二次函数与商品利润问题

合集下载

二次函数与商品最大利润问题

二次函数与商品最大利润问题

y 20 x 2 100 x 6000 (其中, 0 x 20 )
抛物线的顶点坐标是: ( 2.5,6125 ) ,对称轴是: 直线 x=2.5
降价 2.5元,即定价 57.5 元 所以,当x= 2.5 时,y最大,也就是说,在降价的情况下, 时,利润最大,最大利润是 6125 元。
2 化成一般形式为: y 20 x 100 x 6000 (其中, 0
x 20

抛物线的顶点坐标是:( 2.5,6125 ),对称轴是: 直线 x=5 所以,当x=2.5时,y最大,也就是说,在降价的情况下,降价2.5元,即定价 57.5元时,利润最大,最大利润是6125元。
综上所述可知,要想获得最大利润就要定价每双57.5元。
4
情境问题: 读九年级的李聪的爸爸是开鞋店的,现在店中有一种进价为每双40元 的球鞋,售价为每双60元,每星期可卖出300双。为了获取更大的利润, 李聪的爸爸让李聪去做个市场调查。李聪做了市场调查反映:如果这 种鞋子每涨价1元,每星期要少卖出10双;每降价1元,每星期可多卖 出20双。李聪的爸爸说:”你初中都快毕业了,能根据市场反映的信 息用你所学的知识帮忙算算这种鞋子定什么样的售价才能使我获得利 润最大? 先思考下面问题,再与你的小组 同学交换一下你的想法。 1、调价前这种鞋子每星期的利润是
6000 好好思考, 相信你一 定行!
元。
2、这种鞋子的进价已成定局,要想提高利润可以改变什么?
3、是否售价提高了,总利润就提高? P=300-10x 4、若设每双涨价x元后,每星期售出p双,则p与x的关系是: 。 P=300+20x 5、若设每双降价x元后,每星期售出p双,则p与x的关系是: 。
下一页 6
综上所述可知,要想获得最大利润就要定价每双65元。

二次函数与商品利润最大问题

二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a

当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,

x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)

二次函数与实际问题 利润问题

二次函数与实际问题 利润问题

二次函数与实际问题利润问题二次函数与实际问题利润问题实用问题与二次函数——利润问题教案(1)一、利润公式一种商品的购买价是40元,现在是60元。

每周可以卖出50件。

本周销售商品的利润是多少?小结:总利润=二、问题探究问题1:某种商品的购买价格是30元/件。

如果你在一段时间内以每件x元的价格出售,你可以卖出(200-x)件。

你应该如何定价以实现利润最大化?问题2:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。

该商品应定价为多少元时,商场能获得最大利润?分析问题:设每件涨价x元,则每星期售出商品的利润为y 元。

(1)将价格提高X元,每周销量减少;实际上卖了几件。

(2)商品的现行价格是元,购买价格是元。

跟据上面的两个问题列出函数表达式为:自变量x的取值范围解答过程:问题3:目前一种商品的售价是60元/件,每周可以卖出300件。

根据市场调查,每涨1元,每周就少卖10件;每降价1元,每周可多卖出18件。

已知商品的购买价格为40元/件。

如何定价以实现利润最大化?三、课堂练习1.据了解,一件商品的购买价格为40元/件,销售价格为60元/件,每周可销售300件。

市场调查显示,如果价格调整,每降低一元,每周就会多卖出18件。

当商品的价格应该是多少元时,商场能获得最大的利润吗?2、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。

如何定价才能使得利润最大?3.旅行社组织30人组团出国旅游,单价为每人800元。

旅行社对30人以上的组团提供折扣,即每增加一人,每人的单价将减少10元。

你能帮我分析一下当旅行团数量减少时旅行社能获得的最大营业额吗?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

某商店经营衬衫,已知获利(元)与销售单价(元)之间满
足关系式 = − + + ,则销售单价定为多少元时,
获利最多?最多获利为多少元?
自主探究
请同学们阅读课本50页探究2. 请同学们思考:
(1)调价包括哪几种情况? (涨价和降价两种)
(2)先来讨论涨价的情况.
①设每件涨价x元,你能否用含x的式子表示单件的利润和销售数量?
− = −( − )² + .
故当 = 时,W最大,为125.
答:当销售单价为13万元时,利润最大,最大利润为125万元.
变式 为满足市场需求,某超市在“端午节”来临前夕,购进一种品
牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根
据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700
例1 某商店从厂家以每件21元的价格购进一批商品,该商店可以
自行定价.若每件商品售价为 x 元,则可卖出(350-10x)件商
品,那么卖出商品所赚钱数y(元)与每件售价x(元)之间的
函数解析式为(
B)
A.y=-10x²-560x+7 350
C.y=-10x²+350x
B.y=-10x²+560x-7 350
− .当 =
× − × − −
× −


× −
= 时, 最大 =
= ,即当每盒售价定为60
元时,每天销售的利润P(元)最大,最大利润为8 000元.
(3)为稳定物价,有关管理部门限定:这种粽子每盒的售价不得高
盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数

二次函数与商品销售中利润问题

二次函数与商品销售中利润问题

二次函数与商品销售中利润问题例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?练习:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例2某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?练习 :某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算工厂每千度电产生的利润y (元/千度)与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生的利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (元/千度)与每天 用电量m (千度)的函数关系为x =10m +500,且该工厂每天用电量不超过60千度.为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生的利润最大是多少元?x (元) 15 20 30 … y (件) 25 20 10 …例3某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天) (1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式; (3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?},巩固提升:(2010年重庆)今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,进入5 2.8 元/千克下降至第2周的2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式; (2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.图甲 图乙。

22.3.2二次函数求商品利润最大问题教案

22.3.2二次函数求商品利润最大问题教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。它在经济、工程等领域有着广泛的应用,尤其是在求解最值问题时。
2.案例分析:接下来,我们来看一个具体的案例。假设某商品的成本为固定值,售价与销售量之间存在二次关系,我们将通过构建二次函数模型来求解最大利润。
五、教学反思
在本次教学过程中,我发现学生们对于二次函数在实际问题中的应用表现出较高的兴趣。他们能够积极参与课堂讨论,提出自己的想法,这让我感到很欣慰。但同时,我也注意到在一些环节还存在一些问题,需要我在今后的教学中加以改进。
在导入新课环节,我通过提问方式引发学生思考,大家发言积极,但个别学生对问题的理解还不够深入。在今后的教学中,我应适当增加一些引导性的问题,帮助学生更好地理解问题本质。
5.强化数学运算能力:在求解最大利润过程中,培养学生准确、快速地进行数学运算的能力。
本节课将围绕以上核心素养目标,结合教材内容,帮助学生将理论知识与实际应用相结合,全面提升学生的数学素养函数的一般形式及其图像特点,明确二次函数在实际问题中的应用。
举例:二次函数y = ax^2 + bx + c,其中a、b、c为常数,a≠0。图像特点为抛物线,对称轴为x = -b/2a,顶点坐标为(-b/2a,(4ac-b^2)/4a)。
3.提高学生的口头表达能力和逻辑思维能力,使他们能够更好地展示自己的观点。
4.鼓励学生独立思考,培养他们的问题解决能力。
在新课讲授环节,我发现大部分学生能够跟上课堂节奏,但仍有部分学生对二次函数的一般形式和求解最值方法掌握不够牢固。针对这个问题,我打算在接下来的课程中,增加一些例题和练习,让学生在实际操作中加深对知识点的理解。

《二次函数与利润问题》课件

《二次函数与利润问题》课件

探究点 根据二次函数的性质解决最大利润问题
[例题] 某超市销售某种玩具,进货价为20元.根据市场调查:在0件,而销售单价每上涨1元,就会少售出10件玩具,超市要 完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为多少元?最大 利润为多少元?
第2课时 二次函数与利润问题
一、商品利润问题 1.每件商品的利润=售价- 进价 . 2.商品的总利润=每件商品的利润× 商品的数量 . 3.在解决最大利润问题时,能利用二次函数顶点坐标确定利润的最大值,把最大利 润问题转化为求函数的顶点坐标问题. 二、利用二次函数解决利润问题的一般步骤 1.根据题目中的等量关系,列出利润与售价之间的函数表达式. 2.根据条件求出自变量的取值范围. 3.根据函数表达式及自变量的取值范围确定最大利润.
[导学探究] 1.设销售单价定为x元,则每件利润为 (x-20)元,销售数量为 [400-10(x-30)] 件. 2.根据销售数量不少于300件列出不等式为 400-10(x-30)≥300 ,从而确定自变 量的取值范围.
解:设销售单价应定为x元,总利润为W元,根据题意,得 W=(x-20)[400-10(x-30)]=-10x2+900x-14 000=-10(x-45)2+6 250. 因为超市要完成不少于300件的销售任务, 所以400-10(x-30)≥300,解得x≤40. 因为a=-10<0, 所以x≤40时,W随x的增大而增大. 所以x=40时利润最大. 此时W最大=-10(40-45)2+6 250=6 000. 故销售单价应定为40元,最大利润为6 000元.
点击进入 训练案

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析知识链接复习:1某水果批发商场经销一种高档水果,如果每千克盈利 10元,每天可售出500千克•经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少 20千克•现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元? 解:设每千克应涨价 x 元,读题完成下列填空问题一:涨价后每千克盈利 _________________ 元; 问题二:涨价后日销售量减少 千克;问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元?根据题意列方程得:解方程得: 因为商家涨价的目的是 ;所以 符合题意。

答:。

2、 二次函数y=ax 2+bx+c 的顶点坐标是x=y=3、 函数y=x 2+2x-3(-2 w x w 2)的最大值和最小值分别是 新知解析:例1、某商品现在的售价为每件 35元,每天可卖出50件。

市场调查发现:如果调整价格,每降价 1元,那么每天可多卖出两件。

请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销 售额是多少?解:设当降价X 元时销售额为y 元,根据题意得:2y= ( 35-x ) (50+2x ) =-2x +20x+1750b 20 x=-=-=52a 2 X ( 2)因为 0<5<35 且 a=-2<0 所以 y=(35-5)(50+10)=1800答:当降价5元时 销售额最大为1800元。

此类习题注意要点:1、 根据题意设未知量,一般设增加或者减少量为 x 元时相应的收益为y 元,列出函数关系式。

2、 判断顶点横坐标是否在取值范围内。

因为函数的最值不一定是实际问题的最值3、 根据题意求最值。

写出正确答案。

例2、某民俗旅游村为接待游客住宿需要, 开设了有100张床位的旅馆,当每张床位每天收费 10元时, 床位可全部租出, 若每张床位每天收费提高2元,则相应的减少了 10张床位租出,如果每张床位每天以 2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?租金最高是 多少钱?x o解:设当张价 X 元时租金为y 元,根据题意得:y= ( 100-10 X ) (10+x ) =-5x +50x+1000250=5因为5是奇数,不合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数与商品利润问题》教学设计一、教材版本及内容分析本节课选自2011年人教版九年级上册第二十二章《二次函数》第三节《实际问题与二次函数》第二课时商品利润问题。

二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。

而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,商品最大利润问题学生不易理解和接受,故而在这儿做专题讲解。

目的在于让学生通过解决商品利润问题,学会用建模的思想去解决其它和二次函数有关的应用问题。

此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

二、学情分析对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在比较复杂的实际问题中,还不能熟练的应用知识解决问题。

本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

三、教学目标1、知识与技能:①学会将实际问转化为数学问题;②学会用二次函数的知识解决商品利润问题。

2、过程与方法:体会数学建模的思想,体会到数学来源于生活,又服务于生活。

3、情感态度与价值观:培养学生的独立思考的能力和合作学习的精神,在小组交流过程中培养学生的交际能力和语言表达能力,促进学生综合素养的提升。

四、教学重点与难点1、教学重点:利用二次函数的知识对商品利润问题进行数学分析,即用数学的方式表示问题以及用数学的方法解决问题。

2、教学难点:从商品利润问题中建立二次函数模型。

五、教学方法与手段新课程标准强调自主探究与合作交流应该是学生学习数学的重要方式。

教师应该是学生数学学习的组织者、引导者、合作者。

因此,根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、小组课堂讨论法等。

六、教学过程(一)、情景引入:当今社会健身越来越受到人们的重视。

同学们,如果你是健身俱乐部老板,你是不是希望自己的俱乐部钱挣得越多越好呢?看来,同学们应该深有体会,商家都希望钱挣得越多越好,都追求利润最大化。

那么如何实现利润的最大化呢?这就是我们本节课要学习的内容。

教学设计分析:情景引入,创设问题情境,激发学生学习兴趣。

新课标要求数学教学要重视应用意识和应用能力的培养;联系学生的日常生活并解决相关的问题等方面的要求越来越处于突出的地位。

因此,我以健身俱乐部收益问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。

(二)、小组合作:小组交流一:讨论交流自主学习内容:•互订答案;•交流疑惑;•特别是交流自学检测中商品售价、单件商品利润、实际卖出商品数量分别是如何表示的。

1、自主学习:认真自学教材50页探究2商品利润问题,思考并完成下面问题:(1)教材中是如何表示利润的?○1利润=__________-____________你还有其他方法吗?○2利润=(________-_________)×__________(2)为什么自变量x的取值范围是0≤x≤30?(3)如何求函数最大值?请你写出具体过程?+-=y2+x101006000x当x=_______时,y最大,也就是说,在涨价的情况下,涨价_______元,即定价________元时,利润最大,最大利润是________________元。

2、自学检测:你能参考教材52页探究2解决涨价时最大利润的方法,求降价时的最大利润吗?请写出你的解答过程。

解:设每件商品降价_______元,则每件商品售价为_______元,单件商品利润_______________元;每星期多卖______件,实际卖出_________件。

因此,所得利润:y=______________________________________=______________________________________其中x的取值范围是_________________当x=_______时,y最大,也就是说,在降价的情况下,降价_______元,即定价________元时,利润最大,最大利润是________________元。

综合涨价、降价两种情况定价________元时,利润最大,最大利润是____________元。

小组交流二:建立二次函数模型解决商品利润问题的一般步骤,并指出其中最关键的是哪一步?归纳总结:建立二次函数模型解决商品利润问题的一般步骤:(1)根据题意设出______________;(2)用未知数表示出商品的_____和_____;(3)列出利润的__________________;(4)用__________或_________求函数最值,进一步分析、判断得出实际问题的结果。

教学设计分析:小组合作,兵教兵,共促进,同提高。

小组交流的第一个内容是讨论交流自学内容,主要包括互订答案,交流疑惑,特别是交流自学检测中商品售价、单件商品利润、实际卖出商品数量分别是如何表示的等。

从而发现课前自主学习遇到的问题,并解决多数问题,进而提出小组解决不了的问题,拿到全班来解决。

最终,在老师的指引下解决自主学习中发现的所有问题。

接下来是小组交流的第二个内容,采取的是小组交流发现,展示交流成果,其他小组纠错,老师点拨归纳的方法。

(三)、展示反馈:某健身俱乐部有20套健身器材向外出租,当每套健身器材的租金为16元/天时,可全部租出;当每套器材的每天租金每增加2元,未租出的器材将会增加一套。

已知租出的器材每套维护费用为6元/天,未租出的器材每套维护费用为2元/天。

设每套器材租金为x元/天(x>16且为偶数),健身俱乐部的收益为y元/天。

(收益=租金收入-维护费用)(1)用含x的代数式表示未租出器材为_________套;所有未租出器材每天维护费用_____________元;(2)用含x的代数式表示租出器材为___________套;所有租出器材每天维护费用______________元;所有租出器材每天的租金收入为_________________元;(3)求健身俱乐部收益y(元/天)与每套器材租金x(元/天)之间的函数关系式;(4)当每套器材的租金为多少元/天时,俱乐部每天收益最大,最大收益为多少元/天?教学设计分析:展示反馈主要是对小组合作交流结果的应用,通过健身器材出租最大收益问题的解决,体现知识从特殊到一般,再到特殊的过程。

整个过程采取学生展示,他人纠错,老师点拨错因的方法。

让学生加深对建立二次函数模型解决商品利润问题的一般步骤的认识,达到能够解决二次函数商品利润问题的目的。

(四)、拓展提升:接展示反馈健身器材出租收益问题。

(5)求每套器材租金为26元/天时,俱乐部收益为多少元/天;并说明同样的收益,每套器材的租金还可以定为多少元/天?相应租出的器材分别为多少套?(6)要使俱乐部每天收益不低于(5)中的收益时,每套器材的每天租金应在什么范围内?(7)小明说“当俱乐部每天收益最大时,所有器材的维护费用也最大”。

你认为对吗?请说明理由。

教学设计分析:拓展提升的环节从不同角度进一步对健身器材出租收益问题进行挖掘,尽可能从多角度,多层次对知识的考察与应用,从而增强学生解决综合问题的能力。

由于所涉问题难度提升,整个过程采取小组交流、老师引导、点拨、归纳的方法。

(五)、内化总结:今天,我收获了______________________________;我学会了_______________________________________;我还有_____________________________________困惑。

教学设计分析:内化总结,通过学生对本节课学到的知识,方法的总结进一步强化学生数学应用意识和数学建模能力的培养。

引导学生总结出从数学的角度解决实际问题的过程:由实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。

七、教学反思本节课通过学习求商品利润最大值问题和健身器材出租收益最大问题,引导学生将实际问题转化为数学模型,利用数学建模的思想去解决和二次函数最值有关的应用问题。

整个课堂流程是:创设情境、引入问题-----小组交流自主学习内容-----小组合作,归纳总结-------学生展示,他人纠错,教师点拨------拓展提升,教师点评------内化总结等几个环节。

现将整个教学过程反思如下:第一,情景引入。

选取健身作为问题的背景,比较切合生活实际,能够引起学生的共鸣,从而激发其学习兴趣。

第二,小组合作。

整个小组交流合作过程中,给学生提供充分从事数学活动的机会,在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。

最大限度的带动学生的积极性,实现学困生在交流中学会知识,学优生在交流中进一步提升认识,不仅知道是什么,而且清楚为什么。

第三,展示反馈。

通过对未租出器材数量、维护费用、租出器材的数量、租金等分解设问,降低了问题的难度,提高了学生的参与度,极大减轻了学困生思考问题的负担。

第四,拓展提升。

通过对健身器材收益问题的进一步挖掘,多角度、深层次设问,激发了学生的潜能,增强了其综合考虑问题的能力。

第五,内化总结。

通过对所学内容,所用数学思想方法的总结,加深了学生的认识,提升其主动应用数学知识,数学方法解决问题的意识。

最后,不足之处。

在小组合作自主学习商品利润问题设问再细化,梯度再小一些,更有利于学生独立完成。

比如,加入涨价1元、2元等的变化情况。

再有,小组合作过程中对学生的交流完成情况,了解的更及时,更全面一些,会进一步提高课堂效率。

相关文档
最新文档