葡萄酒的评价_全国数学建模大赛优秀论文

合集下载

数学建模葡萄酒评价优秀论文

数学建模葡萄酒评价优秀论文

葡萄酒的评价模型摘要近年来,我国掀起了一场葡萄酒热,对葡萄酒的需求与日俱增。

特别是随着食品科学技术的发展,人们不再满足传统感官评价葡萄酒的水平。

如何运用数据资料定量研究葡萄酒的品质,加快建立葡萄酒市场指标规则成为人们关注的焦点。

本文通过对感官评价分析,结合葡萄酒和酿酒葡萄的理化指标和芳香物质的大量数据,建立了客观可靠的葡萄酒质量综合评价模型。

针对问题一:本题需要检验两组品酒员的评价结果是否存在显著差异,并选出更可靠的一组。

我们将各种葡萄酒的10个二级指标得分,相加得到每种酒的总分。

在判断知每组品酒员的评价总分均服从正态分布后,用t检验分析两组品酒员对各葡萄酒评价的差异性,由此计算得到两组评价的显著性差异率为13.36%,即总体上两组品酒员的评价不存在显著差异。

但由于两组品酒员的评价仍存在部分差异,我们比较两组品酒员对55种葡萄酒评价的方差,发现第二组评分的方差普遍小于第一组,所以第二组的评价结果更可信。

针对问题二:为了对酿酒葡萄进行分级,我们将葡萄的理化指标作为媒介。

先根据国际指标制定适用于本题评分的分级标准,将葡萄酒进行分级,再根据理化指标经标准化之后的数值,利用欧氏距离对酿酒的55种酿酒葡萄进行Q型聚类分析。

聚类得到红白葡萄各六个分类后,再把各类酿酒葡萄对应至相应葡萄酒的等级,将酿酒红葡萄和酿酒白葡萄各分为五级。

针对问题三:由于各种酿酒葡萄的理化指标种类复杂,我们用主成分分析的方法,从酿酒红葡萄和酿酒白葡萄的27个有效指标中各提取出了8个和9个主要成分。

考虑到酿酒葡萄经化学反应酿造成葡萄酒的过程中各项理化指标一般存在线性关系,我们建立多元线性回归模型,得出酿酒葡萄和葡萄酒各项有效理化指标的正负相关关系。

关键词:显著性检验;聚类分析;主成分分析;多元回归。

一、问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

数学建模毕业论文--葡萄酒的评价

数学建模毕业论文--葡萄酒的评价

数学建模毕业论文--葡萄酒的评价
葡萄酒的评价是一项复杂的任务,涉及多个因素,包括葡萄品种、酿造过程、年份、产地和存储条件等。

在数学建模中,我们可以利用统计分析和机器学习算法来对葡萄酒进行评价,以预测其质量和特征。

首先,我们可以采集一定数量的葡萄酒样本,并测量其相关属性,如酒精含量、酸度、pH值、残留糖分、挥发性酸、柠檬
酸等。

利用统计分析方法,我们可以探索这些属性与葡萄酒质量之间的关系,建立相应的数学模型。

例如,可以使用线性回归分析来确定具体属性与葡萄酒得分之间的相关性。

另一方面,机器学习算法可以帮助我们构建更复杂的评价模型。

可以使用聚类算法将葡萄酒样本分成不同的类别,以发现具有相似特征的葡萄酒群体。

此外,可以使用分类算法或回归算法来预测葡萄酒的质量评分。

这些算法可以利用已知的葡萄酒样本数据进行训练,并在新样本上进行预测。

除了属性数据,我们还可以考虑其他因素对葡萄酒评价的影响。

例如,可以考虑葡萄酒的价格、评分和消费者评价等因素,以构建更综合的评价模型。

可以使用模糊数学方法来处理这些不确定性和主观性因素,以得出更准确的评价结果。

最后,为了验证模型的准确性和稳定性,可以使用交叉验证或留一验证的方法进行模型评估。

这些方法可以帮助我们评估模型的泛化能力,并进行必要的调整和改进。

数学建模可以帮助我们对葡萄酒进行评价,为葡萄酒生产商、消费者和酒评人提供有关葡萄酒质量和特征的有价值信息。

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。

我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。

文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。

我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。

通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。

本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。

二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。

在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。

这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。

在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。

然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。

接下来,我们可以选择适合的模型进行训练。

在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。

我们需要根据数据的特性和问题的需求,选择最合适的模型。

同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。

我们需要对模型进行评估和优化。

这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。

如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。

葡萄酒的评价论文(1) (1)

葡萄酒的评价论文(1) (1)

葡萄酒的评价摘要随着时代的进步,经济的发展,葡萄酒渐渐地走进百姓的生活。

评判葡萄酒的方法则是通过聘请一批有资质的评酒员进行品评。

评酒员品尝葡萄酒并对其打分,通过求和确定葡萄酒的质量。

本文通过对所给数据的观察分析,先对数据预处理,再建立相对较好的模型评价葡萄酒的质量。

对于问题一,首先我们利用MATLAB软件制作Q-Q图,根据所得到的图观察得到,这些点可近似拟合成一条直线,从而证明该组数据满足正态分布。

然后利用T-检验方法判断评酒员的评价有无显著差异,最终得出两组评酒员的评价结果存在显著性差异的结论。

关于哪组评价结果更可信的问题,我们采用了方差分析法,根据所得到的红、白葡萄酒均值和方差表,经过计算比较,我们发现第二组的方差小于第一组的方差。

由于方差越小则数据越稳定,于是我们得到第二组评酒员的评价结果更可信的结论。

对于问题二,我们选择利用灰色关联分析法。

我们根据附件一中评分员的评分得出葡萄酒的得分,并对其标准化,将所得的数据作为葡萄酒质量的评分。

对于酿酒葡萄的理化指标,首先我们通过参考文献确定对葡萄酒影响较大的酿酒葡萄的理化指标,再采用均值化无差异法对数据求标准化值,然后利用变异系数法求得筛选出来的葡萄的理化指标的权重,通过计算权重和标准化值最后求得酿酒葡萄的综合评分。

再用均值化无差异法求葡萄和葡萄酒的标准化值。

将所得到的两组数据做和并排序,从而将酿酒葡萄划分为优、良、中、差四个等级。

对于问题三,我们采用了单个拟合和综合拟合的方法。

题目中要求寻找酿酒葡萄和葡萄酒的理化指标的关系,我们首先从参考文献中找到了对葡萄酒的主要理化指标有重大影响的酿酒葡萄的理化指标。

然后利用MATLAB软件进行拟合,建立线性回归方程,从而得出酿酒葡萄的部分理化指标对葡萄酒的理化指标的影响系数和两者之间的函数表达式,可见表N,为了进一步确定两者之间的相关关系,我们又对附件二和附件三中的数据进行处理,利用MATLAB软件再次进行拟合,从而得出酿酒葡萄与葡萄酒的理化指标之间呈正相关关系的结论。

葡萄酒的评价数学建模论文A

葡萄酒的评价数学建模论文A

葡萄酒的评价摘要我们对两种葡萄和葡萄酒都单独进行分析。

问题一:经过处理附表1的数据,分别得到两组酒评酒员对每一个红葡萄酒样品评分的平均值,将这两组数据看成两个相互独立的样本,用SPSS软件分别对两组数据进行参数和非参数假设检验,进而判断两组评酒员对红葡萄酒的评价结果是否有显著性差异。

根据两组评酒员的评分,分别求出每一个红葡萄样品10位评酒员评分的标准差,然后求和,通过比较两组标准差和的大小,结果比较小的,评分更稳定,更可信。

最后得到的结论是: 1、两组评酒员的评价结果有显著性差异。

2、第二组评酒员的结果更可信。

以下用到葡萄酒质量的评分都是以第二组评酒员的分数为标准。

问题二:我们采用相关分析和聚类方法对酿酒葡萄进行分级。

首先,对酿酒葡萄的多项理化指标与葡萄酒质量评分进行相关分析,得出一些与葡萄酒质量评分相关系数比较高的葡萄理化指标。

接着,这些指标和评酒员对葡萄酒的质量评分一起作为标准,对葡萄样品聚类分析,从而得出葡萄的分级。

得出,对红葡萄分成五级,对白葡萄分成四级,为了对分级的合理进行检验,我们定义一种对葡萄划分的检验方法,以评酒员对葡萄酒的评分作为标准,通过检验得出,红葡萄划分有误率为25.9%,白葡萄划分有误率为14.3%,可以认为结论合理。

问题三:根据附表2和附表3所给的数据,分别对酿酒葡萄和葡萄酒的理化指标进行相关性分析,得出相关矩阵,对于多个相关性比较明显的理化指标选出一个代表性理化指标,先对红葡萄和红葡萄酒指标进行分析,选出红葡萄中的7个代表性理化指标,红葡萄酒的8个代表性理化指标,然后用选取的这15个理化指标进行典型相关分析,得出酿酒葡萄和葡萄酒的理化指标之间的联系。

分析的结果要考虑相关分析后被掩盖的理化指标。

对于白葡萄和白葡萄的理化指标同样分析,选出白葡萄的6个代表性理化指标,白葡萄酒的7个代表性理化指标,然后用选取的这13个理化指标进行典型相关分析,得出酿酒葡萄和葡萄酒的理化指标之间的联系。

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

全国大学生数学建模竞赛一等奖论文葡萄酒的评价

第二十一篇葡萄酒质量的影响因素分析宇文皓月2012年A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请测验考试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差别,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格);附件2:葡萄和葡萄酒的理化指标(含2个表格);附件3:葡萄和葡萄酒的芳香物质(含4个表格);原题详见2012年全国大学生数学建模竞赛A题。

葡萄酒质量的影响因素分析*摘要:本文针对葡萄酒和葡萄质量的评价问题,通过t检验、模糊聚类分析、相关性分析等多种方法,综合分析了评酒员葡萄酒品尝评分结果、葡萄和葡萄酒的理化指标以及葡萄和葡萄酒的芳香物质数据,建立了葡萄和葡萄酒的理化指标对葡萄以及葡萄酒质量的影响关系多元线性回归数学模型,运用EXCEL、Matlab软件得出了酿酒葡萄和葡萄酒之间的理化关系。

最后,将模型结果和实际酿酒过程相结合,做出了根据酿酒葡萄和葡萄酒理化指标对葡萄酒质量进行评价的模型,对如何固化葡萄酒质量评判尺度提出了相关可行性方案。

针对问题一,根据评酒员对葡萄酒品尝评分结果数据,分别对红葡萄和白葡萄,首先运用t检验分析建立了显著性差别的成对数据t检验模型,分析出两组评酒员的评酒结果具有显著性差别;再运用方差分析建立了方差分析模型,分析出第二组评酒员的评价结果更为可信。

全国大学生数学建模竞赛A题葡萄酒评价分析

全国大学生数学建模竞赛A题葡萄酒评价分析

全国大学生数学建模竞赛A题葡萄酒评价分析葡萄酒是一种古老而美妙的饮品,其种类繁多,风味各异。

如何对葡萄酒进行准确的评价和分析成为了葡萄酒爱好者和生产商们共同关注的问题。

在此次全国大学生数学建模竞赛A题中,我们将围绕葡萄酒的评价和分析展开讨论。

1. 引言葡萄酒是一种由葡萄经过发酵而成的酒类饮品。

葡萄酒的风味和品质受到许多因素的影响,如产地、葡萄品种、酿造工艺等。

为了准确评价葡萄酒的质量和特点,我们需要建立相应的评价指标和模型。

2. 数据分析为了进行葡萄酒评价,我们首先需要收集相关的数据。

通过对不同品牌、不同种类的葡萄酒进行采样和测试,我们可以获得葡萄酒的关键指标,如酒精含量、酸度、甜度、单宁含量等。

在数据分析中,我们可以运用统计学方法和数学建模技术,对数据进行整理和处理。

通过计算均值、方差、相关系数等指标,我们可以得到葡萄酒的基本特征和相互之间的关系。

3. 葡萄酒评价指标体系建立基于数据分析的结果,我们可以建立葡萄酒评价指标体系。

这一体系应该包含对葡萄酒各项指标的评价方法和权重。

常见的评价指标包括酒精含量、色泽、香气、口感等。

在指标体系中,我们可以采用层次分析法,通过对各个指标的重要性进行排序和评估。

同时,还可以利用数学模型,将各项指标综合起来,得到最终的评价结果。

4. 葡萄酒评价模型构建在对葡萄酒进行评价时,我们可以利用数学建模方法构建评价模型。

常用的模型包括多元回归模型、灰色关联度模型等。

多元回归模型可以用来分析葡萄酒各项指标之间的关系,进而预测葡萄酒的品质。

灰色关联度模型则可以用来度量葡萄酒各个指标对品质的影响程度。

通过不断地调整模型和参数,我们可以得到更准确的葡萄酒评价结果,并为葡萄酒生产商提供有针对性的改进建议。

5. 葡萄酒评价系统设计为了方便葡萄酒评价和分析的实施,我们可以设计一个葡萄酒评价系统。

该系统可以包括数据输入、数据处理、指标评价、模型计算等功能模块。

数据输入模块用于将葡萄酒相关数据录入系统。

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价论文范文

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价论文范文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):云南财经大学参赛队员(打印并签名) :1.鲁厚华2.李雅楠3.梁丽容指导教师或指导教师组负责人(打印并签名):陈龙伟日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):题目 A题葡萄酒的评价摘要:本文研究的是葡萄酒的评价问题。

通过对酿酒葡萄和葡萄酒的理化指标、芳香物质进行分析,统计出两组评酒员的评价结果,计算酿酒葡萄中影响葡萄酒质量重要指标的几个主要成份,建立相应的数学模型,得出最好的评价方法。

问题一,运用SPSS11.5分析两组评酒员的评分结果,分别求出它们的均值、标准差和离散系数,通过这三个系数来评价两组之间的差异性以及哪组结果更可信。

问题二,我们采用多元统计分析方法中的聚类分析对酿酒葡萄的理化指标进行了简化,选出酿酒葡萄中最具代表的几种理化指标,再运用相关系数分析他们对葡萄酒品质的影响程度,从而进一步结合酿酒葡萄的理化指标和酒的质量对葡萄进行分级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆工商大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定的程度上反映葡萄酒和葡萄的质量。

本论文主要研究葡萄酒的评价、酿酒葡萄的分级以及酿酒葡萄与葡萄酒的理化指标之间的相互关系问题。

对于问题一:我们从假设检验的角度出发分析,对两组的评分进行均值和方差运算,并在零假设成立的前提下通过使用Matlab 做T 检验,得出两组评酒员对于红葡萄酒的评价结果无显著性差异,而对于白葡萄酒的评价结果存在显著性差异的结果。

再建立可信度模型=H ,计算结果如下表,对于问题二:根据葡萄酒质量的综合得分,将其划分为优、良、合格、不合格四个等级,并对酿酒葡萄的理化指标进行主成分分析,得出对葡萄影响较大的到了它们的偏相关系矩阵。

利用通径方法建立了数学模型,得出了它们之间的线性回归方程:11231123=2.001x 0.0680.015x +........=0.0540.7580.753x .........y x y x x ----+红红红红白白白白对于问题四:在前面主成分分析和葡萄酒分级的基础上,建立Logistic 回归模型,并利用最大似然估计法求出线性回归方程的参数,得出线性回归方程。

运用SPSS 软件,通过matlab 编程运算,求出受它们综合影响的线性回归方程。

在验证时,随机从上面选取理化指标,将它们带入P 的计算式中,通过所求P 值判断此时葡萄酒质量所属级别,得出了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的结论。

最后,对模型进行了改进和推广。

关键词T检验主成分分析Logistic回归模型一、问题的重述葡萄酒作为体现时尚品味的元素,同名茶、咖啡一样备受追捧。

在物质社会的今天,人们酿造葡萄酒的品质还是有待鉴定的,因此,确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

此外,酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据,现需要用数学建模方法研究解决以下问题:1.分析附件1中两组评酒员的评价结果有无显著性差异,并判断哪一组结果更可信?2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?二、问题的分析针对问题一:分析评酒员的评价结果有无显著性差异,需要从反面来论证,要从假设性检验角度来分析问题。

由于样本容量较大,近似地服从正态分布。

因此,本论文采用了使用Matlab做T检验,从而确定两组评价有无显著性差异。

为了确定哪一组的结果更可信,建立了一种可以替代可信度的模型。

又考虑到该样本涉及到的是正态分布,则数据的离散程度是对其影响最大的因素,所以采用用标准差与平均值的比值作为可信度模型H=来衡量可信度的高低。

针对问题二:该问题要求我们根据酿酒葡萄的理化指标和葡萄酒的质量来对酿酒葡萄进行分级,故我们要对酿酒葡萄的理化指标和葡萄酒的质量进行综合评价,但是在进行综合评价以前我们有分别要对它们二者分别进行分析。

在第一问中,我们已经对葡萄酒的整体进行了打分,因此,葡萄酒的质量实际上已经分好类了,那么我们就需要对酿酒葡萄的理化指标进行分析。

但是,由于影响酿酒葡萄的理化指标的因素有30个,要使问题得到简化,我们只需取其几个主要的影响因素,因此,采用主成分分析法来分析主要影响因素。

然而,葡萄酒的质量的单位系与酿酒葡萄的理化指标的单位系不同,因此不能直接加减来判断,所以,我们采用了模糊综合评价模型来对酿酒葡萄进行分级。

针对问题三:对酿酒葡萄的理化指标和酒样品的质量进行偏相关分析,得到了它们的偏相关系矩阵。

利用通径方法建立了数学模型,得出了它们之间的线性回归方程针对问题四:基于前面主成分分析和葡萄酒分级的基础,建立Logistic回归模型,并利用最大似然估计法求出线性回归方程的参数,得出线性回归方程。

运用SPSS软件,通过matlab编程运算,求出受它们综合影响的线性回归方程。

在验证时,随机从上面选取理化指标,将它们带入P的计算式中,通过所求P值判断此时葡萄酒质量所属级别,得出了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的结论。

三、基本假设1、各个样品酒中原产地相似,酿酒葡萄的产地对葡萄酒的质量影响相同;2、酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系;3、葡萄酒的酿造工序和贮藏条件相同;4、各评酒员的资质较高,在对葡萄酒品平时都是客观的,不存在主观偏好;5、仪器对样本理化指标和所含芳香物质的测试不存在随机误差,附件所给的数据真实、准确、可靠;6、酒样品容量较大时,认为各组样本服从正态分布且相互独立;7、两种葡萄酒和酿酒葡萄的分级标准相同,且葡萄酒分为优、良、合格、不合格四个级别;8、假设附件1中,酒样品为一级指标,外观、口感、香气分析和整体评价为二级指标,澄清度、色调、纯正度、浓度、持久性和质量为三级指标;四、符号定义a :表示澄清度,色调等指标个数,1,2,,10a = ;b :表示评酒员的个数,1,2,,10b = ;ab x :表示第b 个评酒员对a 指标的评分;,,i m n :表示酒样品数,,,1,2,,2728i m n = 或;i x :表示第i 种酒样品评分的均值;μ:表示总体均值;d :表示两组对应红(白)酒的均值差;d t :表示对均值差(d )做t 检验时的统计量;w :表示拒绝域;H :表示总体可信度的指标;p :表示酿酒葡萄的理化指标数,1,2,,30p = ;np x :表示第n 种酒样品的第p 中理化指标的值;*npx :表示对np x 标准化后的值; p λ:表示相关系数矩阵的第p 个特征值;Q :表示主要理化指标的贡献率;Z :表示主要理化指标的累计贡献率;j F :表示主要理化指标的综合评价函数,1,2,,j p = ;α:表示显著性水平;2s :表示方差;i a :表示相关系数矩阵的特征向量;ik U :表示子集i U 中含有k n 个评判因素;i A :表示i 个因数的权数分配;五、模型的建立与求解5.1、问题一模型的建立与求解5.1.1显著性差异的T 检验针对于如何确定有无显著性差异,我们从假设检验的角度出发,通过使用Matlab 做T 检验,分析它们的均值与方差来确定显著性。

1、对数据均值进行分析计算均值即每种酒样品的平均得分,它表示每个评酒员对每种酒样品评定的质量的具体值,其公1⎡⎤⎣⎦式为: 10ab a,b=11x=x b ∑, (5.1.1) 其中,a 表示附件1中的三级指标;b 表示评酒员的个数。

将各种葡萄酒样品各个评分代入式子(5.1.1),运用excel 计算可得出如下结果:2、对数据方差进行分析计算方差即各个数据与平均数之差的平方的平均数,它表示两组葡萄酒质量的波动大小,其公1⎡⎤⎣⎦式为:m2k i i=11s =(μ-x )m ∑, (5.1.2) 其中,m 表示酒样品数;k 表示组数,k =1,2.将以上各种葡萄酒样品的均值代入式子(5.1.2),可求得各组的方差,结果如下:3、成对数据进行T 检验根据表1、表2、表3和表4显示的结果,我们可将两组中红、白酒样品分别形成相应的成对数据,形式如下表:首先,假设:211(,)X μσ ,222(,)Y μσ 且独立,则2(,)d d X Y μσ=- ,其中12μμμ=-,22212d σσσ=+; 然后,T 检验问题为:零假设 0=0H μ: ,即12μμ=;对立假设10H μ≠:,即12μμ≠.此时,用T 统计量d dt =, (5.1.3)其中,11m i i d d m ==∑,()22111m d i i s d d m ==--∑ ,m 表示酒样品数,(红酒27m =,白酒28m =);在零假设成立的前提下,此d t 统计量服从()1t m -分布。

这时,零假设的α(0.05α=)显著水平的拒绝域是如下的样本区域:12(1)w t t m α-⎧⎫=>-⎨⎬⎩⎭. (5.1.4) 将表1和表2中的数据代入式子(5.1.3)中,可求得红葡萄酒的统计量t 值,通过查表法将m 值代入(5.1.4)可以求得显著水平的拒绝域。

结果为:t =2.04569d t =2.04106所以可得评酒员对红葡萄酒的评价没有显著性差异。

同理,我们可计算出白葡萄酒的统计量t 值,即d t =-2.66648,不在拒绝域内,所以,结果可得两组评酒员对白葡萄酒的评价存在显著性差异。

5.1.2可信度模型的建立及求解针对可信度的问题,我们用H 表示可信度。

在一定程度上,当平均值相等时,标准差能反映一个总体的离散程度,即标准差越大,离散程度越大,则表明这个总体的水平不稳定;标准差越小,反之水平越稳定。

基于标准差和平均值的性质,我们用标准差与平均值比值的大小来表示一个总体可信度的高低。

因而,我们建立一个可信度模型:H σμ=,其中,H 表示标准差与平均值的比值,即H 可见,H 值越大时它的可信度越低,H 值越小时可信度越高。

由此,可算得两组红葡萄酒样本的标准差与平均值的比值,如下表:由以上表格显示的结果可得出如下结论:对于两组中的红葡萄酒,有:2111H H <,所以第二组对红葡萄酒的评价结果的可信度更高;对于两组中的白葡萄酒,有:2212H H <,所以第二组对白葡萄酒的评价结果的可信度更高;综上所述:第二组更可信。

相关文档
最新文档