2020年秋九年级数学上册 22.3 实践与探索 第2课时 利润问题与增长率的变式探究习题课件 (新版)华东师大版

合集下载

人教版数学九年级上册:22.3 第2课时 最大利润问题 (含答案)

人教版数学九年级上册:22.3 第2课时 最大利润问题  (含答案)

第2课时最大利润问题1.将进货价为每件70元的某种商品按每件100元出售时每天能卖出20件,若这种商品每件的售价在一定范围内每降低1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________,所以每件降价________元时,每日获得的利润最大,为________元.2.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150 B.160 C.170 D.1803.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()A.y=x2+a B.y=a(x-1)2C.y=a(1-x)2D.y=a(1+x)24.[2019·丹东] 某服装超市购进单价为30元/件的童装若干件,物价部门规定其销售单价不低于30元/件,不高于60元/件.销售一段时间后发现:当销售单价为60元/件时,平均每月的销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元/件,平均月销售量为y件.(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当销售单价为多少时,销售这种童装每月可获利1800元?(3)当销售单价为多少时,销售这种童装每月获得的利润最大?最大利润是多少?5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=-x+60(30≤x≤60,且x 为整数).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包的销售单价定为多少元/个时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不能高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少元/个?6. 某商店销售某种商品所获得的利润y(元)与所卖件数x(件)之间满足关系式y=-x2+1000x -200000,则当0<x≤450时的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某种工艺品的进价为每件100元,当标价135元出售时,每天可售出100件.根据销售统计,该工艺品每件的价格每降低1元,每天可多售出4件.要使每天获得的利润最大,则每件需降价()A.5元B.10元C.15元D.20元8.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量y(件)与销售单价x(元/件)之间的关系符合一次函数y=-x+140.(1)直接写出x的取值范围:__________;(2)若销售该服装获得的利润为W元,试写出利润W与销售单价x之间的关系式:________________________________________________________________________.9.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数关系,部分数据如下表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果想每天获得160元的利润,那么销售单价应定为多少元/袋?(3)设每天的利润为w元,当销售单价定为多少元/袋时,每天的利润最大?最大利润是多少元?10.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图22-3-9所示.(1)求y与x之间的函数解析式(不要求写出自变量的取值范围);(2)如果规定每天漆器笔筒的销售量不低于240件,那么当销售单价为多少时,每天获取的利润最大,最大利润是多少?图22-3-911.十一黄金周期间,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另外公司平均每日的各项支出共4800元.设公司每日租出x(0≤x≤20)辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加__________元,此时每辆车的日租金为__________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司的日收益最多?最多是多少元?答案1.(30-x) (20+x) -x 2+10x +600 5 6252.A [解析] 设利润为w 元,则w =(x -100)(200-x)=-x 2+300x -20000=-(x -150)2+2500(100≤x≤200), 故当x =150时,w 有最大值.3.D4.解:(1)由题意得y =80+20×60-x 10, ∴y 与x 之间的函数关系式为y =-2x +200(30≤x≤60).(2)由题意得(x -30)(-2x +200)-450=1800,解得x 1=55,x 2=75(不符合题意,舍去).答:当销售单价为55元/件时,销售这种童装每月可获利1800元.(3)设每月获得的利润为w 元.由题意得w =(x -30)(-2x +200)-450=-2(x -65)2+2000.∵-2<0,∴当x≤65时,w 随x 的增大而增大.∵30≤x≤60,∴当x =60时,w 取最大值,w 最大=-2(60-65)2+2000=1950.答:当销售单价为60元/件时,销售这种童装每月获得的利润最大,最大利润是1950元.5.解:(1)w =()x -30·y =(x -30)·(-x +60)=-x 2+90x -1800(30≤x≤60,且x 为整数).(2)w =-x 2+90x -1800=-()x -452+225.∵-1<0,∴当x =45时,w 有最大值,最大值为225.答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润是225元.(3)当w =200时,可得方程-()x -452+225=200,解得x 1=40,x 2=50. ∵50>42,∴x =50不符合题意,舍去.答:销售单价应定为40元/个.6.B [解析] 因为抛物线的对称轴为直线x =500,在对称轴左侧,y 随x 的增大而增大,因此在0<x≤450的范围内,当x =450时,函数有最大值为47500.7.A8.(1)60≤x≤90 (2)W =-x 2+200x -8400[解析] (1)∵规定试销期间销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤90.(2)∵单件利润为(x -60)元,销售量为y =-x +140,∴销售该服装获得的利润W =(x -60)(-x +140)=-x 2+200x -8400.9.解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =280,5.5k +b =120,解得⎩⎪⎨⎪⎧k =-80,b =560.则y 与x 之间的函数关系式为y =-80x +560(3.5≤x≤5.5). (2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x≤5.5,∴x =4.答:如果想每天获得160元的利润,那么销售单价应定为4元/袋.(3)由题意,得w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240.∵3.5≤x≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元/袋时,每天的利润最大,最大利润是240元.10.解:(1)设y 与x 之间的函数解析式为y =kx +b.由题意得⎩⎪⎨⎪⎧40k +b =300,55k +b =150, 解得⎩⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数解析式为y =-10x +700.(2)由题意,得-10x +700≥240,解得x≤46.设每天获得的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x-50)2+4000.∵-10<0,∴当x<50时,w随x的增大而增大.∴当x=46时,w最大=-10×(46-50)2+4000=3840.答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元.11.解:(1)50(20-x)(-50x+1400)(2)由题意,得y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.∵-50<0,∴函数图象开口向下,函数有最大值,即当x=14时,在0≤x≤20范围内,y有最大值5000.答:当每日租出14辆时,租赁公司的日收益最多,最多是5000元.。

《实际问题与二次函数》第二课时利润问题 教案

《实际问题与二次函数》第二课时利润问题 教案

人教版数学九年级上22.3.2实际问题与二次函数第二课时教学设计课题22.3.2实际问题与二次函数单元第二十二章学科数学年级九年级上学习目标情感态度和价值观目标通过对生活中实际问题的探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.能力目标1.通过对商品涨价与降价的分析,感受函数知识在生活中的应用;2.在探究活动中,学会与他人合作并能与他人交流思维过程和探究结果.知识目标 1.将实际问题抽象成数学问题,经历函数建模的过程;2.会用二次函数知识求实际问题的最大值或最小值.重点用二次函数知识解决商品利润问题。

难点能够正确分析和表示实际问题中变量之间的二次函数关系,并求出最大(小)值。

学法自主探究、分组探究、合作交流教法引导发现法启发探究法教学过程教学环节教师活动学生活动设计意图导入新课一、情境导入设疑:观看商场的促销广告、电商广告页面,商家做广告的目的是什么?如果你是商场经理,你该如何定价才能获得最大利润?揭示课题:商品利润问题教师出示各种促销图片,设疑,激发学生探究的欲望,进而揭示课题。

从身边常见的生活实际情境入手,创设问题情境,激发学生的求知欲。

讲授新课二、探究新知问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是_____元,销售利润______元.涉及到的数量关系:(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.问题2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?(1)降价:①设每件降价x元,则每星期售出商品的利润y元随之变化:建立函数关系式:②自变量x的取值范围如何确定?③降价多少元时,利润y最大,是多少?(2)涨价:①设每件涨价n元,则每星期售出商品的利润m元随之变化:建立函数关系式:②自变量n的取值范围如何确定?③涨价多少元时,利润m最大,是多少?学生分小组合作探究,教师提供题干中涉及到的“数量关系”引导学生分步探究。

人教版数学九年级上册22.3.2 销售利润问题课件(共21张PPT)

人教版数学九年级上册22.3.2  销售利润问题课件(共21张PPT)

所以当
时 ,y=-10×5²+100×5+6000=6250.
即涨价5元时,最大利润是6250元.
降价销售 ①设每件降价x 元,则每星期售出商品的利润y 元,填空:
单件利润(元) 销售量(件) 每星期利润(元)
正常销售
60-40
降价销售 (60-40-x)
300
6000
(300+20x) (60-40-x证销售量≥0; 降价:要保证单件利润≥0.
利用配方法或公式求最大值 或利用函数简图和性质求出.
iSyNVH1
i 凹量‘凿异业
y=-20x²+100x+6000,
即降价2.5元时,最大利润是6125元. ∵6125<6250 ∴综上可知,定价57.5元时,最大利润是6125元.
由(1)(2)的讨论及现在的销售情况,你知 道应该如何定价能使利润最大了吗?
归 纳 求解最大利润问题的一般步骤
1.建立利润与价格之间的函数关系式:运用“总利润= 总售价-总成本”或“总利润=单件利润×销售量”; 2.结合实际意义,确定自变量的取值范围; 3.在自变量的取值范围内确定最大利润: 可以利用配方法或公式求出最大利润;也可以画出函数 的简图,利用简图和性质求出.
2.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据 市场调查发现,该商品每周的销售量y (件)与售价x(元/件)(x为正整 数)之间满足一次函数关系,下表记录的是某三周的有关数据:
x/(元/件) 4
5
6
y/件 10000 9500 9000
(1)求y与x的函数关系式(不求自变量的取值范围);
分析:调整价格包括涨价和降价两种情况.让我们一起来分析一下吧!

初中九年级上册数学:第22章-二次函数 22.3 第2课时 商品利润最大问题

初中九年级上册数学:第22章-二次函数 22.3  第2课时  商品利润最大问题

第2课时 商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题 【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可) 【类型二】利用图象解析式确定最大利润 (2014·福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示.(1)求y 2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

22.3 实践与探索 课件 2024-2025学年数学华东师大版九年级上册

22.3 实践与探索 课件 2024-2025学年数学华东师大版九年级上册
长、面积、体积公式等列方程.
例如:如图,将一块正方形的铁皮四角各剪去一个边长
为4 cm的小正方形,做成一个无盖的盒子.已知盒子的
容积是400 cm3,求原铁皮的边长.若设原铁皮的边长为 x
cm,则可得方程为 ( x -8)2×4=400 .

知识导航
3. 列一元二次方程解决平均增长率问题,可以运用公式
几个人?
解:(2)根据题意,得1+ x + x (1+ x )=144,
整理,得 x2+2 x -143=0,
解得 x1=11, x2=-13(不合题意,舍去).
答:在每轮传染中,平均一个人传染了11个人.
典例导思
(3)如果按照这样的传染速度,经过三轮传染后,一
共有多少人感染德尔塔病毒?
解:(3)144+11×144=1 728(人).

答:校图书馆能接纳第四个月的进馆人次.
典例导思
[知识总结]增长(降低)率的问题利用公式 a (1± x )2
= b [其中 a 为初始数量, b 为增(或减)后的数量].
典例导思
4. 两年前生产某种药品的成本是65 400元,现在生产该
种药品的成本是55 300元.设该种药品成本的年平均下降
率为 x ,则可列方程为( D )
答:每件衬衫应降价20元.
典例导思
题型二 列一元二次方程解决其他问题
在某篮球邀请赛中,参赛的每两个队之间都要比
赛一场,共比赛36场.设有 x 个队参赛,根据题意,可列
方程为( A )

A. x ( x -1)=36

C. x ( x -1)=36

B. x ( x +1)=36

D. x ( x +1)=36

22.3 实践与探索第2课时 建立一元二次方程解决增长率、销售利润问题


13 .某商店购进600个旅游纪念品 ,进价为每个6元,第一周以每个10 元 的价格售出200个,第二周若按每个 10 元的价格销售仍可售出 200个,但
商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,
可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对 剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪
该服装的标价为__________元. 340
10.某玩具店购进一种儿童玩具 ,计划每个售价36元,能盈利80%.在销 售中出现了滞销,于是先后两次降价,售价降为25元. (1)求这种玩具的进价; (2)求平均每次降价的百分率.(精确到0.1%)
解:(1)设进价为x元,依题意列方程36-x=80%x,解得x=20,∴ 进价为20元 (2)设平均降价的百分率为y,依题意列方程36(1-y)2=25, 1 13 解得y1=6≈16.7%,y2= 6 (舍去),∴平均每次降价的百分率为16.7%
12 .天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区 旅游,推出了如下收费标准(如图所示).
某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游 ,共支付给 旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特 地貌特征的黄果树风景区旅游? 解:设共有x名员工,∵27000>25×1000=25000,∴人数超过25人,依 题意列方程x[1000-20(x-25)]=27000,解得x1=30,x2=45,∵x2=45 时 , 1000 - 20×(45 - 25) = 600 < 700 , ∴ x2 = 45 不符合题意 , 应舍去 , ∴x=30.答:共有30名员工
为( A )
A.1000(1+x)2=1000+440

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题


某商店经营衬衫,已知获利(元)与销售单价(元)之间满
足关系式 = − + + ,则销售单价定为多少元时,
获利最多?最多获利为多少元?
自主探究
请同学们阅读课本50页探究2. 请同学们思考:
(1)调价包括哪几种情况? (涨价和降价两种)
(2)先来讨论涨价的情况.
①设每件涨价x元,你能否用含x的式子表示单件的利润和销售数量?
− = −( − )² + .
故当 = 时,W最大,为125.
答:当销售单价为13万元时,利润最大,最大利润为125万元.
变式 为满足市场需求,某超市在“端午节”来临前夕,购进一种品
牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根
据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700
例1 某商店从厂家以每件21元的价格购进一批商品,该商店可以
自行定价.若每件商品售价为 x 元,则可卖出(350-10x)件商
品,那么卖出商品所赚钱数y(元)与每件售价x(元)之间的
函数解析式为(
B)
A.y=-10x²-560x+7 350
C.y=-10x²+350x
B.y=-10x²+560x-7 350
− .当 =
× − × − −
× −


× −
= 时, 最大 =
= ,即当每盒售价定为60
元时,每天销售的利润P(元)最大,最大利润为8 000元.
(3)为稳定物价,有关管理部门限定:这种粽子每盒的售价不得高
盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。

教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。

三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。

2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。

3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。

四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。

2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。

五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。

同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。

六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。

2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。

引导学生运用二次函数知识进行解决。

3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。

教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。

22.3.2商品利润最大问题(第2课时)(课件)2024-2025学年九年级数学上册(人教版)

银行家说:“你看你的手指上是不是有油。”
服装厂生产某品牌的 T 恤衫成本是每件 10 元.根据市场调查,
以单价 13 元批发给经销商,经销商愿意经销 5000 件 ,并且表
示单价每降价 0.1 元,愿意多经销 500 件.
请你帮助分析,厂家批发单价是多少时可以获利最多?
总利润 = (销售单价 - 成本单价)×销量 = 单利润×销量
= −4x2 + 140x − 864
∴当
答:当
时,利润 w 有最大值,最大值为 361.
时,利润最大.
某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出
售,那么一个月内售出180件,根据销售经验,提高销售单价会导
致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10
件,当销售单价为多少元时,该店能在一个月内获得最大利润?
13
10
假设批发单价12.8 5000 +
5000
− .
500×
.
3
12.8 - 10
① 设未知数,用含未知数的代数式表示相关量
解:设厂家批发单价是为 x 元,获利 y 元.
② 根据题意,求出自变量的取值范围
还有其他的设未
知数方法吗?
∵ 13 − x≥0,且 x>10,∴ 10<x≤13.
在日常生活中存在着许许多多的与数学知识有关的实际问题.商
品买卖过程中,作为商家追求利润最大化是永恒的追求.
有一个这样的故事:
银行家的儿子问爸爸:“爸爸,银行里的钱都是客户和储户的,
那你是怎么赚来房子、奔驰和游艇的呢?”
“儿子,冰箱里有一块肥肉,你把它拿来。”
儿子拿来了。“你再把它放回去。”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档