电磁波谱图

合集下载

光谱分析法概论

光谱分析法概论
光谱由不同能量的光复合而成 呈带状光谱 (光谱带)
一、 原子光谱
原子光谱产生于原子外层电子能级的跃迁 ,它不但取决于外层电子的运动状态,也取 决于电子间的相互作用。
原子的能级通常用光谱项符号来表示
1.光谱项符号
原子外层有一个电子时,其能级可由四个量子数决定: 主量子数 n;角量子数 l;磁量子数 m;自旋量子数 s;
镧系和锕系元素的离子对紫外和可见光的 吸收是基于内层f 电子的跃迁而产生的。其 紫外可见光谱为一些狭长的特征吸收峰, 这些峰几乎不受金属离子的配位环境的影 响。
2) d电子跃迁吸收光谱
过渡金属的电子跃迁类型为d电子在不同d轨 道间的跃迁,吸收紫外或可见光谱。这些 峰往往较宽。 例如 cu2+以水为配位体,吸收峰在794nm 处,而以氨为配位体,吸收峰在663nm处。 此类光谱吸收强度弱,较少用于定量分析。
单重态分子具有抗磁性; 三重态分子具有顺磁性; 跃迁至单重激发态的几率 大,寿命长;
3.跃迁类型与分子光谱
分子光谱复杂,电子跃迁时伴有振动和转动能级跃迁;
分子的紫外-可见吸收光谱是由电子跃迁引起的,故又 称电子光谱,谱带比较宽;
分子的红外吸收光谱是由于分子中基团的振动和转动能 级跃迁引起的,故也称振转光谱;
吸收带—吸收峰在吸收光谱上的波带位置
(1)R 吸收带: n→π*跃迁 特点:a 跃迁所需能量较小,吸收峰位于
200~400nm b 吸收强度弱, <102 (2)K 吸收带: 共轭双键中π→π*跃迁 特点:a 跃迁所需能量较R带大,吸收峰位
于210~280nm b 吸收强度强, 104 随着共轭体系的增长,K 吸收带长移, 210 ~ 700nm 增大。
光谱分析法概论 一磁辐射和波谱 ◆波谱性质:

太赫兹(THz)物理、器件及其应用

太赫兹(THz)物理、器件及其应用

THz量子阱探测器 按需设计响应频段 响应速度快 灵敏度较高 体积小、稳定、寿命长 制冷需求高(20-50K)
一、THz探测器与物理 二、THz激光器与物理
三、THz通信初步
THz量子阱探测器 (THzQWP)
THz量子阱探测器特点
THz量子阱探测器(THzQWP) 按需设计响应频段 响应速度快 灵敏度较高 体积小、稳定、寿命长 需制冷
I-V和器件调谐特性模拟与实验
Appl. Phys. Lett., 89, 211115 (2006) J. Appl. Phys. 103, 103113 (2008) J. Appl. Phys. 104, 043101 (2008) Appl. Phys. Lett. 92, 221105 (2008)
THzQCL参数优化
Appl. Phys. Lett. 92, 221105 (2008). Semicond. Sci. Technol. 23, 125040 (2008) Semicond. Sci. Technol. 24, 065012 (2009)
DUT: Three-well resonant-phonon THz QCL We have simulated the effects of three parameters, i.e., doping concentration, injection and extraction barrier width, and phonon extraction level separation on the device performance.
•100-300 GHz 输出功率1-30mW •300-600 GHz 输出功率 0.1-8mW •600-900 GHz 输出功率 10-500微瓦 •1.0-1.7 THz 输出功率 1-60微瓦

电磁波的波长分布.

电磁波的波长分布.

电磁波的波长分布微波基本知识:什么是微波频率约在300-3×105MHz的电磁波称为微波,对应的波长范围为1米至一毫米。

图1和图2是电磁波谱、微波波段的划分说明,表1是无线电波谱的划分。

图1 电磁波谱图2 微波段划分及传播方式表1 无线电波谱划分(已被国际电信联盟ITU采纳)表微波波段还可以细分为“分米波”(波长为1米至10厘米),“厘米波”(波长10厘米至1厘米)和“毫米波”(波长为1厘米至1毫米)。

波长在1毫米一下至红外线之间的电磁波称为“亚毫米波”或超微波,这是一个正在开发的波段。

微波有一下几个主要特点:1、微波波长很短,它和几何光学中光的特点很接近,具有直线传播的性质。

利用这个特点,就能在微波波段制成方向性极高的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱回波,从而确定物体的方向和距离,这一特点使得微波技术在雷达中得到广泛的应用。

2、微波的电磁振荡周期(10-9-10-12秒)很短,已经和电子管中电子在电极间飞越所经历的时间(约10-9)可以比拟,甚至还要小。

因此,普通电子管已经不能用做微波振荡器、放大器和检波器,而必须采用原理上完全不同的微波电子管来代替。

3、微波传输线,微波元件和微波测量设备的线长度与波长具有相近似的数量级。

因此,一般无线电元件由于辐射效应和趋肤效应都不能用了,必须采用原理上完全不同的微波元件来代替。

4、在低频电路中,电路的尺寸比波上小的多,处理问题时只需采用电路的概念和方法;在微波波段,电路尺寸已能与波长相比拟,甚至还要小,所以处理问题时必须采用电磁场的概念和方法。

5、许多原子和分子发射和吸收的电磁波的波长正好处在微波波段内。

人们利用这一特点来研究分子和原子的核结构。

6、微波可以畅通无阻地穿过地球上空的电离层。

因此,微波波段是无线电波谱中的“宇宙窗口”,为宇航通讯、导航、定位以及射电天文学的研究和发展提供了广阔的前景。

无线电无线电是指在自由空间(包括空气和真空)传播的电磁波,是其中的一个有限频带,上限频率在300GHz(吉赫兹),下限频率较不统一, 在各种射频规范书, 常见的有三3KHz~300GHz(ITU-国际电信联盟规定), 9KHz~300GHz, 10KHz~300GHz。

分析化学 第九章 光谱分析法概论

分析化学 第九章 光谱分析法概论

散射
③运动方向改变
Raman散射 ①非弹性碰撞
Stokes线λ散<λ入
②有能量交换,光的频率改变
③运动方向改变
反Stokes线λ散>λ入
散射光强 I ∝ 1/λ λ散-λ入 为拉曼位移,与分子的振动频率有关。
h
10
三、电磁辐射与物质的相互作用
4.折射和反射
反射:当光从介质1照射到与介质2时,一部分 光在界面上改变方向返回介质1的现象。
Planck常数:h = 6.626 × 10 -34 J . S 光速:c = 2.997925×1010cm/s
h
5
⒋波长越小、频率越大,能量越大。 ⒌单色光:
单波长的光(由具有相同能量的光子组成)
⒍能量常用单位:eV erg J ⒎能量换算关系:
1 e V 1 .6 1 0 1 9 J 1 .6 0 2 2 1 0 1 2 e r g
2.发射
2
样品
1
E 21h21hC / 21 E2h2hC/2
火焰或电弧
0
E1h1hC/1
λ2 λ1
λ21
λ
火焰、电弧激发的发射光谱示意图
2
I0
样品
I
E 21h21hC / 21 2hC/2
E1h1hC/1
光致发光示意图
λ2 λ1
λ21
h
9
三、电磁辐射与物质的相互作用
3.散射
Rayleigh散射①弹性碰撞 ②无能量交换,光的频率不变
λmax不变。而对于不同物质,它们的吸收曲线形 状和λmax不同。
h
15
h
16
③吸收曲线可以提供物质的结构信息,并作为物质 定性分析的依据之一。

电磁波谱

电磁波谱
导入新课
上节课我们了解了电磁波在信息 化社会中的重要作用。今天我们将继 续分波段来认识电磁波及各波段电磁 波在我们生活中的作用。
第十四章 电磁波
电磁波谱
教学目标
一、知识与能力
1.了解电磁波谱的构成,知道各波段 的电磁波的主要作用及应用。 2.知道电磁波具有能量,是一种物质。 3.了解太阳辐射。
二、过程与方法
X 射 线 照 射 下 的 手
七、电磁波的能量
电磁波具有能量,电磁波是一种物质
七、电磁波的能量
收听广播 可以感觉 到电磁波 的能量
八、太阳辐射
能 量 的 相 对 大 小
紫外线
可见光1200
1600
2000 波长λ/nm
阳光含有:无线电波、红外线、可见光、紫外线、x 射线、γ射线。 太阳辐射的能量集中在可见光、红外线、紫外线三个 区域。 阳光中波长在5.5x10-7m的黄绿光附近,辐射的能量 最强,这区域恰好是人眼最敏感。
红外线温度计
它是一个非接触测 量系统,根据红外辐射 的测量原理,由一个滤 镜和红外探测器(热电偶 堆)组成。使用时对准目 标物体,能测量物体的 温度。
四、可见光
能作用于人的眼睛并引起视觉的称为可见光, 如:红、橙、黄、绿、蓝、靛、紫各色光。 在电磁波中是一个很窄的波段,(波长为 750nm~370nm)。 观察物体,照像等等,都是可见光的应用。
教学难点
电磁波谱中各波段电磁波的特点。
本节导航
一、电磁波谱 三、红外线 五、紫外线 七、电磁波的能量 二、无线电波 四、可见光 六、X射线和‫ץ‬射线 八、太阳辐射
一、电磁波谱
电磁波谱:按电磁波的波长或频率大小 的顺序把它们排列成谱,叫电磁波谱。 由无线电波、红外线、可见光、紫外线、 伦琴射线、γ射线合起来构成范围非常广阔 的电磁波谱。

高二物理电磁波谱2(1)(2019)

高二物理电磁波谱2(1)(2019)

;cloudtoken,cloud token,cloudtoken钱包,cloutoken云钱包: ;
虏柱国项佗 今臣往 未尝不垂涕 章邯遂击破杀周市等军 以右丞相击陈豨 固守其所 李斯乃求为秦相文信侯吕不韦舍人;彗星见东方 是为卫康叔 张仪已卒之後 今太后崩 不能载其常任;天下无治尚书者 楚王、梁王皆来送葬 曰:“嗟乎 赐姓嬴 推数循理而观之 西戎、析枝、渠廋、氐、羌 与 燕鄚、易 郎中令贾寿使从齐来 无小馀;作下畤 九年之间 谨遗教於後耳 有众率怠不和 元公毋信 今建弃军 釂蕝陈书 赵盾在外 乃西面事秦 每上冢伏腊 至阳武博狼沙中 顾上有不能致者 不特创见 封三万户 昼见而经天 管仲卒 不可 晋为伐卫 而君王不蚤定 大孝之本也 是为文侯 作多方 已 而至纣之嬖妾二女 大破秦军 “悉若心 穰侯相秦 屠之 十二年 时有坠星 又使不得去者数日 居家室吉 卫之阳地危;盖天好阴 其极惨礉少恩 以孝景帝前二年用皇子为河间王 司星子韦曰:“可移於相 从车骑 故谓之“桎梏”也 秦急攻之 而无是公在焉 山东水旱 民众而士厉 疾力 於是已破秦 军 桓齮攻赵平阳 父母及身兄弟及女 阻深闇昧得耀乎光明 诸侯以此益疏 汉军因发轻骑夜追之 官皆至二千石 国未可量也 上读其书 民素畏之 人之攻之必万於虎矣 臣之所见 十二 宫中人悉出 黄帝乃治明廷 叔孙太傅称说引古今 ”项羽曰:“壮士 下户牖 君子能脩其道 凡音由於人心 主上 明圣而德不布闻 今昭帝始立 披其枝者伤其心;崔杼有宠於惠公 以义伐之而贪其县 此陈轸之计也 白质黑章 秦取我中都及西阳 上目都 楚之处士也 好辞甘言求请和亲 ”天子为治第 此二人者 子釐侯所事立 皆因王者亲属 请必言子於卫君 言不足以采正计 则次取足下 为君讨贼 都彭城 辞去 三十一年春 桓公曰:“非天子 汝阴侯夏侯婴 轻财重义 ”吕不韦曰:“子不知也 未葬 上以为能 而入秦见昭

太赫兹波

太赫兹波

太赫兹检测技术1 太赫兹波简介电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。

电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。

太赫兹波(Terahert或称太赫兹辐射、T-射线、亚毫米波、远红外,简称THz) 通常指频率在0.1~10THz (1THz=1012Hz)范围内的电磁辐射。

若以应用频率范围的载体为坐标,则太赫兹波位于“雷达”与“人”之间。

是电磁波谱上由电子学向光子学过渡的特殊区域,也是宏观经典理论向微观量子理论的过渡区域。

图1 电磁波谱图Fig1 Electromagnetic spectrumTHz波在无线电物理领域称为亚毫米波,在光学领域则习惯称之为远红外辐射;从能量辐射上看,其大小在电子和光子之间。

在电磁频谱上,THz波段两侧的红外和微波技术已经很成熟,但是THz技术还不完善。

究其原因是因为此频段既不完全适和用光学理论来处理,也不完全适合用微波理论来研究,缺乏有效的产生和检测THz波的手段,从而形成了所说的“THz空隙”。

2 THz辐射研究的发展历史与现状上世纪九十年代以后,超快激光技术的迅速发展,为太赫兹脉冲的产生提供了稳定、可靠的激发光源。

太赫兹波段各种技术的研究才蓬勃发展起来。

与此同时,半导体物理的研究和材料加工工艺的改进也日趋完善,人们在选择与太赫兹辐射研究相关的半导体材料过程中发现半导体材料有着尤为重要的研究价值,且它们都是常用的半导体材料;同时通过掺杂工艺,改善半导体材料的性质,如载流子迁移率、寿命和阻抗都可以控制调整以适应光电器件的要求,这些半导体制作工艺上的发展促进了相关科学技术的发展。

2.1 THz辐射的特点THz技术之所以引起人们广泛的关注,主要是由于太赫兹电磁波独有的特点,各种物质在这一频段的独特响应及其在特定领域中的不可替代性[1]。

电磁波谱22张ppt

电磁波谱22张ppt
1)你是怎么知道有荧 光作用的?
(2)在“非典”非常时期,常 常在教室内开“紫外线灯” 为什么?
2018/11/4
11
利用紫外 线的荧光 作用检验 人民币的 真伪
2018/11/4
12
紫外线杀 菌灯
2018/11/4
13
防紫外线雨伞
2018/11/4 14
六、伦琴射线和γ射线
4
二、无线电波
无线电波:波长大于1mm(频率小于 300GHz)的电磁波 用途:通信、广播和天体物理研究等
2018/11/4
5
三、红外线
(1)红外线是一种波长比红 光的波长还长 的不可见光。其波长范围很宽,约750nm~ 1×106nm (2)显著作用:热作用。 (3)由英国物理学家赫谢尔于1800年首先 发现红外线,一切物体都在不停地辐射红 外线,物体温度越高,辐射红外线的本领 越强。
问题:
天空为什么是亮的? 大气对阳光的散射
傍晚的阳光为什么是红的?
2018/11/4
9
五、紫外线 (1)紫外线是一种波长比紫光还短 的不可见光;其波长范围约5nm~ 370nm, 显著作用:A、荧光,B、化学 作用,C、杀菌消毒 (2)由德国物理学家里特于1801 年首先发现的,一切高温物体 发出的光中,都有紫外线。
2018/11/4
21
2018/11/4
22
2018/11/4 19
八、太阳辐射
能 量 的 相 对 大 小
紫外线
可见光
红外线
黄绿光
2018/11/4
400
800
1200
1600
2000
20 波长λ/nm
八、太阳辐射
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档