回溯法求解N皇后问题

合集下载

回溯法实验(n皇后问题)(迭代法)

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验附录:完整代码(回溯法)//回溯算法递归回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数,可以访问私有数据private:bool Place(int k); //判断该位置是否可用的函数void Backtrack(int t); //定义回溯函数int n; //皇后个数int *x; //当前解long sum; //当前已找到的可行方案数};int main(){int m,n;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:"; //输入皇后个数cin>>n;cout<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl; //输出结果end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k)//传入行号{for(int j=1;j<k;j++){if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))//如果两个在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack(int t){if(t>n){sum++;/*for(int i=1;i<=n;i++) //输出皇后排列的解{cout<<x[i]<<" ";}cout<<endl;*/}else{//回溯探索第i行的每一列是否有元素满足要求for(int i=1;i<=n;i++){x[t]=i;if(Place(t)){Backtrack(t+1);}}}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1]; //动态分配for(int i=0;i<=n;i++) //初始化数组{p[i]=0;}X.x=p;X.Backtrack(1);delete[] p;return X.sum;//输出解的个数}完整代码(回溯法)//回溯算法迭代回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数private:bool Place(int k); //定义位置是否可用的判断函数void Backtrack(void); //定义回溯函数int n; // 皇后个数int *x; // 当前解long sum; // 当前已找到的可行方案数};int main(){int n,m;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:";cin>>n;cout<<n<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解皇后问题的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k){for (int j=1;j<k;j++){if ((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) //如果两个皇后在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack() //迭代法实现回溯函数{x[1] = 0;int k = 1;while(k>0){x[k] += 1; //先将皇后放在第一列的位置上while((x[k]<=n)&&!(Place(k))) //寻找能够放置皇后的位置{x[k] += 1;}if(x[k]<=n) //找到位置{if(k == n) //如果寻找结束输出结果{/*for (int i=1;i<=n;i++){cout<<x[i]<<" ";}cout<<endl; */sum++;}else//没有结束则找下一行{k++;x[k]=0;}}else//没有找到合适的位置则回溯{ k--; }}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++){p[i]=0;}X.x=p;X.Backtrack();delete []p;return X.sum; //返回不同解的个数}。

n后问题-回溯法

n后问题-回溯法

n后问题-回溯法问题描述: 在n*n的棋盘上放置彼此不受攻击的n个皇后。

按国际象棋的规则,皇后可以与之处在同⼀⾏或者同⼀列或同⼀斜线上的棋⼦。

n后问题等价于在n*n格的棋盘上放置n皇后,任何2个皇后不放在同⼀⾏或同⼀列的斜线上。

算法设计: |i-k|=|j-l|成⽴,就说明2个皇后在同⼀条斜线上。

可以设计⼀个place函数,测试是否满⾜这个条件。

1 当i>n时,算法搜索⾄叶节点,得到⼀个新的n皇后互不攻击放置⽅案,当前已找到的可⾏⽅案sum加1. 2 当i<=n时,当前扩展结点Z是解空间中的内部结点。

该结点有x[i]=1,2,3....n共n个⼉⼦节点。

对当前扩展结点Z的每个⼉⼦节点,由place检察其可⾏性。

并以深度优先的⽅式递归地对可⾏⼦树,或剪去不可⾏⼦树。

算法描述: #include <iostream>#include <cstdlib>using namespace std;class Queen{friend int nQueen(int);private:bool Place(int k);void Backtrack(int t);int n,* x;long sum;};bool Queen::Place(int k){for(int j=1;j<k;j++)if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))return false;return true;}void Queen::Backtrack(int t){if(t>n)sum++;elsefor(int i=1;i<=n;i++){x[t] = i;if(Place(t))Backtrack(t+1);}}int nQueen(int n){Queen X;X.n = n;X.sum = 0;int *p = new int [n+1];for(int i=0;i<=n;i++)p[i] = 0;X.x = p;X.Backtrack(1);delete [] p;cout<<X.sum<<endl;return X.sum;}int main(){nQueen(4);nQueen(2);nQueen(3);return0;}执⾏结果:迭代回溯:数组x记录了解空间树中从根到当前扩展结点的路径,这些信息已包含了回溯法在回溯时所需要的信息。

回溯算法与八皇后问题N皇后问题Word版

回溯算法与八皇后问题N皇后问题Word版

回溯算法与八皇后问题(N皇后问题)1 问题描述八皇后问题是数据结构与算法这一门课中经典的一个问题。

下面再来看一下这个问题的描述。

八皇后问题说的是在8*8国际象棋棋盘上,要求在每一行放置一个皇后,且能做到在竖方向,斜方向都没有冲突。

更通用的描述就是有没有可能在一张N*N的棋盘上安全地放N个皇后?2 回溯算法回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满足某种要求的可能或最优的情况,从而得到整个问题的解。

回溯算法就是解决这种问题的“通用算法”,有“万能算法”之称。

N皇后问题在N增大时就是这样一个解空间很大的问题,所以比较适合用这种方法求解。

这也是N皇后问题的传统解法,很经典。

下面是算法的高级伪码描述,这里用一个N*N的矩阵来存储棋盘:1) 算法开始, 清空棋盘,当前行设为第一行,当前列设为第一列2) 在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第4步3) 在当前位置上满足条件的情形:在当前位置放一个皇后,若当前行是最后一行,记录一个解;若当前行不是最后一行,当前行设为下一行, 当前列设为当前行的第一个待测位置;若当前行是最后一行,当前列不是最后一列,当前列设为下一列;若当前行是最后一行,当前列是最后一列,回溯,即清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置;以上返回到第2步4) 在当前位置上不满足条件的情形:若当前列不是最后一列,当前列设为下一列,返回到第2步;若当前列是最后一列了,回溯,即,若当前行已经是第一行了,算法退出,否则,清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置,返回到第2步;算法的基本原理是上面这个样子,但不同的是用的数据结构不同,检查某个位置是否满足条件的方法也不同。

回溯法求解N皇后问题

回溯法求解N皇后问题

算法的实现
• 假设回溯法要找出所有的答案结点 。 • 设(x1,x2,…,xi-1)是状态空间树中由根到一个结 点的路径,而T(x1,…xi-1)是下述所有结点xi的 集合,它使得对于每一个xi,(x1,x2,…,xi)是由 根到一个结点xi的路径;假定还存在着一些限 界函数Bi,如果路径(x1,x2,…,xi)不可能延伸到 一个答案结点,则Bi(x1,x2,…,xi)取假值,否则 取真值。 • 于是解向量X(1:n)中的第i个分量,就是那些 选自集合T (x1,x2,…,xi-1)且使Bi为真的xi
HHIT
算法8.5:n-皇后问题的解
Algorithm
Procedure NQUEENS(n) //此过程使用回溯法求出一个n*n棋盘上放置n个皇后,使其不能互相攻 击的所有可能位置// integer k,n,X(1:n) X(1)0 ; k1 // k是当前行;X(k)是当前列 // while k>0 do // 对所有的行,执行以下语句 // X(k)X(k)+1 //移到下一列// while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗// X(k)X(k)+1 //不能放则转到下一列// repeat if X(k)<=n then //找到一个位置// if k=n then print (X) //是一个完整的解则打印这个数组// else kk+1;X(k)0 //否则转到下一行// end if else kk-1 //回溯// end if repeat End NQUEENS
HHIT
Algorithm
显然,棋盘的每一行上可以而且必须摆放一个皇后, 所以,n皇后问题的可能解用一个n元向量X=(x1, x2, …, xn) 表示,其中,1≤i≤n并且1≤xi≤n,即第i个皇后放在第i行第 xi列上。 由于两个皇后不能位于同一列上,所以,解向量X必 须满足约束条件: xi≠xj (式8.1)

实验四回溯法求n皇后问题

实验四回溯法求n皇后问题
return false;
return true;
}
void queue(intn)
{
inti,k;
for(i=1;i<=n;i++)
x[i]=0;
k=1;
while(k>=1)
{
x[k]=x[k]+1; //在下一列放置第k个皇后
while(x[k]<=n&&!place(k))
x[k]=x[k]+1;//搜索下一列
k=k+1;//放置下一个皇后
else
{
x[k]=0;//重置x[k],回溯
k=k-1;
}
}
}
void main()
{
intn;
printf("输入皇后个数n:\n");
scanf("%d",&n);
queue(n);
}
五、实验结果截图
六、实验总结
关于n皇后问题,看似复杂难懂,运行结果也很多,但是如果掌握了算法的要点,并且编写的准确无误,其实很简单明了的,而且在组实验的过程中会体会到很多乐趣,当然也有不懂得地方,需要请教别人,总之受益匪浅。
if(x[k]<=n&&k==n)//得到一个输出
{
for(i=1;i<=n;i++)
printf("%d ",x[i]);
printf("\n");
//return;//若return则只求出其中一种解,若不return则可以继续回溯,求出全部的可能的解
}
else if(x[k]<=n&&k<n)

回溯典型题目——N皇后问题剖析

回溯典型题目——N皇后问题剖析

N皇后问题问题描述:在N*N的方格中放置N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上)对于给定的N,输出摆放方案并求出有多少种合法的放置方法。

【假设N<=10】基础:四皇后问题我们先来看看四皇后问题,在一个4*4的棋盘中摆放4个皇后,四个皇后不能摆在互相攻击的位置。

方案一:回溯法(程序中包含递归和深搜)源代码://四皇后问题:回溯#include <stdio.h>#include <string>int flag[4][4]; //用于标记放过的棋子//n个皇后,深搜int count=0;int iscorrect(int i,int j){ //判断是否可以放置棋子int a,b;for(a=i,b=0;b<4;b++){if(flag[a][b]==1) //说明在同一行有棋子return 0;}for(a=0,b=j;a<4;a++){if(flag[a][b]==1) //说明在同一行有棋子return 0;}for(a=i-1,b=j-1;a>=0&&b>=0;a--,b--){ //左上方if(flag[a][b]==1)return 0;}for(a=i-1,b=j+1;a>=0&&b<=3;a--,b++){ //左下方if(flag[a][b]==1)return 0;}for(a=i+1,b=j-1;a<=3&&b>=0;a++,b--){ //右上方if(flag[a][b]==1)return 0;}for(a=i+1,b=j+1;a<=3&&b<=3;a++,b++){ //判断右下方if(flag[a][b]==1)return 0;}return 1;}void DFSQ(int i){int m,n;int j;//i代表行数,j代表列数if(i==4){ //因为棋盘是(n-1)*(n-1)模式的,而i是行,当棋盘到第四行的时候,表明已//经完成0~3的所有排布已经完成for(m=0;m<4;m++){for(n=0;n<4;n++){printf("%d ",flag[m][n]);}printf("\n");}count++;printf("\n");return; //不要忘记这个}else{for(j=0;j<4;j++){if(iscorrect(i,j)){ //如果可以放置棋子flag[i][j]=1; //标记flag[i][j]DFSQ(i+1); //递归调用flag[i][j]=0; //消除标记}}}}int main(){memset(flag,0,sizeof(flag));DFSQ(0);printf("count=%d\n",count);return 0;}其实从四皇后问题拓展到n皇后问题是非常简单的事情,方案一进阶到N皇后的源代码:N皇后其实只要把其中的4改成N就行了:源代码:#include <stdio.h>#include <string>int flag[10][10]; //用于标记放过的棋子int number; //表示棋子个数//n个皇后,深搜int count=0;int iscorrect(int i,int j){ //判断是否可以放置棋子int a,b;for(a=i,b=0;b<number;b++){if(flag[a][b]==1) //说明在同一行有棋子return 0;}for(a=0,b=j;a<number;a++){if(flag[a][b]==1) //说明在同一行有棋子return 0;}for(a=i-1,b=j-1;a>=0&&b>=0;a--,b--){ //左上方if(flag[a][b]==1)return 0;}for(a=i-1,b=j+1;a>=0&&b<=number-1;a--,b++){ //左下方if(flag[a][b]==1)return 0;}for(a=i+1,b=j-1;a<=number-1&&b>=0;a++,b--){ //右上方if(flag[a][b]==1)return 0;}for(a=i+1,b=j+1;a<=number-1&&b<=number-1;a++,b++){ //判断右下方if(flag[a][b]==1)return 0;}return 1;}void DFSQ(int i){int m,n;int j;//i代表行数,j代表列数if(i==number){ //因为棋盘是(n-1)*(n-1)模式的,而i是行,当棋盘到第四行的时候,表明已经完成0~number-1的所有排布已经完成for(m=0;m<number;m++){for(n=0;n<number;n++){printf("%d ",flag[m][n]);}printf("\n");}count++;printf("\n");return; //不要忘记这个}else{for(j=0;j<number;j++){if(iscorrect(i,j)){ //如果可以放置棋子flag[i][j]=1; //标记flag[i][j]DFSQ(i+1); //递归调用flag[i][j]=0; //消除标记}}}}int main(){scanf("%d",&number);memset(flag,0,sizeof(flag));DFSQ(0);printf("count=%d\n",count);return 0;}。

回溯算法解决N皇后问题实验及其代码

回溯算法解决N皇后问题实验及其代码

实验报告4回溯算法实验4回溯算法解决N皇后问题一、实验目的1)掌握回溯算法的实现原理,生成树的建立以及限界函数的实现;2)利用回溯算法解决N皇后问题;二、实验内容回溯算法解决N皇后问题。

三、算法设计1)编写限界函数bool PLACE(int k,int x[]),用以确定在k列上能否放置皇后;2)编写void NQUEENS(int n)函数用以摆放N个皇后;3)编写主函数,控制输入的皇后数目;4)改进和检验程序。

四、程序代码//回溯算法解决N皇后问题的c++程序#include<math.h>#include<iostream>using namespace std;int count=0; //皇后摆放的可能性bool PLACE(int k,int x[]);//限界函数void NQUEENS(int n);//摆放皇后int main(){}int queen;cout<<"先生(女士)请您输入皇后的总数,谢谢!:"<<endl;cin>>queen;NQUEENS(queen);cout<<"所有可能均摆放完毕,谢谢操作"<<endl;return 0;void NQUEENS(int n){/*此过程使用回溯算法求出在一个n*n棋盘上放置n个皇后,使其即不同行,也不同列,也不在同一斜角线上*/int k, *x=new int[n];//存放皇后所在的行与列x[0]=0;k=0;while (k>=0&&k<n){ //对所有的行执行以下语句x[k]=x[k]+1; //移到下一列while(x[k]<=n&&(!PLACE(k,x))){ //此处能放置一个皇后吗?}if( x[k]<=n ) { //找到一个位置if( k==n-1 ){ //是一个完整的解吗cout<<"第"<<++count<<"排法是:"<<endl;for(int i=0;i<n;i++)//打印皇后的排列{}cout<<"\n";for (int j=0;j<n;j++){}cout<<"\n";if (x[i] == j+1){}else{}cout<<". ";cout<<"*";x[k]=x[k]+1; //移到下一列}}}}else { k=k+1; x[k]=0;} //移向下一行else k=k-1; //回溯bool PLACE(int k,int x[]){/*如果一个皇后能放在第k行和x(k)列,返回ture;否则返回false。

回溯法解决N皇后问题C语言

回溯法解决N皇后问题C语言

回溯法解决N皇后问题C语⾔问题描述:⼋皇后问题是⼀个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置⼋个皇后,使得任何⼀个皇后都⽆法直接吃掉其他的皇后?为了达到此⽬的,任两个皇后都不能处于同⼀条横⾏、纵⾏或斜线上。

回溯法:回溯法⼜称试探法。

回溯法的基本做法是深度优先搜索。

即从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。

源代码:#include<stdio.h>#include<math.h>int x[9]={0};bool PLACE(int k)//检测第k个皇后能否放进棋盘{int i=1;while(i<k){if(x[i]==x[k]||fabs(x[i]-x[k])==fabs(i-k))return false;i++;}return true;}void NQUEENS(int n){int i,k=1; //k为当前⾏号x[1]=0;//x[k]为第k⾏皇后所放的列号while(k>0){x[k]++;while(x[k]<=n&&!PLACE(k))//该⾏不符合,则放⼊下⼀⾏x[k]++;if(x[k]<=n){if(k==n)//输出x[]{for(i=1;i<=n;i++)printf("x[%d]:%d ",i,x[i]);printf("\n");}else//判断下⼀⾏{k++; x[k]=0;}}else k--;//没找到,则回溯}return ;}int main(){NQUEENS(8);return0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HHIT
Algorithm
(1)如果X=(x1, x2, …, xi+1)是问题的最终解,则输出这个解。 如果问题只希望得到一个解,则结束搜索,否则继续搜索其 他解; (2)如果X=(x1, x2, …, xi+1)是问题的部分解,则继续构造解 向量的下一个分量; (3)如果X=(x1, x2, …, xi+1)既不是问题的部分解也不是问题 的最终解,则存在下面两种情况: ① 如果xi+1= ai+1k不是集合Si+1的最后一个元素,则令xi+1= ai+ 1k+1,即选择Si+1的下一个元素作为解向量X的第i+1个分量; ② 如果xi+1= ai+1k是集合Si+1的最后一个元素,就回溯到X=(x1, x2, …, xi),选择Si的下一个元素作为解向量X的第i个分量,假 设xi= aik,如果aik不是集合Si的最后一个元素,则令xi= aik+1; 否则,就继续回溯到X=(x1, x2, …, xi-1);
HHIT
算法8.5——n皇后问题
Algorithm
HHIT
Algorithm
HHIT
Algorithm
显然,棋盘的每一行上可以而且必须摆放一个皇后, 所以,n皇后问题的可能解用一个n元向量X=(x1, x2, …, xn) 表示,其中,1≤i≤n并且1≤xi≤n,即第i个皇后放在第i行第 xi列上。 由于两个皇后不能位于同一列上,所以,解向量X必 须满足约束条件: xi≠xj (式8.1)
HHIT
Algorithm 为了简化问题,下面讨论四皇后问题。 四皇后问题的解空间树是一个完全4叉树,树的根结 点表示搜索的初始状态,从根结点到第2层结点对应皇后1 在棋盘中第1行的可能摆放位置,从第2层结点到第3层结 点对应皇后2在棋盘中第2行的可能摆放位置,依此类推。
1 1 2 3 4 图8.11 四皇后问题 2 3 4 皇后1 皇后2 皇后3 皇后4
HHIT
Algorithm
算法8.4:可以放置一个新皇后吗?
Procedure PLACE(k)
//如果一个皇后能放在第k行和X(k)列,则返回true,否则返回 false。X是一个全程数组,进入此过程时已置入了k个值。ABS(r) 过程返回r的绝对值//
global X(1:k); integer i,k; i 1 while i&li)-X(k))=ABS(i-k) then return (false) end if ii+1 判断是否有其它的皇 repeat 后与之在同一列或同 一斜对角线上 return (true) End PLACE
若两个皇后摆放的位置分别是(i, xi)和(j, xj),在棋盘 上斜率为-1的斜线上,满足条件i-j= xj-xi ,在棋盘上斜 率为1的斜线上,满足条件i-j= xi-xj,综合两种情况, 由于两个皇后不能位于同一斜线上,所以,解向量X必须 满足约束条件: |i- j |≠| xi -xj| (式8.2)
HHIT
Algorithm
回溯法求解4皇后问题的搜索过程
Q Q ×× Q Q ×× Q × ××× (c) Q ×××Q Q (g) (h) (i) Q Q ×Q (d) Q Q Q ××Q (j) (e) Q Q Q Q
(a) Q
(b) Q
Q ×Q × ×× ×
(f)
HHIT
Algorithm
HHIT
Algorithm
8.3.1 八皇后问题
八皇后问题是十九世纪著名的数学家高斯于 1850年提出的。问题是:在8×8的棋盘上摆放八 个皇后,使其不能互相攻击,即任意两个皇后都 不能处于同一行、同一列或同一斜线上。可以把 八皇后问题扩展到n皇后问题,即在n×n的棋盘 上摆放n个皇后,使任意两个皇后都不能处于同 一行、同一列或同一斜线上。
HHIT
算法8.5:n-皇后问题的解
Algorithm
Procedure NQUEENS(n) //此过程使用回溯法求出一个n*n棋盘上放置n个皇后,使其不能互相攻 击的所有可能位置// integer k,n,X(1:n) X(1)0 ; k1 // k是当前行;X(k)是当前列 // while k>0 do // 对所有的行,执行以下语句 // X(k)X(k)+1 //移到下一列// while X(k)<=n and Not PLACE(k) do //此处能放这个皇后吗// X(k)X(k)+1 //不能放则转到下一列// repeat if X(k)<=n then //找到一个位置// if k=n then print (X) //是一个完整的解则打印这个数组// else kk+1;X(k)0 //否则转到下一行// end if else kk-1 //回溯// end if repeat End NQUEENS
算法的实现
• 假设回溯法要找出所有的答案结点 。 • 设(x1,x2,…,xi-1)是状态空间树中由根到一个结 点的路径,而T(x1,…xi-1)是下述所有结点xi的 集合,它使得对于每一个xi,(x1,x2,…,xi)是由 根到一个结点xi的路径;假定还存在着一些限 界函数Bi,如果路径(x1,x2,…,xi)不可能延伸到 一个答案结点,则Bi(x1,x2,…,xi)取假值,否则 取真值。 • 于是解向量X(1:n)中的第i个分量,就是那些 选自集合T (x1,x2,…,xi-1)且使Bi为真的xi
HHIT
Algorithm
8.1.3 回溯法的求解过程
由于问题的解向量 X=(x1, x2, …, xn) 中的每个分量 xi(1≤i≤n)都属于一个有限集合Si={ai1, ai2, …, airi},因此, 回溯法可以按某种顺序(例如字典序)依次考察笛卡儿 积S1×S2×…×Sn中的元素。 初始时,令解向量X为空,然后,从根结点出发,选 择S1的第一个元素作为解向量X的第一个分量,即x1= a11, 如果X=(x1)是问题的部分解,则继续扩展解向量X,选择 S2 的第一个元素作为解向量X的第 2个分量,否则,选择 S1的下一个元素作为解向量X的第一个分量,即x1= a12。 依此类推,一般情况下,如果X=(x1, x2, …, xi)是问题的部 分解,则选择Si+1的第一个元素作为解向量X的第i+1个分 量时,有下面三种情况:
相关文档
最新文档