离散数学 第七章 图论 习题课ppt课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) E ( a ,b ) ,( b ,e ) ,( e ,b ) ,( a ,e ) ,( d ,e ) 多重图
(3) E (a ,b ),(b ,e ),(e ,d ),(c ,c )
不是
下列各序列中,可以构成无向简单图的度数序列的
有哪些?
(1) (2,2,2,2,2)
可以
(2)(1,1,2,2,3)
下图所示的六个图中,强连通,单向连通,弱连通 的分别有哪些?
强连通
单向连通
弱连通
单向连通
强连通
强连通
设图G的邻接矩阵为 则G的边数为( ). A.5 B.6 C.3
D.4
正确答案是:D。
当给定的简单图是无向图时, 邻接矩阵为对称的.即当结
点vi与vj相邻时,结点vj与vi也 相邻,所以连接结点vi与vj的 一条边在邻接矩阵的第i行第j 列处和第j行第i列处各有一个 1,题中给出的邻接矩阵中共 有8个1,故有82=4条边。度 数之和等于2倍的边数。
2
2
2
1
4 4 3 2
2
2
2
1
(2) D中v1到v1长度为1,2,3,4的回路各多少条? 答: v1到v1长度为1,2,3,4的回路数分别为1,1,3,5。
(3) D中长度为4的通路(不含回路)有多少条? 答:长度为4的通路(不含回路)为33条.
(4) D中长度为4的回路有多少条? 答: 长度为4的回路为11条。
使图G删除了E1的所有边后,所得的子图是不连通 图,而删除了E1的任何真子集后,所得的子图是连 通图,则称E1是G的一个边割集.若某个边构成一 个边割集,则称该边为割边(或桥) 如果答案A正确,即删除边(a, d)后,得到的图是不 连通图,但事实上它还是连通的。因此答案A是错 误的。
设给定图G(如由图所示),则图G的点割集
(5) D中长度4的通路有多少条?其中有几条是回路? 答:长度4的通路88条,其中22条为回路。
(6) 写出D的可达矩阵。 44的全1矩阵。
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
若 G 中没有孤立点,则 G 中 n个结点的度只取 n-1 个 可能值:1,2,…,n-1,从而 G 中至少有两个结点的度 数相同。


应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
{f,c}是不满定义的,因为{f}是{f,c}的真子集, 而删除{f}后,图是不连通的。
二、通路、回路、图的连通性
1、基本概念 路,回路,迹, 通路,圈 无向图和有向图中结点之间的可达关系;连通 图,连通分支,连通分支数W(G) 点割集,割点,点连通度k(G) 边割集,割边(桥),边连通度λ(G) 短程线,距离 有向图连通的分类,强连通,单侧连通,弱连 通, 强分图,单侧分图,弱分图
离散数学
河南工业大学 信息科学与工程学院
第7章 图 论 习题课
复习时注意
准确掌握每个概念 灵活应用所学定理 注意解题思路清晰 证明问题时,先用反向思维(从结论入手)分析问
题,再按正向思维写出证明过程。
图 图论的结构图
通路与回路 图的连通性
图的矩阵表示 欧拉图 汉密尔顿图
平面图的基本性质
平面图的判断 欧拉公式
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
一、无向图与有向图
1、基本概念。
有向图与无向图的定义;有向边,无向边,平行边, 环, 孤立结点
关联与邻接(相邻); 结点的度数;结点的度, 结点的出度, 结点的入
度, 图的最大度Δ(G),最小度δ(G),
零图与平凡图;简单图与多重图; 完全图;子图,生成子图,补图;图的同构。 2、运用。 (1) 灵活运用握手定理及其推论, (2) 判断两个图是否同构, (3) 画出满足某些条件的子图,补图等。
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
重要定理:握手定理及其推论
无向图:
有向图:

推论 : 任何图(无向的或有向的)中,奇度结点的 个数是偶数。
典型题
设图G=<V,E>,其中V={a,b,c,d,e},E分别由下面给 出。判断哪些是简单图,哪些是多重图?
(1) E (a ,b ),(b ,c ),(c ,d ),(a ,e )
简单图
不可以
(3)(1,1,2,2,2)
可以
(4)(0,1,3,3,3)
不可以
(5)(1,3,4,4,5)
不可以
图G如右图所示,以下说法正确的是 ( ) . A.{(a, d)}是割边 B.{(a, d)}是边割集 C.{(d, e)}是边割集 D.{(a, d) ,(a, c)}是边割集
正确答案是:C。 对割边、边割集的概念理解到位。 定义 设无向图G=<V, E>为连通图,若有边集E1E,
(1) D是哪类连通图? D是强连通图。
解答为解(2)—(6),只需先求D的邻 接矩阵的前4次幂。
1 2 0 0
A
0
0
1
0
1 0 0 1
0
0
1
0
3 2 2 2
A3
1
2
1
0
2 2 2 1
1
2
1百度文库
0
1 2 2 0 A 2 1 0 0 1
1 2 1 0 1 0 0 1
5 6 4 2
A4
有向图D如图所示,回答下列问题:
(1) D是哪类连通图? (2) D中v1到v4长度为1,2,3,4的通路各多
少条?
(3) D中长度为4的通路(不含回路)有 多少条?
(4)D中长度为4的回路有多少条? (5) D中长度≤4的通路有多少条?其中
有几条是回路?
(6) 写出D的可达矩阵。
有向图D如图所示,回答下列诸问:
相关文档
最新文档