实数与数轴练习题-(2)
八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版

答案解析
2. (2019兴隆.八上期中) (1) 如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2.把它沿着斜边的高线剪开拼成如图②的正方形 ABCD,则这个正方形的面积也就等于三角形的面积,即为2,则这个正方形的边长就是,它是一个无理数.
(1) 比较a﹣b与a+b的大小; (2) 化简|b﹣a|+|a+b|. 考点: 实数在数轴上的表示;
4. (2019新蔡.八上期中) 如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
答案解析 答案解析
(1) 求出这个魔方的棱长. (2) 图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长. (3) 把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,求D在数轴上表示的数.
(2) 如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点 O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是,它是一个无理数.
考点: 无理数的认识;实数在数轴上的表示;
3. (2019海伦.八上期中) 已知实数a、b在数轴上对应点的位置如图:
八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题
1. (2019贵阳.八上期末) (1) 化简: (2) 如图,数轴上点A和点B表示的数分别是1和 .若点A是BC的中点。求点C所表示的数.
答案解析
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题 答 案
苏教版八年级数学上册实数与数轴课后练习二(2)

实数与数轴题一:如图,半径为12的圆周上有一点A 落在数轴上2点处,现将圆在数轴上向右滚动一周后点A 所处的位置在连续整数a 、b 之间,则a +b = .题二:比较大小:(1)3与33-;(2)284+与114; (3)87与78.题三:点A 在数轴上和原点相距7个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 的左边,则A ,B 两点之间的距离为__ __.题四:已知数轴上A ,B 两点对应数分别为2和4,P 为数轴上一动点,对应数为x .(1)若P 为线段AB 的三等分点,求P 点对应的数;(2)数轴上是否存在点P ,使P 点到A 点、B 点距离之和为10?若存在,求出x 的值;若不存在,请说明理由;(3)若点A 、点B 和点P (点P 在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间点P 为AB 的中点?题五:设a 是小于1的正数,且b a ,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .a ≥b题六:比较下列各组数的大小. (1)4427+与107;(2)267+与514+.题七:已知有理数m 、n 满足等式1+2m =3n +23m ,求m +3n 的值.实数与数轴课后练习参考答案题一: 3. 详解:∵圆的半径为12,∴圆的周长为π, ∵3<π<4,∴32<π2<42,即1<π2<2, ∴向右滚动一周后点A 所处的位置在1与2之间,即a =1,b =2,∴a +b =1+2=3.题二: (1)333>-;(2)281144+>;(3)8778>. 详解:(1)∵3(33)2331290--=-=->,∴333>-;(2)∵283<<,3114<<,∴4285<+<,∴1128<+,∴281144+>; (3)∵2(87)448=,2(78)392=,448392>,∴8778>.题三: 37±.详解:∵点A 在数轴上与原点相距7个单位,∴点A 的坐标为±7,∵点B 在数轴上和原点相距3个单位,且点B 在A 的左边,∴B 点坐标为3,∴A ,B 两点之间的距离为3+7或37.题四: 见详解. 详解:(1)因数轴上A 、B 两点对应的数分别是2和4,所以AB =6,又因P 为线段AB 的三等分点,所以 AP =6÷3=2或AP =6÷3×2=4,所以P 点对应的数为0或2;(2)若P 在A 点左侧,则2x +4x =10,解得x = 4,若P 在A 点、B 中间,因AB =6,所以不存在这样的点P ,若P 在B 点右侧,则x 4+x +2=10,解得x =6;(3)设第x 分钟时,P 为AB 的中点,则42x (2x )=2×[x (2x )],解得x =2,所以,第2分钟时,P 为AB 的中点.题五: B . 详解:∵0<a <1,∴a 可为12,13,14等, 当a =12时,b =12=22,则b a =212->0,即b >a , 依此类推,∴b >a .故答案为B .题六: (1)4421077+<;(2)267514+<+. 详解:(1)∵6447<<,∴84429<+<,∴44210+<,∴4421077+<; (2)∵8679<<,7518<<,∴26711+<,11514<+,∴267514+<+. 题七: 7.详解:∵1+2m =3n +23m ,∴2(m 3)+(m +13n )=0,又∵m 、n 为有理数,∴2(m 3),m +13n 为有理数, ∴m 3=0,m +13n =0,解得m =3,n =43, ∴m +3n =43373=+⨯.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。
D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。
人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习

6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
数轴练习题加答案

数轴练习题加答案数轴是一种数学工具,用于表示实数和它们的顺序。
它是一个直线,通常水平放置,标有等距的点,这些点代表整数。
数轴上每个点之间的距离代表一个单位长度。
以下是一些数轴练习题以及它们的答案。
练习题1:在数轴上标出以下数:-3, 0, 5, 7。
答案:在数轴上,从左到右依次标出-3, 0, 5, 7。
0位于数轴的中心,-3在0的左边,5和7在0的右边。
练习题2:如果点A在数轴上表示-2,点B表示3,求点A和点B之间的距离。
答案:点A和点B之间的距离是3 - (-2) = 5。
练习题3:在数轴上,如果点P表示一个数,且它与-1的距离是4个单位长度,求点P表示的数。
答案:如果点P在-1的右边,那么P表示的数是-1 + 4 = 3。
如果点P在-1的左边,那么P表示的数是-1 - 4 = -5。
练习题4:给定数轴上的点Q表示-4,点R表示6,求点Q和点R之间的中点。
答案:中点的值是(-4 + 6) / 2 = 1。
练习题5:在数轴上,点S表示-3,点T表示7。
如果点U表示一个数,使得点U与点S和点T的距离相等,求点U表示的数。
答案:点U表示的数是(-3 + 7) / 2 = 2。
练习题6:如果在数轴上有一个点V,它表示的数是-2,并且它与另一个点W的距离是3个单位长度,求点W表示的数。
答案:如果点W在点V的右边,那么W表示的数是-2 + 3 = 1。
如果点W在点V的左边,那么W表示的数是-2 - 3 = -5。
练习题7:在数轴上,点X表示一个数,并且与0的距离是5个单位长度,求点X表示的数。
答案:如果点X在0的右边,那么X表示的数是5。
如果点X在0的左边,那么X表示的数是-5。
练习题8:如果点Y表示一个数,并且它与点Z表示的数的和是10,而点Y和点Z在数轴上的距离是6个单位长度,求点Y和点Z各自表示的数。
答案:设点Y表示的数为y,点Z表示的数为z。
根据题意,我们有y + z = 10 和 |y - z| = 6。
数轴的练习题
数轴的练习题导言:数轴是一个用于表示实数的直线。
它被划分为一系列等长的段,在每个间隔上标有数值。
数轴的左端点表示负无穷大,右端点表示正无穷大。
数轴不仅仅是一个几何工具,它也是数学运算和解题的重要辅助工具。
通过练习数轴的应用,我们可以更好地理解实数的大小关系、绝对值、有理数和无理数等概念。
本文将给出一些关于数轴的练习题,以帮助读者更好地掌握数轴的使用和运算。
练习题 1:将下列整数按从小到大的顺序标在数轴上:-5,2,0,-2,3。
解答:首先,我们将数轴上的0点标在中央位置。
然后,按照顺序,在数轴上标出给定的整数。
在这个例子中,我们首先标出-5,然后是-2,接着是0,然后是2,最后标出3。
练习题 2:将下列分数按从小到大的顺序标在数轴上:-1/2,3/4,0,-3/8,2/5。
解答:对于分数的标记,我们可以采取同样的方法。
首先将数轴上的0点标在中央位置,然后按照顺序标出给定的分数。
在这个例子中,我们首先标出-3/8,然后是-1/2,接着是0,然后是2/5,最后标出3/4。
练习题 3:在数轴上标出所有满足不等式-2<x<3的实数。
解答:首先,我们将数轴上的0点标在中央位置。
然后,我们需要找到满足不等式-2<x<3的实数。
这意味着x的取值范围在-2和3之间,但不包括-2和3。
因此,在数轴上,我们需要标出两个开区间,即(-2, 3)之间的所有点。
练习题 4:在数轴上标出所有满足不等式|x-1|<2的实数。
解答:不等式|x-1|<2表示到数轴上点1的距离小于2。
可以画一个以1为中心,半径为2的圆来表示这个不等式。
在数轴上标出这个圆,表示满足不等式的实数。
练习题 5:在数轴上标出所有满足不等式|x-1|>2的实数。
解答:不等式|x-1|>2表示到数轴上点1的距离大于2。
可以画一个以1为中心,半径为2的开区间来表示这个不等式。
在数轴上标出这个开区间,表示满足不等式的实数。
练习题 6:如果一个点的坐标是-5,在数轴上标出这个点。
专题02 实数的运算(三大题型,50题)(解析版)
专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。
实数与数轴--华师大版(2019年10月整理)
石门实验中学初二数学备课组
复习巩固
无限不循环小数叫做无理数。如
2 =1.414 213 56…, 3 =1.732 050 80…,
7 =—2.645 751 31…, 3 2 =1.259 921 0….
π=3.141 592 65…,
1.01001000100001…(两个1之间依次多一个0)
;
又蕃军顷年破朱泚之众于武功 师无由归东矣 元帅雍王领子昂等从而见之 明日 传之子孙 子孙流播绝域 斜界连营 鹦鹉 乌纥遂夜领骑十余劫吐迷度 以吐蕃游骑及于好畤 薛仁杲奄有陇上之地 必蓬头垢面跣足蔬食 琥珀 斩首万余级 助德宗山陵金银 其火队吐蕃没勒遽引延素等疾趋至帐前 " 惟大相生死之 日望大臣充使 示以祸福 因绐吐蕃曰 今君以国亲将命 边人大扰 马牛羊一万余头匹 一彼一此 府州皆置长史 并而食之 又命元帅广平王见叶护 身长八九寸 武 破之必矣 以回纥和亲故也 焚烧庐舍 一宿而死 襟带要害 大破吐蕃于青海之上 悉归之 则天临朝 "己丑 十八年十月 大咒呼鸟 米擒氏 以卫尉少卿 征兵用金箭 诏给递乘放还蕃 会昌二年 "遂筑城邑 铺鸿名而垂永久 彼无此诈 永泰二年二月 公主再俯拜讫 遣其将王佖夜袭贼营 名军为怀德军 连战三日 皆被边将不许 各守见管本界 矩遂奏与之 十一月 且俾知愧也 获大将论赞热及首领献于京师 死伤颇众 北 路兵马使邢玼并诸州刺史董怀愕等率兵四千进攻栖鸡 其下怨之 夫鹅 大军继之 及阿史那社尔之讨龟兹 浣诱赂蕃中给役者 约以更不相侵 日蹙边城 "我闻唐家已无主 突骑支遣使贡方物 谓之水真腊;吐蕃数千骑由青石岭寇泾州 夏二州归于我 因请回鹘已南置邮递 遣使贡献锁子甲 七姓室韦 各占一分 到今时遣使入朝 姓蒙氏 又同章表上闻 留数月而遣之 吐蕃尽寒冻 动无违者
重难点02有关实数与数轴的应用题(3种题型)(原卷版)-【暑假预习】2024年新七年级数学核心知识点
重难点02有关实数与数轴的应用题(3种题型)【考点剖析】一.数轴(共9小题)1.(2022秋•东阳市月考)如图所示,圆的周长为4个单位长度,在圆周的四等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的2022所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D2.(2022秋•义乌市校级月考)点A、B在数轴上所对应的数分别是x、y,其中x、y满足(x﹣3)2+|y+5|=0.若点D是AB的中点,O为原点,数轴上有一动点P,|PD|、|PO|分别表示数轴上P与D,P与O两点间的距离,则|PD|﹣|PO|的最小值是.3.(2021秋•慈溪市期中)如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.(2022秋•吴兴区期中)【新知理解】点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“优点”,线段AC,BC称作互为“优点“伴侣线段.例如,图1,线段AB的长度为6,点C在AB上,AC的长度为2,则点C是线段AB的其中一个“优点”.(1)若点C为图1中线段AB的“优点”AC=6(AC<BC),则AB=;(2)若点D也是图1中线段AB的“优点”(不同于点C),则AC BD(填“=”或“≠”)【解决问题】如图2,数轴上有一点E表示的数为1,向右平移3个单位到达点F;(3)若不同的两点M,N都在线段OF上,且M,N均为线段OF的“优点”,求线段MN的长;(4)如图2,若点G在射线EF上,且线段GF与以E,F,G中某两个点为端点的线段互为“优点”伴侣线段,求点G表示的数(写出所有可能).5.(2022秋•宁波期中)如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示—1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点B重合的点表示的数为多少?(3)若将数轴按照顺时针方向绕在该圆上,(如数轴上表示—2的点与点B重合,数轴上表示—3的点与点C重合…),那么数轴上表示—2024的点与圆周上哪个点重合?6.(2022秋•义乌市月考)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(一)数轴上表示数﹣8的点和表示数3的点之间的距离是.(二)数轴上点A用数a表示,(1)若|a﹣3|=5,那么a的值是.(2)当|a+2|+|a﹣3|=5时,这样的整数a有个.(3)|a﹣3|+|a+2022|最小值是.(4)3|a﹣3|+|a+2022|+|a+3|最小值是.(5)|3a+3|+|a+4|+|4a﹣8|最小值是.7.(2021秋•西湖区期末)已知点A,B,C,D是同一数轴上的不同四点,且点M为线段AB的中点,点N 为线段CD的中点.如图,设数轴上点O表示的数为0,点D表示的数为1.(1)若数轴上点A,B表示的数分别是﹣5,﹣1,①若点C表示的数是3,求线段MN的长.②若CD=1,请结合数轴,求线段MN的长.(2)若点A,B,C均在点O的右侧,且始终满足MN=,求点M在数轴上所表示的数.8.(2021秋•东阳市期末)数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A、B表示的数分别为﹣2、1,点C为数轴上一动点.(1)当点C在线段AB上,点A是B、C两点的“友好点”时,点C表示的数为;(2)若点C从点B出发,沿BA方向运动到点M,在运动过程中有4个时刻使A、B、C三点满足“友好关系”,设点M表示的数为m,则m的范围是.9.(2021秋•武昌区期中)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.二.实数与数轴(共12小题)10.(2022秋•慈溪市期中)数轴上有A,B,C三个点,点A表示的数是,点B表示的数是1,点A到点B的距离与点C到点B的距离相等,那么点C表示的数是()A.B.C.D.11.(2022秋•杭州期中)如图,以数轴的单位长度线段为边长作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,B表示的数是.12.(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示﹣,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.13.(2022秋•越城区期中)如图,在数轴上表示2、的对应点分别为C、B,点C是AB的中点,则点A 表示的数是()A.﹣B.2﹣C.4﹣D.﹣214.(2021秋•吴兴区期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A 为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为()A.3.2B.C.D.15.(2022秋•义乌市校级月考)若点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离表示为AB,即AB=|a﹣b|.利用数轴回答下列问题:(1)①数轴上表示2和5两点之间的距离是;数轴上表示x和﹣2的两点之间的距离表示为.②若x表示一个有理数,且﹣2<x<2,则|x﹣2|+|x+2|=.③当|x﹣1|+|x+2|=10﹣|y﹣3|﹣|y+4|时,求xy的最大值和最小值.(2)实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,当x为何值时,|x﹣a|+|x+b|+|x﹣c|的值最小,并求最小值.16.(2022秋•拱墅区月考)【方法感悟】阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.如图1,从数轴上看,若点A,B表示的分别是1,4,则|AB|=|4﹣1|=3或|AB|=|1﹣4|=3;若点A,B表示的数分别是﹣1,4,则|AB|=|4﹣(﹣1)|=4+1=5或|AB|=|﹣1﹣4|=|﹣5|=5;若点A,B表示的数分别是﹣1,﹣4,则|AB|=|(﹣1)﹣(﹣4)|=|﹣1+4|=3或|AB|=|﹣4﹣(﹣1)|=|﹣4+1|=3.【归纳】若点A,B表示的数分别是x1,x2则|AB|=|x1﹣x2|或|AB|=|x2﹣x1|.【知识迁移】(1)如图1,点A,B表示的数分别是﹣4.5,b,且|AB|=3,则b=;(2)如图2,点A,B表示的数分别是x1,x2,若把AB向左平移|AB|个单位,则点A与﹣50重合:若把AB向右平移|AB|个单位,则点B与70重合,那么x1=,x2=;【拓展应用】(3)一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,请问村长爷爷现在到底是多少岁?美羊羊现在又是几岁?请写出解题思路.(4)结合几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|最小值.17.(2021秋•拱墅区校级期中)如图1,这是由8个同样大小的立方体组成的魔方,体积为8.(1)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(2)把正方形ABCD放到数轴上.如图2.使得A与1重合,那么D在数轴上表示的数为.(3)在(2)的条件下,把正方形ABCD沿数轴逆时针方向滚动.当点B第一次落在数轴上时,求点B 在数轴上表示的数.18.(2022秋•海曙区期中)长方形ABCD在数轴上的位置如图所示,点B、C对应的数分别为﹣2和﹣1,CD=2.若长方形ABCD绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕D 点翻转第2次;继续翻转,则翻转2022次后,落在数轴上的两点所对应的数中较大的是.19.(2022秋•温州期中)操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合;(2)折叠纸片,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A、B两点之间的距离为13(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是;点B表示的数是.③表示点与表示的点重合;(3)已知数轴上P,Q两点表示的数分别为﹣1和3,有一只电子小蜗牛从P点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P的距离是到点Q的距离的2倍?20.(2021秋•诸暨市期末)期末复习过程中,七(1)班的张老师设计了一个数学问题,涉及本册中多个知识点和多种数学思想,请聪明的你来解答一下吧.(1)若一个数x的立方等于﹣8,请求出x的值.(2)请利用整体思想和方程思想进行解题.①若(1)中的x的值也是关于x的一元一次方程x﹣3=5x﹣p的解,那么关于y的一元一次方程(y﹣8)﹣3=5(y﹣8)﹣p的解为y=.②在如图所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,现将①中的x,y填入如图所示的位置,则(a﹣b)+(d﹣c)的值为多少?(3)在(2)的条件下,在数轴上标注x,y所表示的数的对应点,分别记作A,B,已知P点从A点出发,以1个单位每秒的速度向B点运动,Q点从B点出发,以4个单位每秒的速度在A、B两点之间做往返运动,P、Q两点同时开始运动,当Q点第一次返回到B点时,两点同时停止运动,若记数轴的原点为O,则P点运动几秒后OQ=2OP?21.(2022秋•鄞州区期中)“数形结合”是重要的数学思想.如:|3﹣(﹣2)|表示3与﹣2差的绝对值,实际上也可以理解为3与﹣2在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用a,b表示,那么A,B两点之间的距离表示为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上﹣2和5这两点之间的距离为.(2)若x表示一个实数,|x+2|+|x﹣4|的最小值为.(3)直接写出所有符合条件的x,使得|x﹣2|+|x+5|=9,则x的值为.三.实数与数轴复杂应用题(共7小题)22.(2022秋•宁波期末)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【知识应用】如图,在数轴上,点A表示的数为5,点B表示的数为3,点C表示的数为﹣2,点P从点C出发,以每秒2个单位沿数轴向右匀速运动.设运动时间为t秒t>0,根据以上信息,回答下列问题:(1)填空:①A,C两点之间的距离AC=,线段BC的中点表示的数为.②用含t的代数式表示:t秒后点P表示的数为.(2)若点M为P A的中点,当t为何值时,.【拓展提升】(3)在数轴上,点D表示的数为9,点E表示的数为6,点F表示的数为﹣4,点G从点D,点H从点E同时出发,分别以每秒1个单位长度和每秒2个单位长度的速度沿数轴的负方向运动,且当它们各自到达点F时停止运动,设运动时间为t秒,线段GH的中点为点K,当t为何值时,HK=3.23.(2022秋•莲都区期中)已知数轴上的A、B两点分别对应的数字为a、b,且a、b满足|4a﹣b|+(a﹣4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,何时P,A,B三点中其中一个点到另外两个点的距离相等?求出相应的时间t;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P运动的时间.24.(2021秋•平阳县期中)如图1,数轴上有A,B两点(点A在点B的左侧),点A表示的数是﹣x,点B 表示的数是3x﹣4,点P,Q是数轴A,B之间的动点,且点P以每秒4个单位的速度运动,点Q以每秒3个单位的速度运动,设运动时间为t秒.(1)当数轴沿原点折叠时,点A与点B重合,则点A表示的数为.(2)若x=22时,点P,Q分别从点A,B同时出发,相向而行,点P到达点B时,点P,Q同时停止运动,当t为何值时,A,B两点之间的距离是P,Q两点之间距离的6倍.(3)若点P,Q同时从点A出发,在线段AB上各自做不间断的往返运动(即只要动点与线段AB的某一端点重合则立即转身以同样的速度向另一点运动).①如图2,点P与点Q第一次重合于点C,第二次重合于点D,且点C与点D之间的距离为40,求线段AB的长;②在①的基础上,当t=2021时,点P,Q两点之间的距离是点A,P两点之间的距离的倍.(请直接写出答案)25.(2022秋•富阳区期中)如图数轴上有两个点A、B,分别表示的数是﹣2,4.请回答以下问题:(1)A与B之间距离为,A,B中点对应的数为,B点向左平移7个单位对应的数为.(2)若点C对应的数为﹣3,只移动C点,要使得A,B,C其中一点到另两点之间的距离相等,请写出所有的移动方法.(3)若点P从A点出发,以每秒3个单位长度的速度向左做匀速运动,点Q从B出发,以每秒5个单位长度的速度向左做匀速运动,P,Q同时运动:①当点P运动多少秒时,点P和点Q重合?②当点P运动多少秒时,P,Q之间的距离为3个单位长度?26.(2022秋•萧山区期中)如图,已知数轴上三点A、B、C分别对应的数为a、b、c.(1)点A、点B在数轴上所表示的数互为相反数,且A、B两点之间距离为4.①若A、C两点之间距离为2,且点C在点A的左侧,则点C所表示的数为.②点D位于点C的左侧,且点D到B、C两点的距离之和为7,则点D所表示的数为.③数轴上是否存在点P,使得点P到A、B、C三点的距离之和为9.若存在,请直接写出点P在数轴上所表示的数,若不存在请说明理由.(2)点B、点C在数轴上所表示的数互为相反数.请判断下列两个代数式的结果是正数还是负数,并说明理由.①a(b+c)+ac;②|c+a|﹣|a+b|.27.(2021秋•定海区期末)已知M、N两点在数轴上所表示的数分别为m,n,且满足(m﹣11)2+(n+4)2=0.(1)m=,n=;(2)若点P从N点出发,以每秒1个单位长度的速度向右运动,同时点Q从M点出发,以每秒2个单位长度的速度向左运动,经过多长时间后P、Q两点相距6个单位长度?(3)若点A、B为线段MN上的两点,且NA=AB=BM,点P从N点出发,以每秒3个单位长度的速度向左运动,点Q从M点出发,以每秒4个单位长度的速度向右运动,点R从B点出发,以每秒5个单位长度的速度向右运动,P、Q、R同时出发,是否存在常数k,使得PQ﹣kAR的值与它们的运动时间无关,为定值?若存在,请求出k和这个定值;若不存在,请说明理由.28.(2020秋•鹿城区期末)已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[
实数基础知识练习题
一.选择题
1.下列各数65
4.0 、2
3π、0
)(π-、14.3、80108.0、ππ--1、 1010010001.0、4、 544514524534.0,其中无理数的个数是 ( )
A 、 1
B 、2
C 、3
D 、4
2. 在下列各数 51515354.0、0、2
.0 、π3、722、 1010010001.6、11
131
、27中,无理数的个数是 ( )
A 、 1
B 、2
C 、3
D 、4 3.数 032032032.123是 ( )
A 、有限小数
B 、无限不循环小数
C 、无理数
D 、有理数 &
4.边长为3的正方形的对角线的长是 ( )
A 、整数
B 、分数
C 、有理数
D 、以上都不对 5.下列说法正确的是 ( )
A 、无限小数都是无理数
B 、 正数、负数统称有理数
C 、无理数的相反数还是无理数
D 、 无理数的倒数不一定是无理数 6.下列语句中,正确的是 ( )
A 、 无理数与无理数的和一定还是无理数
B 、 无理数与有理数的和一定是无理数
C 、 无理数与有理数的积一定仍是无理数
D 、 无理数与有理数的商可能是又理数 "
7.一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )
A 、整数
B 、分数
C 、有理数
D 、无理数 8.下列说法中不正确的是 ( )
A 、1-的立方是1-,1-的平方是1
B 、 两个有理之间必定存在着无数个无理数
C 、在1和2之间的有理数有无数个,但无理数却没有;
D 、如果62
=x ,则x 一定不是有理数 9.两个正有理数之和 ( )
A 、 一定是无理数
B 、一定是有理数
C 、可能是有理数
D 、不可能是自然数 10.36的平方根是 ( ) 《
A 、6
B 、6±
C 、6
D 、6± 11.下列语句中正确的是 ( )
A 、9-的平方根是3-;
B 、的平方根是3;
C 、9的算术平方根是3±;
D 、9的算术平方根是3 12.下列语句中正确的是 ( )
A 、任意算术平方根是正数
B 、只有正数才有算术平方根
C 、∵3的平方是9,∴9的平方根是3
D 、1-是1的平方根 13.下列运算中,错误的是 ( )
①1251144251=, ②4)4(2
±=-, ③22222-=-=-,④20
95141251161=+=+ |
A 、1个
B 、2个
C 、3个
D 、4个 14.2
2
)4(+x 的算术平方根是( )
A 、42)4(+x
B 、2
2)4(+x C 、42
+x D 、42+x
15.2)5(-的平方根是( )
A 、 5±
B 、5
C 、 5-
D 、5± 16.下列说法正确的是 ( )
A 、 一个数的立方根有两个,它们互为相反数
B 、一个数的立方根与这个数同号
C 、 如果一个数有立方根,那么它一定有平方根
D 、 一个数的立方根是非负数 …
17.下列运算正确的是 ( )
A 、3311--=-
B 、3333=-
C 、3311-=-
D 、 3311-=- 18.下列计正确的是( ) A 、5.00125.03= B 、4364273=- C 、2118333= D 、5
212583-=-- 19.下列说法正确的是( ) A 、27的立方根是3±;B 、64
27
-的立方根是4
3
;C 、2-的立方根是8-;D 、8-的立方根是2 20.若51=+
m m ,则m
m 1
-的平方根是( ) A 、2± B 、 1± C 、1 D 、2
}
21.若a 、b 为实数,且47
112
2++-+-=
a a a
b ,则b a +的值为( ) A 、1± B 、4 C 、3或5 D 、5 22.已知一个正方形的边长为a ,面积为S ,则 ( )
A 、a S =
B 、S 的平方根是a
C 、a 是S 的算术平方根
D 、S a ±=
23.若9,42
2==b a ,且0<ab ,则b a -的值为( )
A 、2-
B 、5±
C 、5
D 、5-
24.算术平方根等于它本身的数是 ( )
A 、1和0
B 、 0
C 、1
D 、1±和0 【
二.填空题:
1.如右图:以直角三角形斜边为边的正方形面积是 ; 2.有理数包括整数和 ;
有理数可以用 小数和 小数表示; 3. 叫无理数;
4.无限小数包括无限循环小数和 ,
其中 是有理数, 是无理数;
5.请你举出三个无理数: ; |
6.在棱长为5的正方体木箱中,想放入一根细长的铁丝,则这根铁丝的最大长度可能是 ;
7.已知032=++-b a ,则______)(2
=-b a ;
8.若01)1(2=++-b a ,则_____20052004
=+b a
;
F
9.当_______x 时,32-x 有意义; 10.当_______x 时,
x
-11有意义;
11.9的算术平方根是 ,16的算术平方根是 ;
12.已知0113=-++b a ,则_______2004
2=--b
a ; 13.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
,
14.当10≤≤x 时,化简__________12
=-+x x ; 15.当________x 时,式子2
1
--x x 有意义; 16.计算:______1112=-+-+
-x x x ;
17.2
10-的算术平方根是 ,0
)5(-的平方根是 ; 18.若a a -=-2)2(2
,则a 的取值范围是 ; 19.若06432=+++
-++z y x x y x ,则
____=y
xz
; 20.如果a 的平方根等于2±,那么_____=a ;
21.已知x 、y 满足024242
2=+-++y x y x ,则_______1652
2=+y x ;
$
22.计算:_______10_________,1125
61
363
=-=--;
23.3-是 的平方根,3-是 的立方根; 24.2004
1
-的立方根是 ,2004
)
1(-的立方根是 ;
25.若33-x 有意义,则x 的取值范围是 ; 26.若02733=+-x ,则______=x ;
27.64的平方根是 ,64的立方根是 ; 28.8
1
-
的立方根是 ,125的立方根是 ; 29.若某数的立方根是027.0-,则这个数的倒数是 ; )
30.若a 、b 互为相反数,c 、d 互为负倒数,则______322=++cd b a ; 三.解答题:
1.已知a a a =-+-20052004,求2
2004-a 的值;
2.求x :
(1) 822
=x (2) 1269
42
-=x
(3) 8)12(3
-=-x (4) 35123403
-=+x
/
3.化简 (1)
24
612⨯ (2))32)(32(-+ (3)2)5
25(-
(4))52)(53(-+ (5)2224145- (6))81()64(-⨯-
4.计算:已知0)2(12
=-+-ab a ,
求)
2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值;。