GPS、GSG、北斗及卫星信号模拟器

合集下载

四大卫星导航定位系统应用发展现状

四大卫星导航定位系统应用发展现状

四大卫星导航定位系统应用发展现状四大卫星导航定位系统指的是全球定位系统(GPS)、格洛纳斯导航卫星系统(GLONASS)、欧洲伽利略导航系统(Galileo)和中国北斗卫星导航系统(BeiDou)。

这四个系统已经成为现代定位导航领域的重要基础设施,广泛应用于交通运输、航空航天、军事安全、地质勘探等领域。

以下是四大卫星导航定位系统应用发展现状的详细介绍。

首先,全球定位系统(GPS)是最早投入实际应用的卫星导航定位系统,也是最为广泛使用的系统之一、GPS系统的应用领域非常广泛,包括车辆导航、航空导航、海洋导航、农业精准作业、物流管理等。

在汽车导航方面,GPS系统已经成为现代汽车标配的功能之一,帮助司机实现准确导航、避免道路拥堵等。

在航空航天领域,GPS系统被广泛应用于飞行导航、航空交通管制等关键系统中。

此外,GPS系统在灾害救援、军事安全等领域也发挥着重要作用。

其次,格洛纳斯导航卫星系统(GLONASS)是由俄罗斯开发的卫星导航定位系统。

GLONASS系统的应用领域与GPS系统类似,主要包括车辆导航、航空导航、海洋导航、农业精准作业等。

在车辆导航方面,GLONASS 系统在俄罗斯地区的普及程度较高,许多车辆配备了GLONASS导航设备。

在农业领域,GLONASS系统可实现农机作业的精准导航和监控,提高农机作业效率和农田管理水平。

此外,GLONASS系统还在俄罗斯的国防安全等重要领域起到了关键作用。

第三,欧洲伽利略导航系统(Galileo)是由欧洲航天局和欧盟共同建设的卫星导航定位系统。

Galileo系统目前正在逐步建设中,预计于2024年前后完全建成并投入商业应用。

Galileo系统的主要特点是定位精度高、服务质量可靠,并且具备高度的覆盖能力。

Galileo系统的应用领域包括车辆导航、航空导航、海洋导航等。

在车辆导航方面,Galileo系统可以提供更准确的位置信息,帮助司机更精确地进行导航和路径规划。

喷泉公司北斗GPS信号模拟器使用介绍

喷泉公司北斗GPS信号模拟器使用介绍

北斗GPS信号模拟器使用介绍InBufferSize和OutBufferSize 特点指定了为接纳和发送缓冲区分配的内存数量。

这两个值设置得越大,应用程序中可用的内存就越少。

但是,若是缓冲区太小,就要冒缓冲区溢出的危险,除非选用握手信号。

因为如今大多数计算机有更多的可用内存资源,缓冲区内存分配已不那么至关紧要了。

换言之,能够把缓冲区的值设得高一些而不影呼应用程序的功用。

14.Handshaking特点语法-MSComm1.Handshaking[=Value]。

∙效果-设置或回来硬件握手协议。

指的是PC与MODEM之间为了操控流速而约好的内部协议。

Value 值如下。

∙“0”-comNone没有握手协议,不思考流量操控。

“1”-comXOn/XOff,即在数据流中嵌入操控符来进行流量操控。

“2”-comRTS,即由信号线RTS主动进行流量操控。

“5”-comRTSXOnXOff,两者皆可。

GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。

GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。

对0A码测得的伪距称为UA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。

GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。

严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒频移影响的卫星信号载波相位与接收机本机振荡产生信号相位之差。

一般在接收机钟确定的历元时刻量测,保持对卫星信号的跟踪,就可记录下相位的变化值,但开始观测时的接收机和卫星振荡器的相位初值是不知道的,起始历元的相位整数也是不知道的,即整周模糊度,只能在数据处理中作为参数解算。

BD-2、GPS卫星导航信号模拟器功能指标及技术特点

BD-2、GPS卫星导航信号模拟器功能指标及技术特点

卫星导航信号模拟器功能及技术特点北京华力创通科技股份有限公司导航事业部目录1概述 (2)2功能 (2)2.1 数学仿真分系统 (3)2.2 射频信号仿真分系统 (5)2.3 测试与评估分系统 (6)3技术特点 (6)3.1高精度信号延迟技术 (6)3.2高动态载波相位控制技术 (7)3.3载波/码相位同步技术 (8)3.4多路信号同步技术 (8)3.5 准实时卫星导航建模的时延固定技术 (8)1概述卫星导航系统中的接收设备利用导航卫星的导航信号进行定位,测速、定时以及信息传送。

接收终端设备的功能和性能指标的好坏,直接影响BD-2/GPS 系统的应用性能,因此必须对各种类型的接收终端设备进行全面的测试,以检验这些接收终端设备是否满足设计要求。

卫星导航信号模拟器用于对各类接收终端设备实现卫星不在轨、室内或临界条件下的测试,或指定条件下的重复测试。

卫星导航信号模拟器包括数学仿真分系统、射频信号仿真分系统和测试评估分系统三部分。

各分系统既相互独立,又可有机地结合在一起。

例如数学仿真分系统可以单独运行,为用户提供有关卫星运行模型,用户运动模型方面的信息,并可以图形方式显示卫星运行轨迹,但多数时候,各部分作为一个整体运行,由数学仿真分系统产生导航电文和观测数据,通过射频信号仿真分系统生成带有各类特征(延迟,多普勒,衰减等)的真实射频信号,发送到接收终端设备,再由测试评估分系统收集终端设备的相关数据,得到测试结果。

经过多年的研究发展,北京华力创通科技股份有限公司的卫星导航信号模拟器形成了一系列的产品,能够满足不同用户的需求。

各种产品具有功能及技术指标,祥见附录中对各种产品的介绍。

下面主要介绍北京华力创通科技股份有限公司的卫星导航信号模拟器通用功能和技术特点。

2功能卫星导航信号模拟器包括数学仿真分系统、射频信号仿真分系统和测试评估分系统三部分。

下面分别介绍各个分系统的功能。

2.1 数学仿真分系统数学仿真分系统是卫星导航信号模拟器的重要组成部分。

四大卫星定位系统介绍

四大卫星定位系统介绍

GPS,GLONASS,GALILEO,北斗四大卫星定位系统介绍北斗卫星导航定位系统(Compass Navigation Satellite System)始于2000年,是中国自行研制开发的区域性有源卫星定位与通信系统,是除美国的GPS、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。

中国的北斗分为两代。

第一代是区域系统,包含4颗卫星,已经发挥20世纪60年代末70年代初,美国和前苏联分别开始研制全天候、全天时、连续实时提供精确定位服务的新一代全球卫星导航系统,至90年代中期全球卫星导航系统GPS和GLONASS 均已建成并投入运行。

中国也开始建设自主知识产权的北斗卫星导航系统,2003年底正式开通运行。

欧盟筹建的GALILEO伽利略全球卫星导航系统正在计划实施之中。

GPS全球卫星定位系统GPS(Global Positioning System) 全球卫星定位系统是美国第二代空间卫星导航定位系统。

具体来说即通过 GPS接收设备,接受美国发射的24颗卫星中任意3颗以上卫星所发射的导航信号,在任何时候、任何地点都能准确地测量到物体瞬时位置的一种定位系统(包括物体的经纬度、高度、速度等位置信息)。

它是一个基于被动式定位原理的卫星导航定位系统,由美国陆海空三军于20世纪70年代联合研制。

经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星己布设完成并投入运营。

它不仅成为军事的重要技术手段,而且也成为车辆导航、交通管理(海、陆、空)、物流、救助、娱乐业、安保市场等民用产业必不可少的通信手段。

GPS全球卫星定位系统所有权、控制权和运营权均属于美国国防部。

为了限制不同用户对GPS 的应用,GPS通过发射不同的无线电信号来分别为军事部门和民间用户提供两种不同的定位服务。

GLONASS全球卫星定位系统俄罗斯于2002年12月25日在哈萨克斯坦的拜科努尔航天发射场用一枚“质子-K”火箭成功发射了3颗GLONASS全球导航系统卫星。

HWA-GNSS-8000 多体制卫星导航信号模拟器

HWA-GNSS-8000 多体制卫星导航信号模拟器

运输要求:
满足三级公路运输要求
可靠性
平均故障间隔时间(MTBF): ≥3000 小时
平均故障修复时间(MTTR): ≤2 小时
一次连续工作时间:
≥24 小时
计算机工作站推荐配置
操作系统:
Windows XP 或以上
处理器:
intel @2GHz 或更高
对外接口:
RS232 或 千兆以太网口
北京华力创通科技股份有限公司
可选配置 (一) 实时闭环
在 HWA-GNSS-8000 卫星导航信号模拟器的基础上增加实时闭环功能,实时 接收载体运动轨迹,实时生成卫星导航数据,满足多信号体制下的实时半实 物仿真系统闭环仿真测试需求。 (二) 惯导辅助 在 HWA-GNSS-8000 卫星导航信号模拟器的基础上增加惯导辅助,与卫星导 航信号同步输出三维位置、三维速度、三维加速度,辅助接收机在高动态下 捕获、跟踪和定位。 (三) 多径信号 在 HWA-GNSS-8000 卫星导航信号模拟器的基础上每个频点能够增加 6~12 个多路径信号与主径信号合成输出。 (四) 载体自转仿真 HWA-GNSS-8000 的控制仿真软件可以支持模拟在载体自转时,卫星导航信号 的变化情况。从而使卫星导航接收设备在地面测试中,充分模拟真实的运动 情况。
13801017254
地址:北京市海淀区东北旺西路 8 号院乙 18 号 Email:gpsworld@
北京华力创通科技股份有限公司
配置数据仿真软件,能够根据用户要求对仿真数据进行配置,如卫星轨道数 据,电离层、对流层参数、用户轨迹等;
控制软件可对卫星导航信号模拟器输出进行信号中断、信号恢复、开关每一 个可见星信号、调制方式选择和功率控制等;
-90dBc/Hz@1kHz

GNSS模拟器和RPS射频记录回放系统对比

GNSS模拟器和RPS射频记录回放系统对比

GNSS模拟器和RPS射频记录回放系统对比在探讨GNSS(全球导航卫星系统)模拟器和RPS(射频记录回放系统)的对比时,我们首先要认识到这两种设备在卫星导航与无线通信测试领域各自扮演着不可或缺的角色。

GNSS模拟器,作为一种高精度的测试工具,专注于模拟全球各大卫星导航系统(如GPS、GLONASS、Galileo、Beidou等)的信号,为导航设备的研发、测试及验证提供了强有力的支持。

而RPS射频记录回放系统,则侧重于实时捕获并回放射频信号,广泛应用于无线通信、雷达系统、电子对抗及频谱监测等多个领域,其强大的记录与回放功能为系统性能评估、故障排查及复杂电磁环境模拟提供了重要手段。

接下来,我们将从多个维度深入对比GNSS模拟器和RPS射频记录回放系统,包括它们的工作原理、功能特性、应用场景以及技术优势等方面,以期为读者呈现一个全面而清晰的对比视角。

通过这一对比,我们不仅能够更好地理解这两种设备在各自领域的独特价值,还能为相关领域的工程师和技术人员在选择测试工具时提供有益的参考。

一 GNSS模拟器的原理、特性及功能1.1什么是GNSS模拟器?GNSS模拟器是专为GNSS(全球导航卫星系统)接收机及相关系统测试设计的一种高效工具。

它能够模拟GNSS星群(包括GPS、伽利略、GLONASS、北斗、SBAS等)的信号,使测试环境得以在可控的实验室条件下重现,无需依赖实际卫星信号。

这一特性使得GNSS模拟器在芯片研发、模块验证、设备生产及产品验证等各个环节中发挥着关键作用。

通过模拟GNSS卫星发送的信号,GNSS模拟器能够确保接收机以处理真实卫星信号的方式处理这些模拟信号,从而实现对接收机性能的全面评估。

展示了GNSS模拟系统的基本示意图,直观展示了其工作原理。

1.2 GNSS模拟器的特性及优势控制性:GNSS模拟器提供了前所未有的精确控制能力,允许用户细致调整测试场景中的每一个GNSS卫星信号参数(如信号强度、多普勒频移、多路径效应等),以及模拟各种天气和环境条件(如电离层扰动、对流层延迟等)。

卫星信号模拟器

卫星信号模拟器

• 段相重疊。B2、B3 頻段信號的定義尚未正式公佈,因此本應用說明僅描
• 述 B1I 信號。
北斗(BDS)
• • • • • • • • • 北斗發射信號 和 GPS 和 Galileo 一樣,北斗系統也是不同衛星使用不同測距碼的 CDMA 系統。MEO 和 IGSO 衛星所傳輸的信號與 GEO 衛星傳輸的信號不同。 北斗信號成分 北斗 E1 信號包含以下組成部分,如圖 11 所示: – 測距碼 – 二次( Neumann-Hoffman)編碼 – 導航電文 – 載波
Galileo 和北斗這兩個系統目前仍處於部署進程中。Galileo 系統是多年前由歐盟和歐洲航太總署共 同開發的。2005 年和 2008 年共發射了兩顆實驗衛星,2011 和 2012 年,發射了 4 顆在軌驗證衛星。 Galileo 系統計畫於2015 年提供初始服務,整個系統預計於 2020 年部署完成。
透過三邊量測法
GNSS 衛星信號的傳輸功率很低。在地球表面,其功率位準大約 為 -155 至 -160 dBW( -125 至 -130 dBm)。如果有遮蔽物,則信號功 率會更低。 GNSS 接收器內含放大器和信號處理器,可恢複 GNSS 信號。
圖 2:透過三邊量測法,GNSS 接收器可計算與至少三顆衛星 的距離。使用衛星 虛擬距離球面的交叉點,您可確定接收器的位置。
是将卫星信号放大后转发至室内,这种方法的坏处是噪声和和信号都同时放大,当达到
抗干扰天线时信号也会被抗干扰天线抵消,造成搜星信噪比低,或者无法搜星。使用转 发式模拟器的好处是转发器发出的是纯的卫星导航信号,不存在噪声,到达抗干扰天线 面时不会被抵消,可以有效解决抗干扰天线在实验室、暗室、厂房的测试。
接收器軟體顯示用導航電文 – 明德碼( Meander code)

北斗卫星导航模拟器(产品)

北斗卫星导航模拟器(产品)

北斗卫星导航模拟器(产品)
成果简介:中国自主研制的北斗卫星导航系统从2009 年起进入了组网高峰期,预计2011年完成第一期组网,形成覆盖中国及中国周边的区域性卫星导航系统,到2020 年左右形成覆盖全球的卫星导航定位系统;北斗卫星导航模拟器作为北斗卫星导航仿真研究、设计开发、生产测试和应用的关键技术设备,在卫星导航应用的推动下将成为我国计算机仿真产品市场的新兴增长点。

北京理工大学雷达技术研究所开发研制的RNSS导航信号仿真器的基本功能是根据RNSS数学仿真分系统计算产生的某一用户接收到12颗卫星的各自的导航电文、延迟、多普勒频移、信号强度、多径延迟时间和幅度等参数信息,用数字信号处理的方法产生数字波形,并在数字域进行波形合成,最后通过高速DAC器件输出中频RNSS信号,然后由上变频单元分别调制到BD-2的B1、B2和B3频点或GPS L1和L2频点,最后在输出单元进行功率合成。

RNSS导航信号仿真器为用户提供较为灵活的控制机制,允许对码型和频点进行预置和修改,并可在仿真测试过程中根据控制指令对输出信号进行调节。

部分RNSS导航信号仿真器产品已经交付BD系统地面控制总站、航天科技集团501所和503所、高校研究所等单位。

项目来源:自行开发
技术领域:电子信息
应用范围:本项目的产品化在军事和民用等领域具有广泛的应用前景。

所在阶段:小规模生产
成果转让方式:合作开发
图片展示:卫星导航模拟器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS系统概述GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。

GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。

其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。

经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。

一、GPS构成1.空间部分GPS的空间部分是由24颗工作卫星组成,它位于距地表20—200km的上空,均匀分布在6 个轨道面上(每个轨道面4 颗) ,轨道倾角为55°。

此外,还有3 颗有源备份卫星在轨运行。

卫星的分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星,并能在卫星中预存的导航信息。

GPS的卫星因为大气摩擦等问题,随着时间的推移,导航精度会逐渐降低。

2. 地面控制系统地面控制系统由监测站(Monitor Station)、主控制站(Master Monitor Station)、地面天线(Ground Antenna)所组成,主控制站位于美国科罗拉多州春田市(Colorado Spring)。

地面控制站负责收集由卫星传回之讯息,并计算卫星星历、相对距离,大气校正等数据。

3.用户设备部分用户设备部分即GPS 信号接收机。

其主要功能是能够捕获到按一定卫星截止角所选择的待测卫星,并跟踪这些卫星的运行。

当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距离和距离的变化率,解调出卫星轨道参数等数据。

根据这些数据,接收机中的微处理计算机就可按定位解算方法进行定位计算,计算出用户所在地理位置的经纬度、高度、速度、时间等信息。

接收机硬件和机内软件以及GPS 数据的后处理软件包构成完整的GPS 用户设备。

GPS 接收机的结构分为天线单元和接收单元两部分。

接收机一般采用机内和机外两种直流电源。

设置机内电源的目的在于更换外电源时不中断连续观测。

在用机外电源时机内电池自动充电。

关机后,机内电池为RAM存储器供电,以防止数据丢失。

目前各种类型的接受机体积越来越小,重量越来越轻,便于野外观测使用。

其次则为使用者接收器,现有单频与双频两种,但由于价格因素,一般使用者所购买的多为单频接收器。

二、GPS原理GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。

要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。

而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。

GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。

C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。

而Y码是在P码的基础上形成的,保密性能更佳。

导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。

它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。

导航电文每个主帧中包含5个子帧每帧长6s。

前三帧各10个字码;每三十秒重复一次,每小时更新一次。

后两帧共15000b。

导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。

当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。

可见GPS导航系统卫星部分的作用就是不断地发射导航电文。

然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。

所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。

GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。

GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。

对0A码测得的伪距称为UA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。

GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。

严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒频移影响的卫星信号载波相位与接收机本机振荡产生信号相位之差。

一般在接收机钟确定的历元时刻量测,保持对卫星信号的跟踪,就可记录下相位的变化值,但开始观测时的接收机和卫星振荡器的相位初值是不知道的,起始历元的相位整数也是不知道的,即整周模糊度,只能在数据处理中作为参数解算。

相位观测值的精度高至毫米,但前提是解出整周模糊度,因此只有在相对定位、并有一段连续观测值时才能使用相位观测值,而要达到优于米级的定位精度也只能采用相位观测值。

按定位方式,GPS定位分为单点定位和相对定位(差分定位)。

单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。

相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。

在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。

三、GPS功用全球定位系统的主要用途:(1) 陆地应用,主要包括车辆导航、应急反应、大气物理观测、地球物理资源勘探、工程测量、变形监测、地壳运动监测、市政规划控制等;(2) 海洋应用,包括远洋船最佳航程航线测定、船只实时调度与导航、海洋救援、海洋探宝、水文地质测量以及海洋平台定位、海平面升降监测等;(3) 航空航天应用,包括飞机导航、航空遥感姿态控制、低轨卫星定轨、导弹制导、航空救援和载人航天器防护探测等。

北斗卫星导航系统简介(一)概述北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主发展、独立运行的全球卫星导航系统。

系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。

北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。

(二)发展历程卫星导航系统是重要的空间信息基础设施。

中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。

2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。

该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。

特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。

为更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。

(三)建设原则北斗卫星导航系统的建设与发展,以应用推广和产业发展为根本目标,不仅要建成系统,更要用好系统,强调质量、安全、应用、效益,遵循以下建设原则:1、开放性。

北斗卫星导航系统的建设、发展和应用将对全世界开放,为全球用户提供高质量的免费服务,积极与世界各国开展广泛而深入的交流与合作,促进各卫星导航系统间的兼容与互操作,推动卫星导航技术与产业的发展。

2、自主性。

中国将自主建设和运行北斗卫星导航系统,北斗卫星导航系统可独立为全球用户提供服务。

3、兼容性。

在全球卫星导航系统国际委员会(ICG)和国际电联(ITU)框架下,使北斗卫星导航系统与世界各卫星导航系统实现兼容与互操作,使所有用户都能享受到卫星导航发展的成果。

4、渐进性。

中国将积极稳妥地推进北斗卫星导航系统的建设与发展,不断完善服务质量,并实现各阶段的无缝衔接。

(四)发展计划目前,我国正在实施北斗卫星导航系统建设,已成功发射两颗北斗导航卫星。

根据系统建设总体规划,2012年左右,系统将首先具备覆盖亚太地区的定位、导航和授时以及短报文通信服务能力;2020年左右,建成覆盖全球的北斗卫星导航系统。

(五)服务北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服务两种方式。

开放服务是向全球免费提供定位、测速和授时服务,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。

授权服务是为有高精度、高可靠卫星导航需求的用户,提供定位、测速、授时和通信服务以及系统完好性信息。

为使北斗卫星导航系统更好地为全球服务,加强北斗卫星导航系统与其它卫星导航系统之间的兼容与互操作,促进卫星定位、导航、授时服务的全面应用,中国愿意与其它国家合作,共同发展卫星导航事业。

更多了解可查询深圳金凯博,kingcable点com点cn浅谈卫星导航信号模拟器的应用一、卫星导航发展现状随着北斗卫星导航系统的“三步走”部署开始实施,卫星导航这个新兴技术越来越受到各行各业的青睐。

当今世界上一共存在四大卫星导航系统,其中包括美国的GPS,俄罗斯的GLONASS,欧盟的Galileo和中国的北斗卫星导航系统。

除了这四个全球导航系统,还有部分国家正在开展局域卫星导航系统或者是导航卫星增强系统,为的是满足本国或者周边地区的高精度定位与导航应用,这其中就包括了美国的WASS,印度的GAGAN和日本的QZSS等。

美国人的GPS卫星导航系统走在了各大系统的前列,也是全球应用最为广泛的导航系统。

相关文档
最新文档