矩阵式键盘的输入实验
通用IO使用_矩阵式键盘

嵌入式系统实验报告院(系)别信息科学与电气工程学院班级学号姓名指导教师时间 2014-06-21实验三通用 I/O 使用——矩阵式键盘1 实验目的S3C44B0X 具有 71 个通用多功能 I/O,这些 I/O 的应用是 S3C44B0X 处理器的基础。
本实验我们就以矩阵式键盘的接口设计为例,学习怎样设置 I/O 口并对它进行操作。
(1)掌握 S3C44B0X 的 I/O 口的功能特点;(2)掌握对 I/O 口的基本编程操作。
2 实验要求4×4 矩阵键盘的每个键的对应字符如下:7, 8, 9, /,4, 5, 6, *,1, 2, 3, -,0, ., +, \n编写 4×4 矩阵式键盘的驱动程序,使得当某个键被按下时,超级终端上显示出该键对应的字符。
3 实验容与步骤本实验需要进行连接电路。
学生按照下面的指导说明和程序流程图,自行编写符合实验要求的源程序。
并按照实验一中说明的步骤,进行:建立工程、编译除错、下载仿真等步骤,最终调试出符合要求的源程序。
观察超级终端上的显示,看是否输出满足实验要求的结果。
在本实验中,根据键盘的循环扫描检测法进行程序编写。
根据该方法,设定 GPF0-3 为输出口(列线),GPF4-7 为输入口(行线)。
用导线连接起这些 I/O 口和键盘的接口。
在程序中,我们首先通过设置 PCONF 寄存器,来实现端口功能配置。
3.1 电路连接在 ARMSys 上用导线连接扩展 I/O 口和键盘接口。
如下图所示:采用键盘的循环扫描检测法编写程序。
程序中,我们首先通过设置 PCONF 寄存器,来实现端口功能配置。
3.2 寄存器设置设置 PCONF 寄存器:如下表所示,由于我们需要设定 PF0-3 为输出口(列线),PF4-7为输入口,因此,在端口工作之前设置 PCONF=000 000 000 000 00 01 01 01 01B=0x55;PF0-3 输出扫描码时,可采用以下语句:rPDATF=0xf0;PF0-3 写入全 0; PF4-7 读入键值时,采用以下语句:Keyvalue=(PDATF&0xf0)>>4;z 部上拉电阻的设置:rPUPF=0x00;使能 PF0-7 的部上拉3.3 编写键盘扫描程序分为主程序和读键子程序两个部分。
实验一 矩阵键盘检测

实验一矩阵键盘检测一、实验目的:1、学习非编码键盘的工作原理和键盘的扫描方式。
2、学习键盘的去抖方法和键盘应用程序的设计.二、实验设备:51/AVR实验板、USB连接线、电脑三、实验原理:键盘接口电路是单片机系统设计非常重要的一环,作为人机交互界面里最常用的输入设备。
我们可以通过键盘输入数据或命令来实现简单的人机通信。
1、按键的分类一般来说,按键按照结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点式开关按键,如电气式按键,磁感应按键等。
前者造价低,后者寿命长.目前,微机系统中最常见的是触点式开关按键(如本学习板上所采用按键)。
按键按照接口原理又可分为编码键盘与非编码键盘两类,这两类键盘的主要区别是识别键符及给出相应键码的方法。
编码键盘主要是用硬件来实现对键的识别,非编码键盘主要是由软件来实现键盘的识别.全编码键盘由专门的芯片实现识键及输出相应的编码,一般还具有去抖动和多键、窜键等保护电路,这种键盘使用方便,硬件开销大,一般的小型嵌入式应用系统较少采用。
非编码键盘按连接方式可分为独立式和矩阵式两种,其它工作都主要由软件完成.由于其经济实用,较多地应用于单片机系统中(本学习板也采用非编码键盘)。
2、按键的输入原理在单片机应用系统中,通常使用机械触点式按键开关,其主要功能是把机械上的通断转换成为电气上的逻辑关系。
也就是说,它能提供标准的TTL 逻辑电平,以便与通用数字系统的逻辑电平相容。
此外,除了复位按键有专门的复位电路及专一的复位功能外,其它按键都是以开关状态来设置控制功能或输入数据。
当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能。
因此,键信息输入是与软件结构密切相关的过程。
对于一组键或一个键盘,通过接口电路与单片机相连.单片机可以采用查询或中断方式了解有无按键输入并检查是哪一个按键按下,若有键按下则跳至相应的键盘处理程序处去执行,若无键按下则继续执行其他程序。
单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。
(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。
在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
操作方完成矩阵式键盘实验。
具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。
完成思考题。
三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。
2.在keil上进行编译后生成“xxx.hex”文件。
3.编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。
矩阵键盘操作说明

矩阵键盘操作说明一、系统复位1按数字键0后,按MON键2输入99后,按NEXT键二、键盘视频选择首先是监视器选择然后是摄像机选择1、按键盘上的CLEAR键,清除键盘数字输入ENTER区中的数字显示2、输入所选择的监视器号,该数字在键盘数字输入ENTER区中显示3、按MON键,该监视器号在键盘监视器MONITOR区中显示4、同时系统主机将返回该监视器对应的图像号,在键盘的摄像机CAMERA区中显示。
5、输入选择的摄像机号,该数字在键盘数字输入ENTER区中显示6、按CAM键7、系统主机将返回该图像号,在键盘的摄像机CAMERA区中显示则选择的图像再选择的监视器上显示三、图像区域切换在指定的监视器上运行一个指定区域的图像切换,该功能可以在任何一个监视上浏览切换所有的图像操作步骤如下:1、按键盘上CLERA键,清除数字输入ENTER区中的数字显示2、输入所选择的监视器号,该数字在键盘数字输入ENTER区中显示3、按MON键,该监视器号在键盘监视器MONITOR区中显示4、输入区域切换中的开始图像号5、按ON键,确认开始区域的开始图像6、输入区域切换中的结束图像号7按OFF键确定区域切换的结束图像完成后则该监视器开始区域切换依次按照设定的图像号进行切换如要添加一个图像到切换序列中则:1和设置区域切换的步骤一样重复1-3步,选择一个监视器,该监视必须已存在一个切换队列2、输入所希望添加的摄像机图像好,该摄像机图像号必须在系统的最大允许摄像机图像号的范围内3、按组合键ENTER-ON,ENTER键必须在前面,确定添加的图像。
如要在切换队列中删除一个图像:1、和设置区域切换的步骤一样重复1-3步,选择一个监视器,该监视必须已存在一个切换队列2输入所希望添加的摄像机图像好,该摄像机图像号必须在这个序列切换范围内。
3、按组合键ENTER-OFF,ENTER必须在前面,确认删除图像。
四、报警设置单布防针对需要布防的防区一个一个的布防,防区布防后,根据监视器与防区触点权限表,自动将该防区分配到与之对应的监视器上。
矩阵式键盘设计实训报告

一、实验目的1. 掌握矩阵式键盘的工作原理及电路设计方法。
2. 熟悉单片机与矩阵键盘的接口连接及编程技巧。
3. 提高动手实践能力,培养创新意识。
二、实验设备1. 单片机实验平台2. 矩阵键盘模块3. 数字多用表4. 编译器(如Keil51)5. 连接线三、实验原理矩阵键盘是一种常用的键盘设计方式,通过行列交叉点连接按键,从而实现多个按键共用较少的I/O端口。
矩阵键盘通常采用逐行扫描的方式检测按键状态,当检测到按键按下时,根据行列线的电平状态确定按键位置。
四、实验内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘测试与调试五、实验步骤1. 电路设计(1)根据矩阵键盘的规格,确定行线和列线的数量。
(2)将行线和列线分别连接到单片机的I/O端口。
(3)在行线上串联电阻,防止按键抖动。
(4)连接电源和地线。
2. 编程(1)初始化单片机的I/O端口,将行线设置为输出,列线设置为输入。
(2)编写逐行扫描程序,逐行拉低行线,读取列线状态。
(3)根据行列线状态判断按键位置,并执行相应的操作。
3. 测试与调试(1)将编写好的程序下载到单片机中。
(2)连接矩阵键盘,观察按键是否正常工作。
(3)使用数字多用表检测行列线电平,确保电路连接正确。
(4)根据测试结果,对程序进行调试,直到矩阵键盘正常工作。
六、实验结果与分析1. 电路连接正确,按键工作正常。
2. 逐行扫描程序能够正确检测按键位置。
3. 按键操作能够触发相应的程序功能。
七、实验总结1. 通过本次实训,掌握了矩阵式键盘的工作原理及电路设计方法。
2. 熟悉了单片机与矩阵键盘的接口连接及编程技巧。
3. 提高了动手实践能力,培养了创新意识。
八、心得体会1. 在实验过程中,遇到了电路连接错误和程序调试困难等问题,通过查阅资料、请教老师和同学,最终成功解决了问题。
2. 本次实训让我深刻体会到理论知识与实际操作相结合的重要性,同时也认识到团队合作的重要性。
九、改进建议1. 在电路设计过程中,可以考虑增加去抖动电路,提高按键稳定性。
键盘 实验报告

键盘实验报告实验报告:键盘引言:键盘是计算机输入设备中最常用的一种设备,用于输入字符、数字、命令等等。
键盘以一定的方式将我们按下的按键转换成计算机可识别的信号,从而实现输入功能。
本实验的目的是了解键盘的工作原理、结构以及使用方法。
实验目的:1. 了解键盘的工作原理;2. 掌握键盘通信协议;3. 掌握键盘的结构和按键布局;4. 学习键盘的使用方法。
实验原理:键盘的工作原理是通过扫描矩阵的方式实现的,常见的键盘为4x4矩阵结构,也有其他规格的矩阵结构。
按键的每一个位置都与键盘电路中的一个电气开关相连接,当按下某个按键时,会导电并向计算机发送信号。
键盘通过PS/2或USB 接口与计算机相连,传输按键的信息。
键盘结构通常包括以下部分:1. 按键:键盘上的每一个按键代表一个字符、数字、命令或功能等。
按键大致分为四个区域:字母区、数字区、符号区和功能区。
2. 电路板:键盘的电路板上连接着按键开关,实现按键的电气连接和信号传输。
3. 导线和线缆:将电路板与接口连接,传递信号。
4. 接口:键盘通过PS/2或USB接口与计算机相连,实现信号的传输。
实验步骤:1. 准备一个计算机和一台键盘,确保键盘的连接正确。
2. 打开计算机,进入操作系统。
3. 在文本编辑器中打开一个文档,用来记录实验结果。
4. 将注意力集中在键盘上,按下键盘上的一个按键,观察文档中的输入情况。
5. 重复步骤4,测试其他按键,记录测试结果。
6. 关闭计算机,结束实验。
实验结果与分析:通过本实验,我们了解到键盘的工作原理是通过扫描矩阵的方式实现的,按键通过电路板中的电气开关与计算机相连,实现键盘输入。
键盘的按键布局通常分为四个区域:字母区、数字区、符号区和功能区。
通过实验测试,我们发现按键输入是可靠的,按下按键时能够正确输入对应的字符或数字。
键盘的使用方法是简单明了的,只需要按下对应的按键即可完成输入。
实验总结:键盘作为计算机最常用的输入设备,广泛应用于各个领域。
矩阵式键盘实验报告

矩阵键盘实验报告佘成刚学号2010302001班级08041202时间2016.01.20一、实验目的1.学习矩列式键盘工作原理;2.学习矩列式接口的程序设计。
二、实验设备普中HC6800ESV20开发板三、实验要求要现:用4*4矩阵键盘,用按键形式输入学号,在数码管上显示对应学号。
四、实验原理工作原理:矩阵式由行线和列线组成,按键位于行、列的交叉点上。
如图所示,一个4*4 的行、列结构可以构成一个由16 个按键的键盘。
很明显,在按键数量较多的场合,矩阵式键盘与独立式键盘相比,要节省很多的I/0 口。
(1)矩阵式键盘工作原理按键设置在行、列交节点上,行、列分别连接到按键开关的两端。
行线通过下拉电阻接到GND 上。
平时无按键动作时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平决定。
列线电平如果为低,行线电平为高,列线电平如果为高,则行线电平则为低。
这一点是识别矩阵式键盘是否被按下的关键所在。
因此,各按键彼此将相互发生影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。
(2)按键识别方法下面以3 号键被按下为例,来说明此键是如何被识别出来的。
前已述及,键被按下时,与此键相连的行线电平将由与此键相连的列线电平决定,而行线电平在无键按下时处于高电平状态。
如果让所有列线处于高电平那么键按下与否不会引起行线电平的状态变化,始终是高电平,所以,让所有列线处于高电平是没法识别出按键的。
现在反过来,让所有列线处于低电平,很明显,按下的键所在行电平将也被置为低电平,根据此变化,便能判定该行一定有键被按下。
但我们还不能确定是这一行的哪个键被按下。
所以,为了进一步判定到底是哪—列的键被按下,可在某一时刻只让一条列线处于低电平,而其余所有列线处于高电平。
当第1 列为低电平,其余各列为高电平时,因为是键3 被按下,所以第1 行仍处于高电平状态;当第2 列为低电平,其余各列为高电平时,同样我们会发现第1 行仍处于高电平状态,直到让第4 列为低电平,其余各列为高电平时,因为是3 号键被按下,所以第1 行的高电平转换到第4 列所处的低电平,据此,我们确信第1 行第4 列交叉点处的按键即3 号键被按下。
4-4矩阵键盘控制16个LED灯

一、任务说明本次的任务是利用51单片机设计一个4*4矩阵键盘输入系统,用16个发光二级管对应16个不同的按键。
每按下一个按键对应的发光二极管就亮。
矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。
在行线和列线的每个交叉点上设置一个按键。
这样键盘上按键的个数就为N*N个。
这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。
最常见的键盘布局如图1所示。
一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,本设计就采用这个键盘模式。
图1 键盘布局利用单片机的并行口P1连接4×4矩阵键盘,并以单片机的P1.0-P1.3各管脚作输入线,以单片机的P1.4-P1.7各管脚作输出线;利用P2、P3口控制灯1-灯16,。
用Proteus绘制其电路原理图(附录一)。
此任务用到了AT89C51芯片,还用到了晶体振荡器、按钮开关、发光二级管以及一些电阻。
这次任务中采用C语言编写程序,在编译过程中设置成自动产生HEX文件,将此文件导入AT89C51中,即可实现相应的功能。
二、原理图绘制说明电路原理图的设计与绘制是整个电路设计的基础,设计一个电路原理图的工作包括:设置电路图图纸的大小,规划电路图的总体布局,在图纸上放置元器件并对元器件进行调整,进行布线和整体布局,最后保存并打印输出等几个步骤。
安装完Proteus后,运行ISIS 7 Professional,在原理图编辑窗口绘制电路图,在该界面下还有预览窗口和元件列表区,在左侧的工具箱中还有模型选择工具栏,方向工具栏及仿真按钮等工具。
其具体的使用步骤如下:1.运行该软件后,新建一个设计文件,设置图纸大小。
选择界面如图2所示。
图2 选择图纸大小界面2.接下来开始查找任务中所用到的元器件,查找界面如图3所示。
图3 元器件查找界面3.将查找的元器件放置到界面中,并进行相应的引脚连线,本次是采用标注的方式进行引脚连接,标注符号相同的表示引脚相连接,具体操作是先将引脚引出一小段导线,右击导线选择放置网络标号,标注标号界面如图4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六、矩阵式键盘的输入实验
实验目的
学习矩阵式键盘工作原理
学习矩阵式键盘接口的电路设计和程序设计
实验设备
仿真器
单片机最小系统实验教学模块
矩阵式键盘实验模块
动态扫描数码管显示模块
实验要求
要求实现:在矩阵式键盘中的某个键被按下时,8位LED动态显示器上最低位显示该键对应的字符,以前的字符向高位推进一位
实验原理
矩阵式由行线和列线组成,按键位于行、列的交叉点。
一个4*4 的行列结构可以构成一个16个按键的键盘。
很明显,在按键数量较多的场合,矩阵式键盘与独立式键盘相比,要节省很多的I/O端口
矩阵式键盘工作原理
按键是设置在行列的交接点上,行列分别连接到按键开关的两端。
行线通过上拉电阻接到+5V上。
平时无按键按下时,行线处于高电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平决定。
列线电平如果为低,则行线电平为低,列线电平如果为高,则行线电平则为高。
这一点是识别矩阵式键盘是否被按下的关键所在。
由于行列式键盘中行列线为多键共用,各按键均影响该键所在行和列的电平。
因此,各按键彼此将相互发生影响,所以必须将行列线信号配合起来并作适当的出来,才能确定闭合键的位置。
键被按下时,与此键相连的行线电平将由与此相连的列线电平决定,而行线电平在物件按显示处于高电平状态。
如果让所有列线出于高电平时没法识别出按键的,现在发过来,让所有列线处于低电平,很明显,按下的键所在行电平将也被置为低电平,根据此变化,便能判定该行一定又键被按下。
但我们还不能确定是这一行的哪个键被按下。
所以,为了进一步判定到底是哪一列的键被按下,可在某一时刻只让一列线处于低电平。
而其余所有列线处于高电平。
当第一列为低电平,其余各列为高电平时,因为键4被按下,所以死一行扔处于高电平状态;当第二列为低电平,其余各列为高电平时,同样哦我们会发现第一行仍处于高电平状态。
知道让第四列为低电平,其余各列为高电平时,因为是4号键被按下,所以第一行的高电平状态转换到第四列所处的低电平,据此,我们确信第一行第四列交叉点处的按键即4号键被按下。
识别键盘有无键被按下的方法是:让所有列线均为低电平,检查各行线电平是否有低电
平,如果有。
则说明有键被按下,如果没有,则说明无键被按下
识别具体按键的方法是:逐列置零电平,并检查各行线电平的变化,如果某行电平由高电平变为低电平,则可确定此行此列交叉点处按键被按下。
请注意由于键盘模块做了特殊的处理,是的矩阵式键盘的行线输出的电平状态与前卖弄所述正好相反。
即,行线的输出电平,在平时为低电平,有键按下时,该键对应的行线输出为高电平。
电路图
KEYVALUE EQU 40H
DISPPTR EQU 37H
FIRSTPTR EQU 30H
ORG 0000H
AJMP INIT
ORG 0030H
INIT:
MOV R0,#FIRSTPTR
MOV R1,#08H
INITLOOP:
MOV A,#10H
MOV @R0,A
INC R0
DJNZ R1,INITLOOP
LOOP:
MOV P2,#00H
MOV R4,#04H
MOV R5,#0EFH KEY:
MOV A,R5
MOV P1,A
MOV A,P1
MOV KEYVALUE,A
ORL A,#0F0H
CJNE A,#0F0H,KEY_ON
ACALL DISP
MOV A,R5
RL A
MOV R5,A
DJNZ R4,KEY
JMP LOOP
KEY_ON:
ACALL DL10MS
MOV A,P1
CJNE A,KEYVALUE,KEY K1:
CJNE A,#0E1H,K2
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K2:
CJNE A,#78H,K3
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K3:
CJNE A,#74H,K4
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K4:
CJNE A,#72H,K5
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K5:
CJNE A,#071H,K6
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K6:
CJNE A,#0B8H,K7
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K7:
CJNE A,#0B4H,K8
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K8:
CJNE A,#0B2H,K9
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K9:
CJNE A,#0B1H,K10
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K10:
CJNE A,#0D8H,K11
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K11:
CJNE A,#0D4H,K12
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K12:
CJNE A,#0D2H,K13
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K13:
CJNE A,#0D1H,K14
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K14:
CJNE A,#0E8H,K15
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K15:
CJNE A,#0E4H,K16
LCALL MOVDISP
MOV FIRSTPTR,#0
ACALL DISP
LJMP LOOP
K16:
CJNE A,#0E1H,ERROR
ERROR:LCALL KEY DISP:MOV P2,#00H DISPLOOP2:MOV R2,#8 DISPLOOP0:MOV R1,#01H MOV R0,#30H
MOV DPTR,#TAB DISPLOOP1: MOV A,@R0 MOVC A,@A+DPTR
MOV P0,A
MOV P2,R1
LCALL DL1MS
INC R0
MOV A,R1
RL A
MOV R1,A
DJNZ R2,DISPLOOP1
RET
DL1MS:
L1:MOV R5,250
NOP
DJNZ R5,L1
DL10MS:
MOV R6,10
L2:MOV R5,250
NOP
DJNZ R5,L2
DJNZ R6,L2
MOVDISP:MOV R0,#DISPPTR
MOV R1,#DISPPTR
MOV R2,#7
MOV_LP:DEC R0
MOV A,@R0
MOV @R1,A
DEC R1
DJNZ R2,MOV_LP
RET
TAB: DB 03H,9FH,25H,0DH,99H,49H,41H,1FH DB 01H,09H,11H,0C1H,63H,85H,61H,71H
DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH
DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH
END
实验总结:。