数字图像处理:十一 表示和描述
(完整版)数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
数字图像处理

数字图像处理又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
图像处理的基本目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。
航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。
许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。
对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。
我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。
在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。
文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。
数字图像处理技术,主要研究的内容:图像变换、图像编码压缩、图像增强和复原、图像分割、图像分类(识别)等。
(1) 图像变换。
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效地处理(如傅立叶变换可在频域中进行数字滤波处理)。
(完整版)数字图像处理:部分课后习题参考答案

第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。
连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。
联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。
其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。
联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。
数字图像处理重点

第一章名词解释:(2)数字图像:指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块称为像素。
(4)数字图像处理:计算机技术或其他数字技术,对图像信息进行某些数字运算和各种加工处理,以改善图像的视觉效果和提高数字实用性的技术。
第二章名词解释(12)图像采样:将空间上连续的图像变换成离散点的操作称为采样,就是对图像的连续空间坐标x和y的离散化。
(14)图像灰度级量化:对图像函数的幅值 f 的离散化.(28)欧氏距离:像素p和q之间的欧氏(Euclidean)距离定义为:De(p,q)=[(x—u)2+(y—v)2]1/2 (2。
12)也即,所有距像素点(x,y)的欧氏距离小于或等于d的像素都包含在以(x,y)为中心,以d为半径的圆平面中。
(29)街区距离:像素p和q之间的D4距离,也即街区(city-block)距离,定义为:D4(p,q)=|x-u| + |y-v| (2.13)也即,所有相距像素点(x,y)的D4距离为小于d或等于d的像素组成一个中心点在(x,y)的菱形。
(30)棋盘距离:像素p和q之间的D8距离,也即棋盘距离,定义为:D8(p,q)=max(|x—u|,|y—v|) (2.14)也即,所有距像素点(x,y)的D8距离为小于d或等于d的像素组成一个中心点在(x,y)的方形(33)调色板:在16色或256色显示系统中,将图像中出现最频繁的16中或256中颜色组成一个颜色表,并将他们分别编号为0—15或0—255,这样就是每一个4位或8位的颜色编号与颜色表中4位颜色值相对应.这种4位或者8位的颜色编号成为颜色的索引号,有颜色索引号及其对应的24位颜色值组成的表成为颜色查找表,也即调色板。
第四章名词解释(1)空间域图像增强:在图像平面中对图像的像素灰度值进行运算处理,使之更适合于人眼的观察或机器的处理的一种技术. (7)图像锐化:图像锐化是一种突出和加强图像中景物的边缘和轮廓的技术。
数字图像处理笔记

第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
数字图像处理技术解析

数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理整理经典

名词解释数字图像:是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。
1.数字图像:一幅图像f(x,y),当x,y和幅值f为有限的离散数值时,称该图像为数字图像。
图像:是自然生物或人造物理的观测系统对世界的记录,是以物理能量为载体,以物质为记录介质的信息的一种形式。
数字图像处理:采用特定的算法对数字图像进行处理,以获取视觉、接口输入的软硬件所需要数字图像的过程。
图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
无损压缩:可精确无误的从压缩数据中恢复出原始数据。
灰度直方图:灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。
或:灰度直方图是指反映一幅图像各灰度级像元出现的频率。
细化:提取线宽为一个像元大小的中心线的操作。
8、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。
9、中值滤波:中值滤波是指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。
10、像素的邻域: 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。
即{(x=p,y=q)}p、q为任意整数。
像素的四邻域:像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 11、灰度直方图:以灰度值为自变量,灰度值概率函数得到的曲线就是灰度直方图。
12.无失真编码:无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。
13.直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为平坦的直方图,以此来修正原图像之灰度值。
14.采样:对图像f(x,y)的空间位置坐标(x,y)的离散化以获取离散点的函数值的过程称为图像的采样。
15.量化:把采样点上对应的亮度连续变化区间转换为单个特定数码的过程,称之为量化,即采样点亮度的离散化。
c#数字图像处理(十一)图像旋转

c#数字图像处理(⼗⼀)图像旋转如果平⾯上的点绕原点逆时针旋转θº,则其坐标变换公式为:x'=xcosθ+ysinθ y=-xsinθ+ycosθ其中,(x, y)为原图坐标,(x’, y’)为旋转后的坐标。
它的逆变换公式为:x=x'cosθ-y'sinθ y=x'sinθ+y'cosθ矩阵形式为:和缩放类似,旋转后的图像的像素点也需要经过坐标转换为原始图像上的坐标来确定像素值,同样也可能找不到对应点,因此旋转也⽤到插值法。
在此选⽤性能较好的双线性插值法。
为提⾼速度,在处理旋转90º、-90º、±180º时使⽤了镜像来处理。
///<summary>///图像旋转///</summary>///<param name="srcBmp">原始图像</param>///<param name="degree">旋转⾓度</param>///<param name="dstBmp">⽬标图像</param>///<returns>处理成功 true 失败 false</returns>public static bool Rotation(Bitmap srcBmp, double degree, out Bitmap dstBmp){if (srcBmp == null){dstBmp = null;return false;}dstBmp = null;BitmapData srcBmpData = null;BitmapData dstBmpData = null;switch ((int)degree){case0:dstBmp = new Bitmap(srcBmp);break;case -90:dstBmp = new Bitmap(srcBmp.Height, srcBmp.Width);srcBmpData = srcBmp.LockBits(new Rectangle(0, 0, srcBmp.Width, srcBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);dstBmpData = dstBmp.LockBits(new Rectangle(0, 0, dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);unsafe{byte* ptrSrc = (byte*)srcBmpData.Scan0;byte* ptrDst = (byte*)dstBmpData.Scan0;for (int i = 0; i < srcBmp.Height; i++){for (int j = 0; j < srcBmp.Width; j++){ptrDst[j * dstBmpData.Stride + (dstBmp.Height - i - 1) * 3] = ptrSrc[i * srcBmpData.Stride + j * 3];ptrDst[j * dstBmpData.Stride + (dstBmp.Height - i - 1) * 3 + 1] = ptrSrc[i * srcBmpData.Stride + j * 3 + 1];ptrDst[j * dstBmpData.Stride + (dstBmp.Height - i - 1) * 3 + 2] = ptrSrc[i * srcBmpData.Stride + j * 3 + 2];}}}srcBmp.UnlockBits(srcBmpData);dstBmp.UnlockBits(dstBmpData);break;case90:dstBmp = new Bitmap(srcBmp.Height, srcBmp.Width);srcBmpData = srcBmp.LockBits(new Rectangle(0, 0, srcBmp.Width, srcBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);dstBmpData = dstBmp.LockBits(new Rectangle(0, 0, dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);unsafe{byte* ptrSrc = (byte*)srcBmpData.Scan0;byte* ptrDst = (byte*)dstBmpData.Scan0;for (int i = 0; i < srcBmp.Height; i++){for (int j = 0; j < srcBmp.Width; j++){ptrDst[(srcBmp.Width - j - 1) * dstBmpData.Stride + i * 3] = ptrSrc[i * srcBmpData.Stride + j * 3];ptrDst[(srcBmp.Width - j - 1) * dstBmpData.Stride + i * 3 + 1] = ptrSrc[i * srcBmpData.Stride + j * 3 + 1];ptrDst[(srcBmp.Width - j - 1) * dstBmpData.Stride + i * 3 + 2] = ptrSrc[i * srcBmpData.Stride + j * 3 + 2];}}}srcBmp.UnlockBits(srcBmpData);dstBmp.UnlockBits(dstBmpData);break;case180:case -180:dstBmp = new Bitmap(srcBmp.Width, srcBmp.Height);srcBmpData = srcBmp.LockBits(new Rectangle(0, 0, srcBmp.Width, srcBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb); dstBmpData = dstBmp.LockBits(new Rectangle(0, 0, dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);unsafe{byte* ptrSrc = (byte*)srcBmpData.Scan0;byte* ptrDst = (byte*)dstBmpData.Scan0;for (int i = 0; i < srcBmp.Height; i++){for (int j = 0; j < srcBmp.Width; j++){ptrDst[(srcBmp.Width - i - 1) * dstBmpData.Stride + (dstBmp.Height - j - 1) * 3] = ptrSrc[i * srcBmpData.Stride + j * 3];ptrDst[(srcBmp.Width - i - 1) * dstBmpData.Stride + (dstBmp.Height - j - 1) * 3 + 1] = ptrSrc[i * srcBmpData.Stride + j * 3 + 1];ptrDst[(srcBmp.Width - i - 1) * dstBmpData.Stride + (dstBmp.Height - j - 1) * 3 + 2] = ptrSrc[i * srcBmpData.Stride + j * 3 + 2];}}}srcBmp.UnlockBits(srcBmpData);dstBmp.UnlockBits(dstBmpData);break;default://任意⾓度double radian = degree * Math.PI / 180.0;//将⾓度转换为弧度//计算正弦和余弦double sin = Math.Sin(radian);double cos = Math.Cos(radian);//计算旋转后的图像⼤⼩int widthDst = (int)(srcBmp.Height * Math.Abs(sin) + srcBmp.Width * Math.Abs(cos));int heightDst = (int)(srcBmp.Width * Math.Abs(sin) + srcBmp.Height * Math.Abs(cos));dstBmp = new Bitmap(widthDst, heightDst);//确定旋转点int dx = (int)(srcBmp.Width / 2 * (1 - cos) + srcBmp.Height / 2 * sin);int dy = (int)(srcBmp.Width / 2 * (0 - sin) + srcBmp.Height / 2 * (1 - cos));int insertBeginX = srcBmp.Width / 2 - widthDst / 2;int insertBeginY = srcBmp.Height / 2 - heightDst / 2;//插值公式所需参数double ku = insertBeginX * cos - insertBeginY * sin + dx;double kv = insertBeginX * sin + insertBeginY * cos + dy;double cu1 = cos, cu2 = sin;double cv1 = sin, cv2 = cos;double fu, fv, a, b, F1, F2;int Iu, Iv;srcBmpData = srcBmp.LockBits(new Rectangle(0, 0, srcBmp.Width, srcBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb); dstBmpData = dstBmp.LockBits(new Rectangle(0, 0, dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);unsafe{byte* ptrSrc = (byte*)srcBmpData.Scan0;byte* ptrDst = (byte*)dstBmpData.Scan0;for (int i = 0; i < heightDst; i++){for (int j = 0; j < widthDst; j++){fu = j * cu1 - i * cu2 + ku;fv = j * cv1 + i * cv2 + kv;if ((fv < 1) || (fv > srcBmp.Height - 1) || (fu < 1) || (fu > srcBmp.Width - 1)){ptrDst[i * dstBmpData.Stride + j * 3] = 150;ptrDst[i * dstBmpData.Stride + j * 3 + 1] = 150;ptrDst[i * dstBmpData.Stride + j * 3 + 2] = 150;}else{//双线性插值Iu = (int)fu;Iv = (int)fv;a = fu - Iu;b = fv - Iv;for (int k = 0; k < 3; k++){F1 = (1 - b) * *(ptrSrc + Iv * srcBmpData.Stride + Iu * 3 + k) + b * *(ptrSrc + (Iv + 1) * srcBmpData.Stride + Iu * 3 + k);F2 = (1 - b) * *(ptrSrc + Iv * srcBmpData.Stride + (Iu + 1) * 3 + k) + b * *(ptrSrc + (Iv + 1) * srcBmpData.Stride + (Iu + 1) * 3 + k); *(ptrDst + i * dstBmpData.Stride + j * 3 + k) = (byte)((1 - a) * F1 + a * F2);}}}}}srcBmp.UnlockBits(srcBmpData);dstBmp.UnlockBits(dstBmpData);break;}return true;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a) (b) (c ) (d )
2 N ( p1 ) 6 T ( p1 ) 1 p 2 * p 4 * p6 0 p4 * p6 * p8 0
(a' ) (b ' ) (c ' ) (d ' )
2 N ( p1 ) 6 T ( p1 ) 1 p2 * p4 * p8 0 p2 * p6 * p8 0
链码实例
4向链码
8向链码
11.1.3 使用最小周长的多边形近似(MPP)
多边形近似可以任意精度地描述闭合边界,但在实 际应用中,多边形近似的目的是用尽可能少的顶点来 表示边界的形状,即寻找一个区域或一个边界的最小 周长多边形(MPP)。
11.1.4 其他多边形近似方法
聚合技术 沿一个边界进行聚合,拟合这些点所形成直线的最 小均方误差小于某个确定的阈值,记录直线参数,形 成一条边界;当均方误差较大时,重新开始一条新的 边界。 分裂技术 将一条线段不断地细分为两部分,连成折线。若其 他点到边界直线的距离小于某个阈值,则形成一个边 界,否则加入距离最远点,进行新的拆分,重复进行, 直到所有点到边界直线的距离都满足阈值条件。 初始直线一般选取边界上相距最远的两个点。
2 2 ( 20 02 ) 2 411
4 (30 12 ) 2 (21 03 ) 2
5 (30 312 )(30 12 )[(30 12 ) 2 3( 21 3 03 ) 2 ]
(3 21 03 )( 21 03 )[3(30 12 ) 2 ( 21 3 03 ) 2 ]
11.3.3 纹理
描绘图像局部纹理内容的方法,例如图像平滑度、粗糙 度和规律性等特性,主要有三种方法:统计方法、结构方 法和频谱方法。
纹理描述的统计方法
使用一副图像或一个局部区域统计直方图的统计矩进行 描绘。 A1
n ( z ) ( z i m) n p ( z i )
i 0
图形的欧拉数表示实例
欧拉数分别等于0和-1
一个具有7个顶点、11 条边、2个面、1个连 通区域和3个孔的区域, 欧拉数为: 7-11+2 = 1-3 = -2
使用连通分量提取图像最大特征实例
(b)图中1591个 连通分量,欧 拉数1552,孔 洞数为39; (c)显示了最大 数量(8479)的 连通分量; (d)为其骨架。
11.2.2 形状数
一条边界的形状数定义为边界链码最小量级的一次差分, 形状数的阶n为表示的数字的个数,对闭合曲线,n为偶数。
11.2.2 形状数计算实例
形状数的阶n=18,最 接近矩形为36. 形状数为: 000310330130 031303
11.2.3 傅里叶描绘子
从边界中的任意点出发,以逆时针方向行进,将其坐 标序列[ x(k) , y(k) ] , k = 0,1,2,…..,K-1 作
从面积计算中提取图像信息实例
四幅个区域中白色与所有发 光面积之比分别为: 0.204 0.640 0.049 0.107
11.3.2 拓扑描绘子
利用图像拓扑特性描述区域中的信息,其描述的信息不 受图像拉伸或旋转(橡皮膜变换)的影响,如孔洞数。
图形的欧拉数E定义为:图形的连通分量数量C减去孔洞 数H。 E=C–H =V–Q+F V表示顶点数,Q表示边数,F表示面数,上式称为欧拉 公式。
傅里叶描绘子系数近似
傅里叶描绘子的性质
描绘子应尽可能地对平移、旋转和尺度变换不敏感, 傅里叶变换子也不例外。
11.2.4 统计矩
一条边界的形状也可以使用均值、方差和高阶矩等统计 矩来定量描绘。
将 g(r)作为一个离散随机变量v,并形成一个直方图 p(vi) , i = 0,1,……,A-1,其n阶矩
以某种方案将分割后的数据精简以便于描绘子进行计算 11.1.1 边界追踪 Moore边界算法:追踪给定二值区域R或其边界
11.1.2 链码(Chain Code)
链码定义: 用于表示顺序连接的、具有指定长度和方向的线段 组成的边界,可以是4连接,也可以是8连接,每个线段 使用一种数字编码方案编码。
x k xT m k m T k k
k 1
Cx为实对称矩阵,求出其特征向量及对应的特征值,并 按降序对特征值排序,以对应次序将特征向量从上到下写 出矩阵A,用A作霍特林变换:
y A(x m x )
C y AC x AT
Cy是Cx的特征值按降序方式排列的对角矩阵。
使用主分量描绘图像
T 其中: N ( p1 ) 是p1的非零相邻像素数, ( p1 ) 是p2, p3, …… p9 序列中0到1的转换次数。
MAT骨架算法说明
MAT算法邻域排列次序
N ( p1 ) 4
T ( p1 ) 3
人腿骨骨架
11.2 边界描绘子
11.2.1 一些简单的描绘子 边界的长度:一条边界上像素的数量。 边界的直径:边界上相距最远两点所构成线段(长轴)的 距离;短轴垂直于长轴,与长轴的端点完全包围该边界,所 形成的方框称为基本矩形,长轴与短轴之比称为边界的偏 心率。 边界的曲率:有时用相邻边界线段的斜率差来作为这两条 线段交点处的曲率描绘子。
11.1.7 骨架
骨架是对目标区域的形状结构的一种表达方法。 骨架的中轴变换(MAT)定义:对于区域R中的点P, 若到边界B中有多个距离(多种距离概念)最小的点,就 可以认为P属于R的骨架;这样的定义等同于数学形态学 中最大圆盘的定义。
MAT骨架算法
MAT算法是一种连续删除区域边界点的细化算法, 在二值图中,边界点是值为1且至少有一个相邻像素为 0的点,算法分别删除符合下列条件的两类点:
分裂技术原理说明
11.1.5 标记图
定义:将二维的边界以一维函数形式表示出来。
标记图实例
11.1.6 边界线段
定义:当边界包含一个或多个明显的凹度时,将边界 分解为多个线段。 借助于数学形态学知识,一个任意集合S的凸壳H 是包含S的最小凸集,集合之差H–S 称为集合S的凸缺 D,区域的边界就是进入或离开凸缺的转变点。
11.3.4 不变矩
大小为M×N的数字图像f (x,y)N 1
m pq x y f ( x, y )
p q x 0 y 0 M 1 N 1 x 0 y 0
相应的( p+q )阶中心矩为:
m pq ( x x ) p ( y y ) q f ( x, y )
纹理描述的结构方法
将一个简单的“纹理基元”借助一些规则形成复杂的纹 理模式,这些重写规则限制基元的排列方式和数量。
纹理基元S
由规则→aS生成的模式
拓展规则,形成二维模式
纹理描述的频谱方法
利用纹理的周期性特点, 对其进行傅里叶变换,其傅 里叶频谱中:突出的尖峰给 出了纹理的主要方向,尖峰 的位臵给出纹理的基本空间 周期,而且可以采取滤波方 法消除周期性分量,留下非 周期性元素,以便于采取统 计技术进行描述。 在实际中通常采用极坐标 来表达。
(312 03 )( 21 03 )[3(30 12 ) 2 ( 21 3 03 ) 2 ]
不变矩实例
原图
缩小一半
镜像
旋转2o
旋转45o
11.4 使用主分量进行描绘
由向量的统计处理方法,向量的均值有:
1 mx K
K
x
k 1
K
k
其协方差矩阵为:
1 Cx K
第11章 表示和描述
Well, but reflect ; have we not several times acknowledged that names rightly given are the likenesses and images of the things which they name?
用有向线段描述图像
另一种更 通用的方法: 按照定义的规 则,用抽象的 基元定义典型 的操作,来描 述完整的图形 结构。
用树结构描述图形
用树形 结构描述图 形信息:节 点代表子图, 节点之间的 关系表示子 图之间的关 系。
n ( i m) n p( i )
i 0
A1
m为vi平均值,零阶矩为1,一阶矩为0,二阶矩度量曲 线在均值附近的扩展程度,三阶矩度量曲线在均值附近的 对称性。
11.3 区域描绘子
用图像区域中的信息来进行描绘的方法。 11.3.1 一些简单的描绘子 区域的面积:该区域中像素的数量; 区域的周长:该区域边界的长度; 区域的致密性:该区域 (周长)2/面积; 区域的圆度率:该区域的面积与一个具有相同周长的圆 的面积之比: 4A Rc 2 P A为区域面积,P是其周长。
不同频谱的图像像素点,代表不同的矢量分量,形成6分 量矢量。
使用主分量 对尺度、平移和旋转归一化
区域中不同 像素点作为向 量的分量,对 该区域进行佛 特林变换,对 图像归一化。
11.5 关系描绘子
利用重写规则的概念,规则的形式来获取边界或区域中 的基本重复模式:
规则:1.S→aA 2.A→bS 3.A→b
6 ( 20 02 )[(30 12 ) 2 ( 21 03 ) 2 ] 411 (30 12 )( 21 03 )
7 (3 21 03 )(30 12 )[(30 12 ) 2 3( 21 3 03 ) 2 ]
m为z的均值,二阶矩(方差)在纹理描述中非常重要, 三阶矩是直方图偏斜度的描述,四阶矩描述直方图的相对 平坦度。同时还有纹理一致性度量:
U ( z ) p 2 ( zi )
i 0
L 1
和平均熵度量:
e( z ) p( zi ) log 2 p( zi )
i 0
L 1
基于直方图的纹理度量