随机森林及CART的算法
决策树 cart最佳分割点算法

决策树是一种经典的机器学习算法,它通过对数据集进行分割来构建一个预测模型。
在决策树的构建过程中,寻找最佳的分割点是非常重要的一步。
CART(Classification and Regression Trees)是一种常用的决策树算法,它使用基尼系数来确定最佳的分割点。
本文将重点介绍CART最佳分割点算法的原理和实现方法。
1. 基尼系数的定义在CART算法中,基尼系数是衡量数据集纯度的指标。
对于一个包含K个类别的数据集D,其基尼系数的计算公式如下:Gini(D)=1-Σ(p_i)^2其中,p_i 表示类别 i 在数据集 D 中所占的比例。
当数据集完全纯净时,即只包含单一类别的样本时,基尼系数为 0;当数据集的样本均匀分布在各个类别中时,基尼系数最大为 0.5。
2. 基尼指数的计算在决策树的构建过程中,我们希望找到一个最佳的分割点,使得基尼系数最小。
对于一个二分类的问题,我们可以遍历每个特征的取值,对数据集进行分割,并计算基尼系数。
最终选择使得基尼系数最小的特征和分割点作为最佳的分割点。
3. CART最佳分割点算法CART算法使用递归二分来构建决策树,其最佳分割点算法基本流程如下:1. 遍历每个特征的取值,对数据集进行分割;2. 计算每个分割点的基尼系数;3. 选择使得基尼系数最小的特征和分割点作为最佳的分割点;4. 重复以上步骤,直至满足停止条件(如树的最大深度、节点的最小样本数等)。
4. 实现方法在实际应用中,我们可以使用贪心算法来寻找最佳的分割点。
具体实现方法如下:1. 对于每个特征,对其取值进行排序;2. 遍历每个特征的取值,使用一个指针来指示当前的分割点;3. 维护一个变量来存储当前的基尼系数最小值,以及相应的特征和分割点;4. 在遍历过程中,不断更新基尼系数最小值和最佳的特征和分割点;5. 最终得到使得基尼系数最小的特征和分割点作为最佳的分割点。
5. 结语CART最佳分割点算法是决策树构建过程中的关键步骤,通过有效地寻找最佳的分割点,可以构建出具有良好泛化能力的决策树模型。
经典算法CART

经典算法CARTCART(Classification And Regression Trees)是一种经典的算法,用于建立分类和回归树模型。
它是由Leo Breiman在1984年首次提出的,目前被广泛应用于数据挖掘和机器学习领域。
CART算法基于决策树的思想,可以将输入数据集分割成多个小的子集,每个子集代表一个决策树节点。
通过对特征的选择和分割,可以使得每个子集的纯度更高,即同一类别的样本更多。
最终,CART算法会生成一棵满足纯度要求的决策树模型。
CART算法的主要步骤如下:1. 特征选择:CART算法使用其中一种准则来选择最佳的特征。
常用的准则包括基尼指数(Gini index)和信息增益(information gain)。
基尼指数衡量了数据集的不纯度,而信息增益衡量了特征对数据集纯度的贡献程度。
选择具有最大基尼指数或信息增益的特征作为当前节点的划分特征。
2.划分数据集:根据划分特征的取值将数据集分成多个子集。
对于离散特征,每个取值对应一个子集;对于连续特征,可以选择一个划分点将数据集分成两个子集。
3.递归建立子树:对每个子集,重复步骤1和步骤2,递归地建立子树。
直到达到停止条件,例如达到最大深度或纯度要求。
4.剪枝处理:为了避免过拟合,CART算法会对生成的决策树进行剪枝处理。
根据其中一种评估准则,剪去部分子树或合并子树。
CART算法具有一些优点,使得它成为一种经典的算法。
首先,CART算法可以处理离散特征和连续特征,非常灵活。
其次,CART算法生成的决策树易于理解和解释,可以用于预测和决策解释。
此外,CART算法还能处理多分类和回归问题。
然而,CART算法也存在一些限制。
首先,CART算法只能生成二叉树,即每个节点只有两个分支。
这可能会导致决策树过于复杂,需要更多的分支来表示复杂的决策边界。
其次,CART算法在处理高维数据和数据不平衡的情况下可能会遇到困难,需要进行特殊处理。
总结起来,CART算法是一种经典的算法,用于建立分类和回归树模型。
随机森林算法原理和步骤

随机森林算法原理和步骤随机森林算法是一种集成学习方法,它基于决策树构建而成。
随机森林算法的原理是通过构建多个决策树,并将它们集成在一起来进行预测,以提高模型的准确性和鲁棒性。
下面我会详细介绍随机森林算法的原理和步骤。
首先,随机森林算法的原理是基于Bagging(Bootstrap Aggregating)和随机特征选择。
Bagging是一种集成学习方法,它通过随机采样训练数据集来构建多个模型,再将这些模型的预测结果进行平均或投票来得到最终的预测结果。
随机特征选择是指在构建每棵决策树的过程中,对特征进行随机选择,以增加每棵树之间的差异性。
接下来是随机森林算法的步骤:1. 数据准备,首先,需要准备训练数据集,包括特征和标签。
2. 随机采样,从训练数据集中随机选择一定比例的样本,采用有放回的方式进行抽样,构成新的训练数据集。
3. 特征随机选择,对于每棵决策树的构建,从所有特征中随机选择一部分特征,以增加每棵树之间的差异性。
4. 决策树构建,使用随机选择的特征和随机采样的训练数据集来构建决策树,可以采用CART(Classification and Regression Trees)算法或者ID3(Iterative Dichotomiser 3)算法。
5. 集成预测,对于新的样本,将其输入到每棵决策树中进行预测,最后将所有树的预测结果进行平均或投票来得到最终的预测结果。
随机森林算法的优点包括能够处理高维数据和大规模数据集,具有较好的泛化能力,对缺失值不敏感,并且能够评估各个特征的重要性。
然而,随机森林算法在处理噪声较大的数据集时可能会过拟合,且对于稀有类别的预测效果可能较差。
总的来说,随机森林算法通过构建多棵决策树并进行集成预测,能够有效提高模型的准确性和鲁棒性,是一种非常实用的机器学习算法。
随机森林

随机森林定义:随机森林是一个分类器,它有一系列的单株树决策器{h (X,,θk );k=1,......}来组成,其中{θk }是独立同分布的随机变量。
再输入X 时,每一棵树只投一票给它认为最合适的类。
在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定,构成随机森林的基础分类器称为决策树。
Leo Breiman 和Adele Cutler 发展出推论出随机森林的算法。
这个术语是1995年由贝尔实验室的Tin Kam Ho 所提出的随机决策森林(random decision forests )而来的。
这个方法则是结合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"" 以建造决策树的集合。
随机森林是一个组合分类器,构成随机森林的基础分类器是决策树。
决策树算法决策树可以视为一个树状预测模型,它是由结点和有向边组成的层次结构。
树中包含3个节点:根节点。
内部节点,终节点(叶子节点)。
决策树只有一个根节点,是全体训练集的结合。
树中的每个内部节点都是一个分裂问题,它将到达该节点的样本按某个特定的属性进行分割,可以将数据集合分割成2块或若干块。
每个终结点(叶子节点)是带有分裂标签的数据集合,从决策树的根节点到叶子节点的每一条路径都形成一个类;决策树的算法很多,例如ID3算法,CART 算法等。
这些算法均采用自上而下的贪婪的算法,每个内部节点选择分类效果最好的属性进行分裂节点,可以分为两个或若干个子节点,继续此过程到这可决策树能够将全部训练数据准确的分类,或所有属性都被用到为止。
具体步骤如下:1)假设T 为训练样本集。
2)选择一个最能区分T 中样本的一个属性。
3)创建一个数的节点,它的值是所选择的属性,创建此节点的子节点,每个子链代表所选属性的唯一值,适用子链的值进一步将样本细分为子类。
大数据经典算法CART讲解

大数据经典算法CART讲解CART(分类与回归树)是一种经典的机器学习算法,用于解决分类和回归问题。
它是由Leo Breiman等人在1984年提出的,是决策树算法的一种改进和扩展。
CART算法的核心思想是通过将输入空间划分为多个区域来构建一棵二叉树,每个区域用于表示一个决策规则。
CART算法的整个过程可以分为两个部分:生成和剪枝。
在生成阶段,CART算法通过递归地将数据集切分为两个子集,直到满足一些停止条件。
在剪枝阶段,CART算法通过剪枝策略对生成的树进行剪枝,以防止过拟合。
生成阶段中,CART算法的切分准则是基于Gini系数的。
Gini系数衡量了将数据集切分为两个子集后的不纯度,即数据集中样本不属于同一类别的程度。
CART算法通过选择Gini系数最小的切分点来进行切分,使得切分后的两个子集的纯度最高。
剪枝阶段中,CART算法通过损失函数来评估子树的贡献。
损失函数考虑了子树的拟合程度和子树的复杂度,以平衡模型的拟合能力和泛化能力。
剪枝阶段的目标是找到一个最优的剪枝点,使得剪枝后的子树的整体损失最小。
CART算法具有许多优点。
首先,CART算法可以处理多类别问题,不需要进行额外的转换。
其次,CART算法能够处理混合类型的数据,比如同时具有连续型和离散型特征的数据。
此外,CART算法能够处理缺失数据,并能够自动选择缺失数据的处理方法。
最后,CART算法生成的模型具有很好的可解释性,可以直观地理解决策过程。
然而,CART算法也存在一些不足之处。
首先,CART算法是一种贪心算法,通过局部最优来构建模型,不能保证全局最优。
其次,CART算法对输入特征的顺序敏感,不同的特征顺序可能会导致不同的模型结果。
此外,CART算法对噪声和异常值很敏感,可能会导致过拟合。
在实际应用中,CART算法广泛应用于分类和回归问题。
在分类问题中,CART算法可以用于构建决策树分类器,对样本进行分类预测。
在回归问题中,CART算法可以用于构建决策树回归器,根据输入特征预测输出值。
随机森林及CART的算法讲解

随机森林
随机森林的基本思想: 通过自助法(boot-strap)重采样技术,不断
生成训练样本和测试样本,由训练样本生成多个分 类树组成随机森林,测试数据的分类结果按分类树 投票多少形成的分数而定。
随机森林有两个重要参数: 一是树节点预选的变量个数; 二是随机森林中树的个数。
分类器组合
• AdaBoosting(Adaptive Boosting)
• 样本: (X, y)
– y为分类 => 分类树 – y为实数 => 回归树
• 设t代表树的某个节点,t中的样本集合为:{(X1,y1),
(X2,y2) …},应变量为实数,N(t)是节点t中的样本个数。
节点t的应变量的均值:
y
1 N (t) N (t) i1,Xit
yi
• 节点t内的平方残差最小化 (squared residuals
随机森林算法
• 随机森林算法是Leo Breiman于2001年提 出的一种新型分类和预测模型,它具有需要 调整的参数较少、不必担心过度拟合、分 类速度很快, 能高效处理大样本数据、能估 计哪个特征在分类中更重要以及较强的抗 噪音能力等特点, 因此, 在基因芯片数据挖 掘、代谢途径分析及药物筛选等生物学领 域得到应用并取得了较好的效果。该方法 是基于决策树(decision tree) 的分类器 集成算法。
• 森林中单颗树的分类强度(Strength): 每颗树的分类强度越大,则随机森林的分 类性能越好。
• 森林中树之间的相关度(Correlation): 树之间的相关度越大,则随机森林的分类 性能越差。
ID3和cart的算法区别
• CART是L.Breiman等人在1984 年提出的决策树算法, 其原理与ID3相似,在CART中提出了杂度削减的概念, 按杂度削减最大分裂节点生长决策树,与ID3不同的是, CART最终生成二叉树,然后利用重采技术进行误差估计 和树剪枝,然后选择最优作为最终构建的决策树。这些算 法均要求训练集全部或一部分在分类的过程中一直驻留在 内存中。
cart算法

cart算法
cart算法,全称Classification and Regression Trees,即分类与回归树算法,是一种基于决策树的机器学习算法。
cart算法可以用于分类问题和回归问题。
在分类问题中,cart算法根据特征值将数据集划分为多个子集,并通过选择一个最佳划分特征和划分阈值来构建决策树。
在回归问题中,cart算法根据特征值将数据集划分为多个子集,并通过选择一个最佳划分特征和划分阈值来构建回归树。
cart算法的核心思想是通过递归地选择最佳划分特征和划分阈值来构建决策树。
在每个节点上,通过计算基于当前特征和划分阈值的Gini指数(用于分类问题)或平方误差(用于回归问题)来评估划分的好坏,选择最小的Gini指数或平方误差对应的特征和划分阈值进行划分。
划分后的子集继续递归地进行划分,直到满足停止条件(如节点中的样本数小于预设阈值或达到最大深度为止),然后生成叶子节点并赋予相应的类别标签或回归值。
cart算法具有较好的拟合能力和可解释性,可以处理混合类型的特征和缺失值。
然而,cart算法容易过拟合,需要采取剪枝操作或加入正则化项来降低模型复杂度。
可以通过使用不同的评估标准和剪枝策略来改进cart算法,如基于信息增益、基尼系数、均方差等评估标准和预剪枝、后剪枝等剪枝
策略。
此外,也可以使用集成学习方法(如随机森林、梯度提升树)来进一步提高模型的性能。
大数据经典算法CART_讲解资料

大数据经典算法CART_讲解资料CART算法,即分类与回归树(Classification and Regression Tree)算法,是一种经典的应用于大数据分析的算法。
它将数据集按照特征属性进行划分,然后根据各个特征属性的分割点将数据集划分为多个子集,进而得到一个树形的划分结构。
通过分析划分特征和划分点的选择,CART算法能够高效地解决分类和回归问题。
对于分类问题,CART算法通过衡量不纯度(impurity)来选择划分特征和划分点。
常用的不纯度指标包括基尼指数(Gini index)和信息增益(information gain)。
基尼指数衡量了随机从一个样本集合中抽取两个样本,其中属于不同类别的概率;信息增益则使用熵(entropy)作为不纯度的度量标准。
CART算法会选择使得划分后的子集的纯度提升最大的特征属性和相应的划分点进行划分。
对于回归问题,CART算法通过最小化划分后的子集的方差来选择划分特征和划分点。
在每个内部节点上,CART算法选择使得划分后的子集的方差最小化的特征属性和相应的划分点进行划分。
CART算法的优点在于它能够处理高维数据和有缺失值的数据,具有较强的鲁棒性。
此外,CART算法构建的决策树具有可解释性,能够提供对数据的直观理解。
同时,CART算法还能处理不平衡类别数据和多类别问题。
然而,CART算法也存在一些不足之处。
首先,CART算法是一种局部最优算法,可能会陷入局部最优解而无法达到全局最优解。
其次,CART 算法不适用于处理连续型特征属性,需要对连续特征进行离散化处理。
此外,由于CART算法是自顶向下的贪心算法,因此容易过拟合,需要采用一些剪枝策略进行模型的修剪。
在实际应用中,为了提高CART算法的性能,可以使用集成学习方法如随机森林、梯度提升树等。
这些方法通过构建多个CART模型,并通过集成的方式来提高预测准确率和鲁棒性。
总结起来,CART算法是一种经典的大数据分析算法,适用于解决分类和回归问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、ID3算法
⒈ 对当前例子集合,计算各属性的信息增益; ⒉ 选择信息增益最大的属性Ak; ⒊ 把在Ak处取值相同的例子归于同一子集,Ak取几 个值就得几个子集; ⒋ 对既含正例又含反例的子集,递归调用建树算法; ⒌ 若子集仅含正例或反例,对应分枝标上P或N,返 回调用处。
Hale Waihona Puke 1 3ID3在建树时,每个节点仅含一个属性,是一种单变元的算法,属 性间的相关性强调不够。虽然它将多个属性用一棵树连在一起,但 联系还是松散的。
– 对每个样本赋予一个权重,代表该样本被当前分类器 选入训练集的概率,并根据预测函数的输出与期望输 出的差异调整权重:如某个样本点已被正确分类,则 它的权重减小,否则,它的权重增大;通过这种方式, 使得学习算法能集中学习较难判别的样本。 – 经过T轮训练,得到T个分类函数 {f1,f2,…,fT}及对应 的权重{1, 2,…, T},最终的分类规则为加权投票 法
• CART的全称是分类和回归树,既可以做分类算法,也可以做回归。 决策树的优缺点: 优点: 1.可以生成可以理解的规则。 2.计算量相对来说不是很大。 3.可以处理连续和种类字段。 4.决策树可以清晰的显示哪些字段比较重要 缺点: 1. 对连续性的字段比较难预测。 2.对有时间顺序的数据,需要很多预处理的工作。 3.当类别太多时,错误可能就会增加的比较快。 4.一般的算法分类的时候,只是根据一个字段来分类。
• 根据生成的多个树分类器对新的数据进行 预测,分类结果按每个树分类器的投票多少 而定。
• 随机森林通过在每个节点处随机选择特征 进行分支,最小化了各棵分类树之间的相 关性,提高了分类精确度。因为每棵树的 生长很快,所以随机森林的分类速度很快, 并且很容易实现并行化。
随机森林分类性能的主要因素
• 森林中单颗树的分类强度(Strength): 每颗树的分类强度越大,则随机森林的分 类性能越好。 • 森林中树之间的相关度(Correlation): 树之间的相关度越大,则随机森林的分类 性能越差。
ID3和cart的算法区别
• CART是L.Breiman等人在1984 年提出的决策树算法, 其原理与ID3相似,在CART中提出了杂度削减的概念, 按杂度削减最大分裂节点生长决策树,与ID3不同的是, CART最终生成二叉树,然后利用重采技术进行误差估计 和树剪枝,然后选择最优作为最终构建的决策树。这些算 法均要求训练集全部或一部分在分类的过程中一直驻留在 内存中。
• 样本: (X, y)
– y为分类 => 分类树 – y为实数 => 回归树
• 设t代表树的某个节点,t中的样本集合为:{(X1,y1), (X2,y2) …},应变量为实数,N(t)是节点t中的样本个数。 节点t的应变量的均值:
1 N (t ) y t yi N (t ) i 1, X i
CART
• 二元划分
– 二叉树不易产生数据碎片,精确度往往也会高于多 叉树,所以在CART算法中,采用了二元划分
• 不纯性度量
– 分类目标:Gini指标、Towing、order Towing – 连续目标:最小平方残差、最小绝对残差
• 剪枝:
– 用独立的验证数据集对训练集生长的树进行剪枝
CART- 回归树
• Bagging(Breiman,1996)
– 在训练的每一轮中,均从原始样本集S中有放回地随机 抽取训练样本集T(T的样本个数同S),这样一个初始 样本在某轮训练中可能出现多次或根本不出现( S中 每个样本未被抽取的概率为(1-1/|S|)|S|≈0.368,当|S|很 大时)。 – 最终的分类规则为简单多数投票法或简单平均法
CART 方法是由Breiman 等人在1984 年提出的 一种决策树分类方法[2]。其采用基于最小距离的基 尼指数估计函数, 这是因为基尼指数可以单独考虑 子数据集中类属性的分布情况, 用来决定由该子数 据集生成的决策树的拓展形状。CART 创建简单二 叉树结构对新事例进行分类, 这样可以有效地处理 缺失数据, 尤其对于分类与预测时更好。并且CART 方法中有贝叶斯分类的特征, 使用者可以提供主观 的分类先验概率作为选择分类的权重, 则CART 在 获得最终选择树前使用交叉检验来评估候选树的误 分类率, 这对分析复杂样本数据非常有用。CART 处 理离散变量与连续变量同样容易, 这是由于它使用 了或形状的几乎不依靠无关变量的分支。而且, 被 CART 考虑到的分支在任何单调转换下是不变的, 如对一个或更多的特征取对数、平方根等都是不 变的。 CART (Classification and Regression Tree, CART) 二叉树由根结点, 中间结点和叶( 终) 结点组成。每个
• 节点t内的平方残差最小化 (squared residuals minimization algorithm): ) N (t
SS (t )
i 1, X i t
( yi y (t ))2
CART- 回归树算法步骤示意
• CART_regression(DataSet, featureList, alpha, delta): – 创建根节点R – 如果当前DataSet中的数据的值都相同,则标记R的值为该值 – 如果最大的phi值小于设定阈值delta,则标记R的值为DataSet应变量 均值 – 如果其中一个要产生的节点的样本数量小于alpha,则不再分解,标记R 的值为DataSet应变量均值
(4)ID3对噪声较为敏感。关于什么是噪声,Quinlan的定
义是训练例子中的错误就是噪声。它包含两方面,一是属性值取
错,二是类别给错。
当训练集增加时,ID3的决策树会随之变化。在建树过程中,各
属性的信息增益会随例子的增加而改变,从而使决策树也变化。 这对渐近学习(即训练例子不断增加)是不方便的。
1 4
• 随机森林是通过一种新的自助法重采样技术生成 很多个树分类器, 其步骤如下: 1. 从原始训练数据中生成k个自助样本集, 每个 自助样本集是每棵分类树的全部训练数据。 2. 每个自助样本集生长为单棵分类树。在树的每 个节点处从M个特征中随机挑选m个特征 (m《M), 按照节点不纯度最小的原则从这个 m特征中选出一个特征进行分支生长。这棵分类 树进行充分生长, 使每个节点的不纯度达到最小, 不进行通常的剪枝操作。
ID3方法基本思想
首先找出最有判别力的属性,把样例分成多
个子集,每个子集又选择最有判别力的属性 进行划分,一直进行到所有子集仅包含同一 类型的数据为止。最后得到一棵决策树。
J.R.Quinlan的工作主要是引进了信息论中
的信息增益,他将其称为信息增益 (information gain),作为属性判别能力 的度量,设计了构造决策树的递归算法。
随机森林算法
• 随机森林算法是Leo Breiman于2001年提 出的一种新型分类和预测模型,它具有需要 调整的参数较少、不必担心过度拟合、分 类速度很快, 能高效处理大样本数据、能估 计哪个特征在分类中更重要以及较强的抗 噪音能力等特点, 因此, 在基因芯片数据挖 掘、代谢途径分析及药物筛选等生物学领 域得到应用并取得了较好的效果。该方法 是基于决策树(decision tree) 的分类器 集成算法。
• 自助法重采样 在统计量重采样技术中,一种新方法是自 助法(bootstrap)。自助法是从原始的样 本容量为N的训练样本集合中随机抽取N个 样本生成新的训练样本集,抽样方法为有 放回抽样,这样重新采样的数据集不可避 免地存在着重复的样本。独立抽样k次,生 成k个相互独立的自助样本集。
随机森林算法基本原理
• • • • • • • • •
CART 有良好的优越性, 但是, 并不是说在任何 情况下CART 方法都好。对于许多数据集, CART 方 法产生的树并不稳定。训练样本集的一点轻微改变 都可能完全改变树的结构, 这些特点存在于具有显 著相关特征的数据集中。在CART 中, 问题就转换为 在单个结点处存在几个分支, 而这几个分支在减少 子结点的所有复杂度方面几乎是等价的。从而一个 特定的分支选择是比较随意的, 但是它将导致更多 可能不同的树。这种不稳定性意味着使用者必须十分清楚 由CART 产生的树中特定特征的充分解释。另 • 一方面, 这一特点暗含着具有相似判别能力的不同树 • 的有用性, 它允许通过树的使用改变特征的选择。
随机森林
随机森林
随机森林的基本思想: 通过自助法(boot-strap)重采样技术,不断 生成训练样本和测试样本,由训练样本生成多个分 类树组成随机森林,测试数据的分类结果按分类树 投票多少形成的分数而定。
随机森林有两个重要参数: 一是树节点预选的变量个数; 二是随机森林中树的个数。
分类器组合
• AdaBoosting(Adaptive Boosting)