ANSYS Workbench 显示动力学 质量块冲击薄板
AnsysWorkbench动力学分析幻灯片

A(i) 描述了系统做第 i 阶主振动时具有的振动形态,称为第 i 阶主振型,或第 i 阶模态。
系统在各个坐标上都将以第 i 阶模态频率 ? 0i 做简谐振动,并且同时通过静平衡位置。
28
? 第三节 模态分析步骤
实例 – 目标: 在这个练习,我们的目标是研究在一定
的约束条件下如图所示的机架的模态,得到其振动特性。
26
? ? ? 2n 0
?
a1
2( n?1) 0
?
?
? an?1
2 0
?
an
?
0
频率方程或特征多项式
解出 n 个值,按升序排列为:
? ? ? 0 ?
2 01
?
2 02
?
?
?
2 0n
? 0i :第 i 阶固有频率
? 01 :基频。
仅取决于系统本身的刚度、质量等物理参数。
? ? ? ? ? 将每一个? 0i 代入方程 ([K] ? 02[M ]) x ? 0
x2 ? x1) (x2 ? x1
)
? ? ?
m1?x?1 m2 ?x?2
? (k1 ? ? k2 x1
k2 )x1 ? (k2
? ?
k2 x2 k3 ) x2
?0 ?0
方程组用矩阵表达为:
?m1
? ?
0
0 m2
?? ?? ??
?x?1 ?x?2
? ? ?
?
?k1 ? k2
? ?
?
k2
? k2
k2 ? k3
50
100
150
200
250
300
Acceleration (cm 2 400
如何简单的区分ANSYS Workbench有限元分析中的静力学与动力学问题

如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力学问题四川 曹文强“力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。
从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。
力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。
而今天主要是简单介绍一个静力学与动力学。
首先,静力学与动力学区别是什么?答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。
故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。
当然“静”动力学静力学实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。
对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
此外,静力学的有五大公理公理一力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。
公理二二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。
公理三加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。
公理四牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。
此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。
ANSYS Workbench 17·0有限元分析:第11章-显式动力学分析

第11章 显式动力学分析自带有学的分析方法。
★ 了解显式动力学分析。
11.1 显式动力学分析概述显式算法主要用于高速碰撞及冲压成型过程的仿真,其在这方面的应用效果已超过隐式算法。
11.1.1 显式算法与隐式算法的区别1.显式算法动态显式算法是采用动力学方程的一些差分格式(如中心差分法、线性加速度法、Newmark 法和Wilson法等),该算法不用直接求解切线刚度,也不需要进行平衡迭代,计算速度较快,当时间步长足够小时,一般不存在收敛性问题。
动态显式算法需要的内存也比隐式算法要少,同时数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时,速度优势才能发挥,因而往往采用减缩积分方法,但容易激发沙漏模式,影响应力和应变的计算精度。
2.隐式算法在隐式算法中,每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这一过程需要占用相当数量的计算资源、磁盘空间和内存。
该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中还要受到迭代次数及非线性程度的限制,所以需要取一个合理值。
第11章显式动力学分析在ANSYS中,显式动力学包括ANSYS Explicit STR、ANSYS AUTODYN 及ANSYSLS-DYNA 3个模块。
1.ANSYS Explicit STRANSYS Explicit STR是基于ANSYS Workbench仿真平台环境的结构高度非线性显式动力学分析软件,可以求解二维、三维结构的跌落、碰撞、材料成型等非线性动力学问题,该软件功能成熟、齐全,可用于求解涉及材料非线性、几何非线性、接触非线性的各类动力学问题。
2.ANSYS AUTODYNAUTODYN用来解决固体、流体、气体及其相互作用的高度非线性动力学问题。
AUTODYN 已完全集成在ANSYS Workbench中,可充分利用ANSYS Workbench的双向CAD接口、参数化建模以及方便实用的网格划分技术,还具有自身独特的前、后处理和分析模块。
Ansys-Workbench动力学分析

4.1: 动力学绪论
第一节 动力学分析目的及定义 为什么要对结构进行动力学分析?
土木建筑、地质工程领域
1940年11月7日倒塌—风载
1940年7月1日通车 美国塔科曼悬索大桥
交通运输、航空航天领域
机械、机电领域
什么是结构动力学?
定义:研究结构在动力荷载作用下的动力反应。
目的:动力荷载作用下结构的内力和变形;
4.2: 模态分析
第一节 模态分析的含义
什么是模态分析?
模态分析是用来确定结构的振动特性(固有频率和振型) 的一种技术。 模态分析的好处:
– 使结构设计避免共振或以特定频率进行振动(例如 扬声器);
– 使工程师可以认识到结构对于不同类型的动力载荷 是如何响应的。
建议: 在准备进行其它动力分析之前首先要进行
单地用简谐函数来表示。
FP
t
(3)冲击荷载 荷载的幅值(大小)在很短时间内急剧增大或急剧减小。
FP 冲击荷载
t
FP 突加荷载
t
(4)随机荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷载。
风荷载 地震作用
25 Wind speed (m/s) 20
15
10
5
0
0
50
100
脉动风
平均风
150
200
fn
n 2
为系统的固有频率,Hz
1 2
T
fn n
为系统的周期,s
2.二自由度无阻尼线性系统
对质量块m1、 m2受力分析, 由Newton第二定律得
mm12xx12 kk13xx12kk22(
x2 x1) (x2 x1)
mm12xx12(kk21x1
ANSYS Workbench 12.1 显示动力学 中文培训教程

练习4材料的定义冲击分析中的塑性和失效Workshop Supplement 4. 材料的定义Explici Workshop Supplement冲击分析中的塑性和失效•该练习举例说明了陶瓷棒撞击下的应变率相关塑性铝板模型的定义。
而且对铝板的失效应变进行了说明超出失效应变的单元在分析中被删去随着外cit Dynam 铝板的失效应变进行了说明。
超出失效应变的单元在分析中被删去。
随着外部单元被删除,侵蚀面对面接触自动将目标面移动到下面的单元。
输入文件为barplate.inpmics wit •下面的幻灯片演示了分步操作指令。
指导教师将会做详细说明。
•barplate inp th ANSYS barplate.inp 有完整的注释。
模型主体建立完成后,/EOF 命令中止了命令流,你可以自己完成练习。
/EOF 命令后是图形用户界面产生的命令,如果你遇到任何问题,你可以与你的.LOG 文件进行对比。
YS/LS YS/LS--DYN YNA 6.0March 7, 2002Inventory #001631Workshop Supplement …Explici Workshop Supplement…冲击分析中的塑性和失效•启动ANSYS/Multiphysics/LS-DYNA 6.0图形用户界面模式cit Dynam •读入输入文件“ barplate.inp ”Utility Menu >File >Read input from >barplate inp >OKmics wit Utility Menu > File > Read input from … > barplate.inp > OK 或者运行:/input, barplate.inpth ANSYS •两部分都使用SOLID164单元YS/LS YS/LS--DYN •铝板周边固定•陶瓷棒具有向下的初始速度YNA 6.0•定义了侵彻面对面接触March 7, 2002Inventory #001631Workshop Supplement Explici Workshop Supplement…冲击分析中的塑性和失效•铝板定义为塑性随动材料模式P M t i l P M t i l M d lcit Dynam Preprocessor > Material Props > Material Models …•然后选择“Material Model Number 2” 并且,打开“LS-DYNA ”mics wit t h ANSYS th ANSYS YS/LS YS/LS--DYN •“Material Model Number 1”前面有一个文件夹标志是因为与陶瓷棒相关的材料数据(线弹性各向同性)已经输入M t i l M d lYNA 6.0关的材料数据(线弹性各向同性)已经输入。
ansysworkbench瞬态动力学实例

在本文中,我将为您撰写一篇关于ANSYS Workbench瞬态动力学实例的文章。
我们将深入探讨ANSYS Workbench在瞬态动力学仿真方面的应用,从简单到复杂、由浅入深地讨论其原理和实践操作,并共享个人观点和理解。
第一部分:介绍ANSYS Workbench瞬态动力学仿真ANSYS Workbench是一种用于工程仿真的全面评台,包含了结构、流体、热传递、多物理场等多种仿真工具。
瞬态动力学仿真是ANSYS Workbench的重要应用之一,它能够模拟在时间和空间上随机变化的动力学过程,并对结构在外部力作用下的动力响应进行分析。
在瞬态动力学仿真中,ANSYS Workbench可以模拟诸如碰撞、冲击、振动等动态载荷下的结构响应,用于评估零部件的耐久性、振动特性、动态稳定性等重要工程问题。
通过对这些现象的模拟和分析,工程师可以更好地了解结构在实际工况下的性能,进而进行有效的设计优化和改进。
第二部分:实例分析为了更直观地展示ANSYS Workbench瞬态动力学仿真的应用,我们以汽车碰撞仿真为例进行分析。
假设我们需要评估汽车前部结构在碰撞事故中的动态响应,我们可以通过ANSYS Workbench建立汽车前部结构的有限元模型,并对其进行碰撞载荷下的瞬态动力学仿真。
我们需要构建汽车前部结构的有限元模型,包括车身、前保险杠、引擎盖等部件,并设定材料属性、连接方式等。
接下来,我们可以在仿真中引入具体的碰撞载荷,如40km/h车速下的正面碰撞载荷,并进行瞬态动力学仿真分析。
通过仿真结果,我们可以获取汽车前部结构在碰撞中的应力、应变分布,以及变形情况,从而评估其在碰撞事故中的性能表现。
第三部分:个人观点与总结通过以上实例分析,我们可以看到ANSYS Workbench瞬态动力学仿真在工程实践中的重要应用价值。
瞬态动力学仿真不仅能够帮助工程师分析结构在动态载荷下的响应,还可以为设计优化、安全评估等工程问题提供重要参考。
ANSYS Workbench 12.1 显示动力学 中文培训教程

练习7求解和模拟控制受轴向载荷梁的屈曲分析Workshop Supplement7. 求解和模拟控制Explici Workshop Supplement受轴向载荷梁的屈曲分析•1. 读“beambuck.inp”输入文件b b k i cit Dynam –beambuck.inp 输入文件建立了由SHELL163单元组成的中空的四边形截面的梁。
梁长400mm 厚2mm ,受轴向压缩,z 轴方向有位移载荷(UZ = 250 mm)。
模型中段结构的缺陷引起屈曲。
只建一半模型,边界条件已定义,LS-mics wit 但塑性材料模型、沙漏控制、接触设定、载荷需要定义。
求解情况可用LS DYNA 开关控制SW2监测。
th ANSYS YS/LS YS/LS--DYN Utility Menu > File > Read Input from … > beambuck.inp > OKYNA 6.0March 7, 2002Inventory #001631Workshop Supplement 步骤2.Explici Workshop Supplement•定义梁的双线性塑性特性.–Preprocessor: Material Props > Material Models … > LS-DYNA > cit Dynam Nonlinear > Inelastic > Kinematic Hardening > Bilinear Kinematic 然后输入右图所示数据点击mics wit –然后输入右图所示数据,点击Material 和Exit.th ANSYS 步骤3.YS/LS YS/LS--DYN •确定type 5沙漏控制零能模式。
•Preprocessor: Material Props >Hourglass Ctrls > LocalYNA 6.0•材料号为1, 输入VAL1为5. 其它值默认> OKMarch 7, 2002Inventory #001631Workshop Supplement 步骤4.Explici Workshop Supplement•指定接触算法。
AnsysWorkbench界面命令说明

Ansys Workbench界面命令说明1、 ANSYS15 Workbench界面相关分析系统和组件说明【Analysis Systems】分析系统【Component Systems】组件系统【CustomSystems】自定义系统【Design Exploration】设计优化分析类型说明Electric (ANSYS) ANSYS电场分析Explicit Dynamics (ANSYS) ANSYS显式动力学分析Fluid Flow (CFX) CFX流体分析Fluid Flow (Fluent) FLUENT流体分析Hamonic Response (ANSYS) ANSYS谐响应分析Linear Buckling (ANSYS) ANSYS线性屈曲Magnetostatic (ANSYS) ANSYS静磁场分析Modal (ANSYS) ANSYS模态分析Random Vibration (ANSYS) ANSYS随机振动分析Response Spectrum (ANSYS) ANSYS响应谱分析Shape Optimization (ANSYS) ANSYS形状优化分析Static Structural (ANSYS) ANSYS结构静力分析Steady-State Thermal (ANSYS) ANSYS稳态热分析Thermal-Electric (ANSYS) ANSYS热电耦合分析Transient Structural(ANSYS) ANSYS结构瞬态分析Transient Structural(MBD) MBD 多体结构动力分析Transient Thermal(ANSYS) ANSYS瞬态热分析组件类型说明AUTODYN AUTODYN非线性显式动力分析BladeGen 涡轮机械叶片设计工具CFX CFX高端流体分析工具Engineering Data 工程数据工具Explicit Dynamic(LS-DYNA) LS-DYNA 显式动力分析Finite Element Modeler FEM有限元模型工具FLUNET FLUNET 流体分析Geometry 几何建模工具Mechanical APDL 机械APDL命令Mechanical Model 机械分析模型Mesh 网格划分工具Results 结果后处理工具TurboGrid 涡轮叶栅通道网格生成工具Vista TF 叶片二维性能评估工具2、主菜单【File】文件操作【View】窗口显示【Tools】提供工具【Units】单位制【Help】帮助信息3、基本工具条【New】新建文件【Open】打开文件【Save】保存文件【Save As】另存为文件【Import】导入模型【Compact Mode】紧凑视图模式【Shade Exterior and Edges】轮廓线显示【Wireframe】线框显示【Ruler】显示标尺【Legend】显示图例【Triad】显示坐标图示【Expand All】展开结构树【Collapse Environments】折叠结构树【Collapse Models】折叠结构树中的Models项【Named Selections】命名工具条【Unit Conversion】单位转换工具【Messages:Messages】信息窗口【Simulation Wizard】向导【Graphics Annotations】注释【Section Planes】截面信息窗口【Reset Layout】重新安排界面4、建模【Geometry】几何模型【New Geometry】新建几何模型【Details View】详细信息窗口【Graphics】图形窗口:显示当前模型状态【Extrude】拉伸【Revolve】旋转【Sweep】扫掠【Skin/Loft】蒙皮【Thin/Surface】抽壳: 【Thin】创建薄壁实体【Surface】创建简化壳【Face to Remove】删除面:所选面将从体中删除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS Workbench显示动力学质量块冲击薄板
案例分析:
本例模拟一立方体刚性质量块以速度300mm/s冲击一方形薄板的过程,立方体质量块的边长为20mm,方形薄板的边长为200mm,厚度为10mm,薄板材料为显式材料Steel1006,立方体材料为IRON-ARMCO,分析薄板在冲击载荷作用下的连续动态过程。
几何模型的建立
打开workbench,载入几何模型模块和显式动力学模块,生成的几何模型为显式分析做准备。
双击A2打开几何模型,在弹出的单位选择窗口选择长度单位为mm。
点亮xy工作平面,同时点击面对视图图标来确定一个比较方便建模的视角。
XY平面显示如下,可以开始进行XY二维平面内的几何建模操作。
切换到草图模式进行草图建模编辑。
点击Draw主目录条下面的Rectangle生成方形几何外形线。
在坐标原点附近拖动鼠标形成一个方框草图。
对方框草图进行位置约束和几何尺寸的标定。
假设薄板平面依坐标轴
对称,则每个边距离平行坐标轴的距离均为100mm。
约束各条边界。
点击尺寸Dimensions主条目下面的General来标注几何尺寸。
点击Y 坐标轴,按住Ctrl键,点选右侧线段,出现距离标注如下图。
依次标注其余三条线段的到平行坐标轴的距离,修改标准尺寸均为100mm,同时四条线段均为蓝色,说明线段均约束完全。
点击concept在下拉菜单中选择surfaces from sketches
点击SurfaceSK1,然后点亮xyplane下的Sketch1,在base objects后面点击apply确认。
在SurfaceSK1右键generate生成几何面。
生成有有厚度的实体。
点击create下拉菜单Extrude拉伸实体。
选择base object为sketch1,实体的厚度Depth为10mm
点击Extrude1右键generate。
点击creatives在下拉菜单中滑动鼠标至primitives选择box。
点击box1,设置立方块的位置和几何尺寸参数,其中第一点的X、Y、Z坐标分别是-10mm,-10mm,20mm,以及边长均为20mm,点击generate生成立方体。
相对位置如下图所示。
因为在分析时,面体不用作为一个单独分析的结构,因此抑制面体,点击surface body右键suppress body。
双击B2,在弹出来的窗口中选择Explicit Materials,
选择材料STEEL1006和IRON-ARMCO
抑制Structural Steel,点击Structural Steel
返回工程,点击model(B4)右键refresh,再双击打
开。
点击第一个solid(方形平板),设置材料为steel1006,刚度行为为柔性,
点击第二个solid(立方块),设置材料为IRON-ARMCO,刚度行为为刚性,
划分网格,,mesh右键insert选择sizing,重复三次。
选择视图,鼠标右键view选择right。
选中立方块的所有边线。
设置立方体网格大小。
每
如下图框选edge,
框选所有的edge。
速度大小为-Z方向,大小为300mm/s
分析设置
设置分析终止时间为0.15s,其他默认。
插入等效应力云图
插入变形云图
插入变量曲线图
求解
分屏显示各个角度的结果。
点击MIN和MAX取消最大最小值标记。
显示不同侧面的等效应力图
显示不同侧面的位移云图。
最大等效应力随时间变化曲线图chart
侧保存。
根据路径提示存放视频文件。