为(0,(0,,设()0000(00)P x y x y >>,,,则()100PF x y =--,()200PF x y =- ,()22120021PF PF x y ∴⋅=--= , 点P 在曲线上,则2200142y x +=,220042y x -∴=,从而()22004212y y ---=,得0y =,则点P的坐标为(;(2)由(1)知1//PF x 轴,直线PA ,PB 斜率互为相反数,设PB 的斜率为(0)k k >,则PB的直线方程为()1y k x -=-,由()221124y k x x y ⎧=-⎪⎨+=⎪⎩,得())22222)40kx k k x k ++-+--=,设(),B B B x y,则(2222222122B k k k x k k --=-=++,同理可得2222A k x k +-=+,则22A B x x k-=+,()()28112A B A B k y y k x k x k -=----=+,所以AB的斜率A BABA By ykx x-==-【点睛】本题考查了椭圆的方程和性质,考查椭圆和直线的位置关系,属于较难题.12.如图,椭圆C :经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.【答案】(1)(2)答案见解析【解析】试题分析:(1)由题意将点P(1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根与系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB 的方程为,由此方程求得M的坐标,再与椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值解:(1)椭圆C :经过点P(1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA 的斜率k 1=,直线PB 的斜率为k 2=所以k 1+k 2=+=2×=2k 3,故存在常数λ=2符合题意考点:直线与圆锥曲线的关系;椭圆的标准方程.视频13.如图,椭圆C:22221x y a b +=(a >b >0)经过点P (2,3),离心率e=12,直线l 的方程为y=4.(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过(0,3)的任一弦(不经过点P ).设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得12311k k k λ+=?若存在,求λ的值.【答案】(Ⅰ)216x +212y =1(Ⅱ)2【解析】试题分析:(Ⅰ)通过将点P (2,3)代入椭圆方程,结合离心率计算即得结论;(Ⅱ)分AB 斜率存在、不存在两种情况讨论,结合韦达定理计算即得结论试题解析:(Ⅰ)由已知得22222491,1,2a b a b c c a ⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩,解得a=4,.所以椭圆C 的方程为216x +212y =1.(Ⅱ)当直线AB 不存在斜率时,A (,B (),M (0,4),此时k2=302-=32-,k 1=302---=32+,k 3=4302--=-12,11k +21k =-4,可得λ=2.当直线AB 存在斜率时,可设为k (k≠0),则直线AB 的方程为y=kx+3.设A (x 1,y 1),B (x 2,y 2),联立直线AB 与椭圆的方程,得221,16123,x y y kx ⎧+=⎪⎨⎪=+⎩消去y ,化简整理得,(4k 2+3)x 2+24kx-12=0,所以x 1+x 2=22443k k -+,x 1x 2=21243k -+,而11k +21k =1123x y --+2223x y --=112x kx -+222x kx -=12121222()x x x x kx x -+=24k k-.又M 点坐标为(1k ,4),所以31k =1243k --=12k k -.故可得λ=2.因此,存在常数2,使得11k +21k =3k λ恒成立.考点:直线与圆锥曲线的综合问题;椭圆的简单性质14.在平面直角坐标系xOy 中,已知椭圆2222x y a b +=1(a >b >0)的右顶点为(2,0),离心率为32,P 是直线x =4上任一点,过点M (1,0)且与PM 垂直的直线交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若P 点的坐标为(4,3),求弦AB 的长度;(3)设直线PA ,PM ,PB 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 3=λk 2?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2214x y +=;(2;(3)存在,λ=2,计算见解析【分析】(1)根据题意可知c ,再由离心率公式可得a ,然后根据222b a c =-得出b ,即可得椭圆的方程;(2)根据P 点的坐标写出直线AB 方程,与椭圆联立解得,A B 坐标,利用两点间距离公式即可求得弦AB 的长度;(3)先假设存在,后分直线AB 斜率存在和不存在两种情况进行求解,直线AB 斜率不存在时容易的R λ∈,直线AB 斜率存在时,设,A B 点坐标,与椭圆联立,再分别求出123,,k k k ,进行化简整理即可得到λ的值.【详解】(1)由题知2a =,32c e a ==,c ∴=,2221b a c =-=,∴椭圆方程为2214x y +=.(2)(1,0)M Q ,(4,3)P 1MP k ∴=,∵直线AB 与直线PM 垂直,∴1AB k =-,∴直线AB 方程0(1)y x -=--,即1y x =-+,联立22114y x x y =-+⎧⎪⎨+=⎪⎩,得2580x x -=0x ∴=或85,(0,1)A ∴,83,55B ⎛⎫- ⎪⎝⎭,||AB∴=(3)假设存在常数λ,使得123k k k λ+=.当直线AB 的斜率不存在时,其方程为1x =,代入椭圆方程得31,2A ⎛⎫ ⎪ ⎪⎝⎭,31,2B ⎛- ⎝⎭,此时(4,0)P ,易得1320k k k +==,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-,()11,A x y ,()22,B x y代入椭圆方程得(1+4k 2)x 2﹣8k 2x +4k 2﹣4=0,12x x ∴+22814k k =+,21224414k x x k-=+,直线PM 方程为()11y x k =--,则34,P k ⎛⎫- ⎪⎝⎭21k k=-,11134y k k x +=-,23234y k k x +=-,132k k k λ+=,121233144y y k k x x k λ++⎛⎫+=- ⎪--⎝⎭,即()()()()12211233()4444y x y x k k x x k λ⎛⎫+-++- ⎪⎝⎭=---,化简得:()()1221121212324416x y x y x x k k x x x x k λ+++-=--++,将12x x +22814k k =+,21224414k x x k -=+,()111y k x =-,()221y k x =-,代入并化简得:2k k λ-=-2λ∴=.综上:2λ=.【点睛】本题考查的是椭圆标准方程基本量的运算以及椭圆的几何性质、直线与椭圆的应用和圆锥曲线中的定值问题,是难题.15.已知椭圆C:22221x y a b+=(a >b >0)的两个焦点分别为F 1,0)、F 2,0).点M (1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.【答案】(1)2213x y+=;(2)m-n-1=0【解析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1+k3表示为直线l斜率的关系式,化简后得k1+k3=2,于是可得m,n的关系式.试题解析:(1)由题意,c,b=1,所以a=故椭圆C的方程为221 3x y+=(2)①当直线l的斜率不存在时,方程为x=1,代入椭圆得,y=±3不妨设A(1,63),B(1,-63)因为k1+k3=66 223322-++=2又k1+k3=2k2,所以k2=1所以m,n的关系式为23nm--=1,即m-n-1=0②当直线l的斜率存在时,设l的方程为y=k(x-1)将y=k(x-1)代入221 3x y+=,整理得:(3k2+1)x2-6k2x+3k2-3=0设A(x1,y1),B(x2,y2),则22 121222633,3131k kx x x xk k-+==++又y1=k(x1-1),y2=k(x2-1)所以k 1+k 3=121221121222(2)(3)(2)(3)33(3)(3)y y y x y x x x x x ----+--+=----=12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+----++=121212122(42)()6123()9kx x k x x k x x x x -++++-++=222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++--⨯+++=222(126)126k k ++=2所以2k 2=2,所以k 2=23n m --=1所以m ,n 的关系式为m -n -1=0综上所述,m ,n 的关系式为m -n -1=0.考点:椭圆标准方程,直线与椭圆位置关系,16.已知椭圆C :22221(0)x y a b a b+=>>的两个焦点分别为12(F F 、,点M (1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C 的方程;(2)过点M (1,0)的直线与椭圆C 相交于A 、B 两点,设点N (3,2),记直线AN 、BN 的斜率分别为k 1、k 2,求证:k 1+k 2为定值.【答案】(1)22 1.3x y +=(2)见证明【分析】(1)根据几何条件得,a b 即可,(2)先考虑斜率不存在时特殊情况,再考虑斜率存在情况,设直线方程以及交点坐标,化简12k k +,联立直线方程与椭圆方程,根据韦达定理代入化简即得结果.【详解】(1)依题意,222,c a b =-=由已知得1b OM ==,解得a =所以椭圆的方程为22 1.3x y +=(2)①当直线l 的斜率不存在时,由221,1,3x x y =⎧⎪⎨+=⎪⎩解得61,.3x y ==±设126622331,,1,,23322A B k k 则-+⎛⎫⎛-+=+= ⎪ ⎪ ⎝⎭⎝⎭②当直线l 的斜率存在时,设直线l 的方程为()1,y k x =-代入221,3x y +=化简整理得()2222316330.k x k x k +-+-=依题意,直线l 与椭圆C 必相交于两点,设()1122,,(,),A x y B x y 则22121222633,.3131k k x x x x k k -+==++又()()11221,1,y k x y k x =-=-故()()()()()()1221121212122323223333y x y x y y k k x x x x --+----+=+=----=()()()121212121212224693x x k x x x x x x x x ⎡⎤-++-++⎣⎦-++=22222222226336122246313131633933131k k k k k k k k k k k ⎡⎤--⨯+⨯-⨯+⎢⎥+++⎣⎦--⨯+++=()()2212212621k k +=+为定值.综上,12k k +为定值2.【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.17.已知椭圆E :=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1×k2的值.【答案】(Ⅰ)+y2=1(Ⅱ)【解析】试题分析:(Ⅰ)由题意得,2c=2,=1;从而求椭圆E的方程;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,点N的纵坐标为0,故不成立;当k1≠0时,直线PM:y=k1(x+2);联立方程得(+4)y2﹣=0;从而解得y M=;可得M(,),N(,);从而可得(k2﹣k1)(4k2k1﹣1)=0,从而解得.解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M (,),同理N (,),由直线MN 与y 轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.考点:直线与圆锥曲线的关系;椭圆的标准方程.18.已知椭圆C :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1、F 2,点A 为椭圆的左顶点,点B 为上顶点,|AB |且|AF 1|+|AF 2|=4.(1)求椭圆C 的方程;(2)过点F 2作直线l 交椭圆C 于M 、N 两点,记AM 、AN 的斜率分别为k 1、k 2,若k 1+k 2=3,求直线l 的方程.【答案】(1)22143x y +=;(2)310x y +-=【分析】(1)依题意得到关于a 、b 的方程组,解得即可;(2)设()11,M x y ,()22,N x y ,设直线l 的方程为1x my =+,联立直线与曲线方程消元,列出韦达定理,由123k k +=,即1212322y y x x +=++,即可得到方程,解得即可;【详解】解:(1)依题意可得()()4a c a c ⎧++-=⎪=解得2a b =⎧⎪⎨=⎪⎩23143x y +=(2)由(1)设()11,M x y ,()22,N x y ,()21,0F ,设直线l 的方程为1x my =+,联立方程得231143x my x y =+⎧⎪⎨+=⎪⎩,消去x 整理得()2234690m y my ++-=,所以122634m y y m -+=+,122934y y m -=+因为111x my =+,221x my =+,所以122834x x m +=+,212212434m x x m -+=+因为123k k +=,即1212322y yx x +=++,所以()()121212122336120my y y y x x x x ++--+-=代入得22222961248233612034343434m m m m m m m ---+⨯+⨯-⨯-⨯=++++解得3m =-即l :310x y +-=【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,属于中档题.19.设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)y =x +7..【分析】(1)设,A B 两点坐标,代入抛物线方程相减后可求得AB 的斜率;(2)由C 在M 处的切线与直线AB 平行,可求得切点M 坐标,设直线AB 的方程为y =x +m ,代入抛物线方程可得AB 中点为(2,2)N m +,AM ⊥BM 等价于12MN AB =,这样可求得m 值.【详解】解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,22121244x x y y ==,,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y '=.设M (x 3,y 3),由题设知312x =,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入24x y =得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,1,22x =±从而12AB x =-=由题设知|AB |=2|MN |,即2(1)m +,解得m =7.所以直线AB 的方程为y =x +7.【点睛】本题考查直线与抛物线相交问题,解题时设直线方程方程为y =x +m 是解题关键.通过它与抛物线方程联立,可得AB 中点N 的横坐标,从而得MN ,而AM ⊥BM 等价于12MN AB =,因此可求得m .本题解法中没有用到特殊方法,求切点坐标,求直线方程,求弦长等都是最基本的方法,务必牢固掌握.20.椭圆E :()222210x y a b a b+=>>的离心率12.(1)求椭圆E 的标准方程;(2)点P 是圆()2220x y rr +=>上异于点(),0A r -和(),0B r 的任一点,直线AP 与椭圆E 交于点M ,N ,直线BP 与椭圆E 交于点S ,T .设O 为坐标原点,直线OM ,ON ,OS ,OT 的斜率分别为OM k ,ON k ,OS k ,OT k .问:是否存在常数r ,使得OM ON OS OT k k k k +=+恒成立?若存在,求r 的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,r =.【分析】(1)由已知条件列出关于,,a b c 的方程组,解之可得椭圆标准方程;(2)由题意直线AP ,BP 斜率存在且均不为0,设直线AP 方程为()y k x r =+,()11,M x y ,()22,N x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,代入OM ON k k +,同理用1k-代替k ,r -代替r ,得OS OT k k +,由两者相等可求得r .【详解】(1)设椭圆焦距为()20c c >,由22212b c a c a ⎧+=⎪⎪=⎨=,解得2a =,b =.∴椭圆E 的标准方程为22143x y +=.(2)由题意直线AP ,BP 斜率存在且均不为0,设直线AP 方程为()y k x r =+,()11,M x y ,()22,N x y ,由22()143y k x r x y =+⎧⎪⎨+=⎪⎩得,()()222223484120k x k rx k r +++-=.∴2122834k r x x k -+=+,2212241234k r x x k-=+.①又()()12121212N O O M k x r k x r y y k k x x x x +++=+=+()1212122kx x kr x x x x ++=,②从而①代入②得2263OM ON k k k k r -+=-.又AP BP ⊥,以1k -替代k ,以r -替代r ,同理可得2263OS OTk k k r k +=-,∴22226633k k k r r k-=--,∴()()22130k r +-=对0k≠恒成立,解得r =或r =,经检验,此时0∆>,因此存在r =.【点睛】本题考查由离心率求椭圆的标准方程,考查直线与椭圆的位置关系.在直线与椭圆相交问题中常常采用设而不求的思想方法.本题考查了学生的运算求解能力,逻辑推理能力.属于中档题.21.已知椭圆2222:1(0)x y a b a b Γ+=>>过点2)2,设椭圆Γ的上顶点为B ,右顶点和右焦点分别为A ,F ,且56AFB π∠=.(1)求椭圆Γ的标准方程;(2)设直线:(1)l y kx n n =+≠±交椭圆Γ于P ,Q 两点,设直线BP 与直线BQ 的斜率分别为BP k ,BQ k ,若1BP BQ k k +=-,试判断直线l 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1)2214x y +=(2)直线l 过定点,该定点的坐标为(2,1)-.【详解】(1)因为椭圆Γ过点22,所以222112a b +=①,设O 为坐标原点,因为56AFB π∠=,所以6BFO π∠=,又||BF a ==,所以12b a =②,将①②联立解得21a b =⎧⎨=⎩(负值舍去),所以椭圆Γ的标准方程为2214x y +=.(2)由(1)可知(0,1)B ,设11(,)P x y ,22(,)Q x y .将y kx n =+代入2214xy +=,消去y 可得222(14)8440k x knx n +++-=,则22222(8)4(14)(44)16(41)0kn k n k n ∆=-+-=-+>,122814kn x x k -+=+,21224414n x x k -=+,所以122121************11()()2(1)()BP BQy y x kx n x x kx n x kx x n x x k k x x x x x x --+-++-+-++=+==222224482(1)8(1)214141444(1)(1)114n knk n k n k k k n n n n k --⋅+-⋅-++====--+-++,所以21n k =--,此时2216[4(21)1]640k k k ∆=---+=->,所以k 0<,此时直线l 的方程为21y kx k =--,即(2)1y k x =--,令2x =,可得1y =-,所以直线l 过定点,该定点的坐标为(2,1)-.22.已知椭圆2222:1(0)x y C a b a b +=>>,点26,13M ⎛⎫- ⎪ ⎪⎝⎭在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为1k ,2k ,若1214k k =-,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【答案】(1)22143x y +=;(2)直线PQ 过定点()1,0.【分析】(1)根据点在椭圆上以及离心率列出方程组,求解出22,a b 的值则椭圆方程可求;(2)考虑直线PQ 的斜率是否存在,若斜率存在,设出直线PQ 的方程y kx m =+以及点,P Q 的坐标,根据1214k k =-求解出,k m 之间的关系从而确定出定点坐标;若斜率不存在可直接进行验证,即可得到最终结果.【详解】(1)因为椭圆过点,13M ⎛⎫- ⎪ ⎪⎝⎭且离心率为12,所以22222811312a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,所以解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=;(2)因为()2,0A -,设()()1122,,,P x y Q x y ,当直线的斜率存在时,设直线:PQ y kx m =+,因为223412y kx m x y =+⎧⎨+=⎩,所以()2223484120k x kmx m +++-=,所以21212228412,3434km m x x x x k k -+=-=++,又因为1214k k =-,所以()()()()()()22121212121212121212222244kx m kx m k x x km x x m y y x x x x x x x x +++++⋅===-+++++++,所以222222222241283414121612164k m k k m m k m m km k --++=---++,所以2220m mk k --=,所以()()20m k m k -+=,所以2m k =或m k =-,当2m k =时,():2PQ y k x =+,此时过点()2,0A -不符合题意,当m k =-时,():1PQ y k x =-,此时过定点()1,0;当直线的斜率不存在时,:1PQ l x =,所以,P Q 坐标为331,,1,22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()3312212124APAQkk -⋅=⋅=-----,满足要求,综上可知:直线PQ 过定点()1,0.【点睛】本题考查圆锥曲线的综合问题,涉及椭圆方程求解以及椭圆中直线过定点问题,主要考查学生的转化与计算能力,难度较难.23.已知圆22:(1)16D x y ++=,圆C 过点(1,0)B 且与圆D 相切,设圆心C 的轨迹为曲线E .(1)求曲线E 的方程;(2)点(2,0)A -,,P Q 为曲线E 上的两点(不与点A 重合),记直线,AP AQ 的斜率分别为12,k k ,若122k k =,请判断直线PQ 是否过定点.若过定点,求该定点坐标,若不过定点,请说明理由.【答案】(1)22143x y +=(2)见解析【分析】(1)结合题意发现圆心C 的轨迹是以D ,B 为焦点的椭圆,建立方程,即可.(2)设出直线PQ 的方程,建立方程,将直线方程代入椭圆方程,结合根与系数关系,得到m ,k 的关系式,计算定点,即可.【详解】(1)设圆C 的半径为r ,依题意,|CB |=r ,|CD |=4-r ,进而有|CB |+|CD |=4,所以圆心C 的轨迹是以D ,B 为焦点的椭圆,所以圆心C 的轨迹方程为22143x y +=.(2)设点P Q 、的坐标分别为()()1122,,,x y x y ,设直线PQ 的方程为y kx m =+(直线PQ 的斜率存在),可得()()()()1212222kx m kx m x x ++=++,整理为:()()()2212122480k x x km x x m -+-++-=,。

圆锥曲线的点差法应用(人教A版)(含答案)

圆锥曲线的点差法应用(人教A版)(含答案)

圆锥曲线的点差法应用(人教A版)一、单选题(共8道,每道12分)1.设双曲线的一条弦被直线平分,则所在直线的斜率为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用2.已知双曲线的中心为原点,是的焦点,过的直线与相交于两点,且的中点为,则的方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用3.已知椭圆的右焦点为,过点的直线交椭圆于两点,若的中点坐标为,则的方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用4.中心为原点,一个焦点为的椭圆,截直线所得弦中点的横坐标为,则该椭圆的方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用5.直线过抛物线的焦点且与相交于两点,且的中点坐标为,则抛物线的方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用6.已知椭圆,则斜率为2的直线与椭圆相交所得弦的中点的轨迹方程为( )A.的一部分B.的一部分C.的一部分D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用7.过椭圆内一点的弦的中点的轨迹方程为( )A. B.的一部分C. D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用8.直线(是参数)与抛物线的相交弦是,则弦的中点轨迹方程是( )A.的一部分B.的一部分C.的一部分D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用。

圆锥曲线题型技巧--- 斜率定值问题

圆锥曲线题型技巧--- 斜率定值问题
圆锥曲线题型技巧---斜率定值问题
一、解答题
1.如图,在平面直角坐标系
2
2
中,椭圆 2 + 2 = 1( >
> 0)的右焦点为
(1,0),离心率为
2.分别过
2

的两条弦 , 相交于点 (异于 , 两点),且 = .
(1)求椭圆的方程;
(2)求证:直线 , 的斜率之和为定值.
2
【答案】(1) +
2 = 1;(2)详见解析.
,

同理由③得
y2 1 x2 2
4
x2 2
y2 1
,

由①④⑤得
x1 2
4 y1 1
x2 2
4 y2 1
0
,
化简得 x1y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑥
由①得 x1 y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑦
4 − 1)
= ⋅ 2( 1 2− 3 4)−( 1+ 2)+( 3+ 4)13 分
( 1− 3)( 2− 4)
= 0. 16 分
=
⋅ 2( 2
−2 2+
1

2( 2
( 1−
2 2
− +
1) 1
)

0
+
2
3)( 2 − 4)
4
2
2
+1
考点:直线与椭圆的位置关系
点评:主要是考查了直线椭圆的位置关系的运用,属于基础题。
4k 2 1
x2 8kbx 4b2 8 0 ,
(**)
82

x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解圆锥曲线问题常用方法:
1、定义法
(1)椭圆有两种定义。

第一定义中, 。

第二定义中, 。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1))0(122
22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02
020=+k b y a x 。

(2))0,0(122
22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02
020=-k b
y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.
【典型例题】
例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

例2、F 是椭圆13
42
2=+y x 的右焦点,A(1,1)为椭圆内一定点,P (1)PF PA +的最小值为 (2)PF PA 2+的最小值为
例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,
例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5
3
sinA,求点A
例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

例6、已知椭圆
)52(11
2
2≤≤=-+m m y m x 过其左焦点且斜率为1B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。

【同步练习】
1、已知:F 1,F 2是双曲线122
22=-b
y a x 的左、右焦点,过F 1作直线交双曲线左支于点A 、B ,若m AB =,
△ABF 2的周长为( )
A 、4a
B 、4a+m
C 、4a+2m
D 、4a-m
2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是( )
A 、y 2=-16x
B 、y 2=-32x
C 、y 2=16x
D 、y 2=32x
3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )
A 、
13422=+y x B 、)0(1342
2>=+x y x C 、)0(13422<=+x y x D 、)00(13
42
2≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是( ) A 、)1(49)2
1
(2
2-≠=+-x y x B 、)1(49
)21(22-≠=++x y x C 、)1(49)2
1(2
2
-≠=
-+x y x D 、)1(4
9
)21(22-≠=++x y x 5、已知双曲线
116
92
2=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是
8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为
9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=
10、设点P 是椭圆
19
252
2=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。

11、已知椭圆的中心在原点,焦点在x 轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l 与此椭圆相交于A 、B 两点,且AB 中点M 为(-2,1),34=AB ,求直线l 的方程和椭圆方程。

12、已知直线l 和双曲线)0,0(122
22>>=-b a b y a x 及其渐近线的交点从左到右依次为A 、B 、C 、D 。

求证:
CD AB =。

相关文档
最新文档