高考一轮复习随堂练习专题圆周运动的临界问题
2025高考物理总复习圆周运动中的临界极值问题

2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2
。
3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)
2
(2)
解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4
s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路
高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
高三物理一轮复习 圆周运动临界问题

答案
ACD
随堂演练
2.(多选 )如图8所示,一个固定在竖直平面上的光滑半圆形管道, 管道里有一个直径略小于管道内径的小球,小球在管道内做圆 周运动,从B点脱离后做平抛运动,经过0.3 s后又恰好垂直与倾
角为45°的斜面相碰。已知半圆形管道的半径R=1 m,小球可
看做质点且其质量为m=1 kg,g取10 m/s2。2)r,路线③的路程 s3=2πr,A 正确;根据 mv2 Fmax= R 得 vm= FmaxR m ,可知 R 越小,其不打滑的最大速率
越小,所以路线①的最大速率最小,B 错误;三种路线对应的最 (π+2)r 大速率 v2=v3= 2v1,则选择路线①所用时间 t1= ,路 v1 (2π+2)r 2πr 线②所用时间 t2= ,路线③所用时间 t3= ,得 t2 2v1 2v1 >t1>t3,可见 t3 最小,C 正确;由 Fmax=ma,可知三条路线对应 的 a 相等,D 正确。 答案 ACD
随堂演练
解析
1 2 要使小球恰能到达 P 点,由机械能守恒定律有: mv = 2
mg· 2L ,可知它在圆周最低点必须具有的速度为 v≥2 gL ,而 9 gL>2 gL,所以小球能到达 P 点;由机械能守恒定律可知小 2 球到达 P 点的速度为 受到轻杆向上的弹力。 1 gL;由于 2 1 gL< gL,故小球在 P 点 2
质量为m的赛车通过 AB线经弯道到达 A′B′线,有如图所示的①、
图9
随堂演练
A.选择路线①,赛车经过的路程最短
B.选择路线②,赛车的速率最小 C.选择路线③,赛车所用时间最短 D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等
随堂演练
解析
赛车经过路线①的路程 s1=πr+2r=(π+2)r,路线②的路
高中物理《圆周运动的临界问题》专题练习

核心概念 规律再现
核心模型 考点对点练 核心能力提升练
核心模型 考点对点练
提升训练
对点训练
典型考点一
竖直(倾斜)平面内的圆周运动及其临界问题
1.(多选)轻绳一端固定在光滑水平轴O上,另一端系一质量为m的小
球,在最低点给小球一初速度,使其在竖直平面内做圆周运动,且刚好能通
过最高点P。下列说法正确的是( )
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
解析
5. 在质量为M的电动机飞轮上,固定着一个质量为m的重物,重物到转 轴的距离为r,如图所示。为了使电动机不从地面上跳起,电动机飞轮的转 动角速度不能超过( )
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
M+m A. mr g
M+m
答案 AD
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
答案
解析
汽车过凸形桥时,在桥顶有mg-FN=m
v2 R
,所以mg>FN,故A正
确;由上式可知,汽车通过桥顶时,v越小,FN越大,所以B错误;汽车所
需的向心力由重力沿轨道半径方向的分力和桥对汽车的支持力的合力来提
供,故C错误;当汽车通过桥顶所受支持力FN=0时,mg=m
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
(2)三种模型对比
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
2.水平面内的圆周运动的临界问题 水平面内圆周运动的临界问题,其实就是要分析物体所处的状态的受力 特点,然后结合圆周运动的知识,列方程求解,一般会涉及临界速度、临界 角速度等。通常有下面两种情况: (1)与绳(或面等)的弹力有关的临界问题:此类问题要分析出恰好无弹力 或弹力达到最大这一临界状态下的角速度(或线速度)。 (2)因静摩擦力而产生的临界问题:此类问题要分析出静摩擦力达到最 大时这一临界状态下的角速度(或线速度)。
专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。
如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。
2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。
(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。
a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。
例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。
当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。
解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。
(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。
圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水
高考物理一轮4章抛体运动与圆周运动专题强化5圆周运动的临界问题考点3斜面上圆周运动的临界问题

考点3 斜面上圆周运动的临界问题(能力考点·深度研析)1.题型简述:在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、绳控制、杆控制等,物体的受力情况和所遵循的规律也不相同。
2.解题关键——重力的分解和视图物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力相等,解决此类问题时,可以按以下操作,把问题简化。
►考向1 斜面上摩擦力作用下的临界问题如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),重力加速度为g 。
要使物体能与圆盘始终保持相对静止,则物体与转轴间最大距离为( C )A.μg cos θω2 B .g sin θω2 C.μcos θ-sin θω2g D .μcos θ+sin θω2g [解析] 由题意易知临界条件是物体在圆盘上转到最低点受到的静摩擦力最大,由牛顿第二定律得μmg cos θ-mg sin θ=mω2r ,解得r =μcos θ-sin θω2g ,故A 、B 、D 错误,C 正确。
与竖直面内的圆周运动类似,斜面上的圆周运动也是集中分析物体在最高点和最低点的受力情况,列牛顿运动定律方程来解题。
只是在受力分析时,一般需要进行立体图到平面图的转化,这是解斜面上圆周运动问题的难点。
►考向2 斜面上绳作用下的临界问题如图所示,在倾角为θ的足够大的固定斜面上,一长度为L 的轻绳一端固定在O 点,另一端连着一质量为m 的小球(视为质点),可绕斜面上的O 点自由转动。
现使小球从最低点A 以速率v 开始在斜面上做圆周运动,通过最高点B 。
重力加速度大小为g ,轻绳与斜面平行,不计一切摩擦。
下列说法正确的是( C )A .小球通过B 点时的最小速度可以小于gL sin θ B .小球通过A 点时的加速度为g sin θ+v 2LC .若小球以gL sin θ的速率通过B 点时突然脱落而离开轻绳,则小球到达与A 点等高处时与A 点间的距离为2LD .小球通过A 点时的速度越大,此时斜面对小球的支持力越大[解析] 小球通过最高点B 时,当绳的拉力为零时速度最小,即mg sin θ=mv 2min L,最小速度v min =gL sin θ,故A 错误;小球在A 点受重力、斜面的支持力以及绳的拉力,沿斜面方向有F -mg sin θ=mv 2L =ma A ,可得a A =v 2L,故B 错误;若小球以gL sin θ的速率通过B 点时突然脱落而离开轻绳,则小球在斜面上做类平抛运动,在平行于斜面底边方向做匀速直线运动,在垂直于斜面底边方向做初速度为零的匀加速直线运动,故s水平=v B t =gL sin θ·t,2L =12at 2,其中a =g sin θ,联立解得s 水平=2L ,即小球到达与A 点等高处时与A 点间的距离为2L ,故C 正确;斜面对小球的支持力始终等于重力沿垂直于斜面方向的分力,与小球的速度大小无关,故D 错误。
高考物理一轮复习课件专题四:圆周运动的临界问题

•1-1 (2010·重庆质检)2008年北京奥运会上
一位质量为60 kg的体操运动员
• “单臂大回环”,用一只手抓住单杠,伸展
•身解体析,:以运单动杠员为达轴最做低圆点周时运受动力.满如图足4F--3-
图4-3-4
4所mg示=,此过,程v中最,小运时动F最员小到,达最低点时手 •臂所受以的有拉m力g·至2R少=约为m(忽v2,略所空以气F阻=力5,mgg==10
• -mg=
• 要求FN≤2.0×105 N,解得允许的最大速率 vm=7.07 m/s.
• 由上面的分析可知,汽车经过凸形路面顶
【例1】长L=0.5 m质量可忽略的细杆,其一端可绕O点在竖直平面内转动,另 一端固定着一个物体A.A的质量为m=2 kg,当A通过最高点时,
如图4-3-3所示,求在下列两种情况下杆对小球的力:
圆周运动的临界问题
竖直面内圆周运动的临界问题分析 对于物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动 常有临界问题,并伴有“最大”“最小”“刚好”等词语,常分析两种模 型——轻绳模型和轻杆模型,分析比较如下:
均是没有支撑的小球
均是有支撑的小球
取竖直向下为正向
取竖直向下为正向
• 1.如图4-3-1所示,汽车车厢顶部悬挂一个 轻质弹簧,弹簧下端拴一个质量为m的小球 ,当汽车以某一速率在水平地面上匀速行驶 时弹簧长度为L1;当汽车以同一速度匀速率 通过一个桥面为圆弧形凸形桥的最高点时,
• 【例2】 用一根细绳,一端系住一个质量
为m的小球,另一端悬在光滑水平桌面
•
上方h处,绳长l大于h,使小球在桌面
上做匀速圆周运动.求•解析:以小球为研究对象,小球受三个力 的作用:重力G、水平面支持力FN、绳子 拉力F.在竖直方向合力为零,在水平方向 合力为所需向心力,绳与竖直方向夹角为θ ,则R=htan θ,Fcos θ+FN=mg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考一轮复习随堂练习专题圆周运动的临界问
题
Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】
第3讲 专题 圆周运动的临界问题
1.
图4-3-6
质量为m 的小球由轻绳a 和b 分别系于一轻质木架上的A 点和C 点,如图4-3-6所示,当轻杆绕轴BC 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a 在竖直方向,绳b 在水平方向,当小球运动到图示位置时,绳b 被烧断的同时杆子停止转动,则( )
A .小球仍在水平面内做匀速圆周运动
B .在绳被烧断瞬间,a 绳中张力突然增大
C .若角速度ω较小,小球在垂直于平面ABC 的竖直平面内摆动
D .若角速度ω较大,小球可在垂直于平面ABC 的竖直平面内做圆周运动
解析:绳b 烧断前,竖直方向合力为零,即F a =mg ,烧断b 后,因惯性,要在竖直面
内做圆周运动,且F a ′-mg =m v 2
l
,所以F a ′>F a ,A 错B 对,当ω足够小时,小球不
能摆过AB 所在高度,C 对,当ω足够大时,小球在竖直面内能通过AB 上方最高点,
从而做圆周运动,D 对. 答案:BCD 2.
图4-3-7
m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图4-3-7所示,已知皮带轮半径为 r ,传送带与皮带轮间不会打滑,当m 可被水平抛出时,A 轮每秒的转数最少是( )
g r B. g r
gr 解析:当m 被水平抛出时只受重力的作用,支持力N =0.在圆周最高点,重力提供向
心力,即mg =mv 2r ,所以v =gr .而v =2πf ·r ,所以f =v 2πr =12π g
r ,所以每
秒的转数最小为12π g
r
,A 正确.
答案:A 3.
图4-3-8
(2010·西南师大附中模拟)如图4-3-8所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( ) A .小球通过最高点时的最小速度v min =g (R +r ) B .小球通过最高点时的最小速度v min =0
C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力
D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力
解析:小球沿管上升到最高点的速度可以为零,故A 错误,B 正确;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与球重力在背离圆心方向的分力
F mg 的合力提供向心力,即:F N -F mg =m
v 2
R +r
,因此,外侧管壁一定对球有作用力,而内
侧壁无作用力,C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力
与小球速度大小有关,D 错误. 答案:BC 4.
图4-3-9
某实验中学的学习小组在进行科学探测时,一位同学利用绳索顺利跨越了一道山涧,他先用绳索做了一个单摆(秋千),通过摆动,使自身获得足够速度后再平抛到山涧对面,如图4-3-9所示,若他的质量是M ,所用绳长为L ,在摆到最低点B 处时的速度为v ,离地高度为h ,当地重力加速度为g ,则: (1)他用的绳子能承受的最大拉力不小于多少 (2)这道山涧的宽度不超过多大
解析:(1)该同学在B 处,由牛顿第二定律得:F -Mg =M v 2
L
,
解得:F =Mg +M v 2L ,即他用的绳子能承受的最大拉力不小于Mg +M v 2
L
.
(2)对该同学做平抛运动的过程由运动学公式得:水平方向有:x =vt ,竖直方向有:
h =12gt 2
,
解得:x =v
2h
g ,即这道山涧的宽度不超过v
2h
g
.
答案:(1)Mg +M v 2
L
(2)v
2h g
5.
图4-3-10
(2010·诸城模拟)如图4-3-10所示,半径为R ,内径很小的光滑半圆管道竖直放置,质量为m 的小球以某一速度进入管内,小球通过最高点P 时,对管壁的压力为.求:
(1)小球从管口飞出时的速率; (2)小球落地点到P 点的水平距离.
解析:(1)分两种情况,当小球对管下部有压力时,则有mg -=mv 21R ,v 1=gR
2
.当小
球对管上部有压力时,则有mg +=mv 22R ,v 2= 3
2gR
(2)小球从管口飞出做平抛运动,2R =12gt 2,t =2 R
g
,x 1=v 1t =2R ,x 2=v 2t =6R .
答案:(1) gR 2或 3
2
gR (2)2R 或6R。