工程流体力学实验报告

合集下载

工程流体力学实验

工程流体力学实验
18
1.40
0
3.500
7.500
3.500
11.000
6.100
19
1.40
0
3.500
6.208
3.500
9.708
0.000
1.292
毕托管测速计算表
编号
6
8
12
14
16
18
备注
测速管读数
44.75
23.9
22.5
14.7
12
11
测压管读数
14.7
15.05
11.85
6.9
9.6
3.5
点流速u(cm/s)
三、使用仪器、材料
自循环供水器、恒压水箱、溢流板、稳水孔板、可控硅无级调速器、实验管道、流量调节阀、接水阀、接水盒、回水管测压计。
四、实验步骤
1、熟悉实验仪器,分清普通测压管和测速管及两者功能上的区别。
2、打开电源,启动供水系统,水箱供水至溢流,排净实验管道内的空气后关闭流量调节阀。检查所有的测压管液面是否齐平,若不平需查明原因并排除气体。
8、在均匀流断面上,推求测速管处的流速,将测试与计算成果列于表中。
水箱面高程 =47.60cm直径
实验装置图:
五、实验过程原始记录(数据、图表、计算等)
测点液面读数于断面能量转换的测算表单位:cm
测点
管径d
位置水头Z
压强水头p/γ
流速水头
测压管水头z+ p/γ
总水头H
测压管水头差△(z+ p/γ)
水头损失h=-=
如果自由表面压强p0与当地大气压pa压强相等时,液体内任一点相对压强可表示为:
式中:h为液体自由表面下任一点液体深度。

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

流体力学综合实验报告

流体力学综合实验报告

流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。

本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。

实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。

通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。

实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。

实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。

实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。

同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。

实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。

通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。

实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。

这表明不同液体的粘度是不同的。

实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。

实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。

同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。

结论:通过以上实验,我们深入了解了流体的性质和运动规律。

我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。

此外,我们还发现,流体的流量和流速之间存在一定的关系。

这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。

流体力学实验报告总结与心得

流体力学实验报告总结与心得

流体力学实验报告总结与心得1. 实验目的本次流体力学实验的目的是通过实验方法,对流体的流动进行定性和定量分析,掌握基本的流体流动规律和实验操作技能。

2. 实验内容本次实验主要分为两个部分:流体静力学的实验和流体动力学的实验。

在流体静力学实验中,我们测定了液体的密度、浮力、压力与深度的关系,并验证了帕斯卡定律。

在流体动力学实验中,我们测量了流体在管道中的速度分布,获得了流速与压强变化的关系,并通过管道阻力的实验验证了达西定理。

3. 实验过程与结果在实验过程中,我们依次进行了密度的测量、液体的浮力测定、压力与深度关系的测定、流速分布的测量和管道阻力的实验。

通过各项实验得到的数据,我们进行了数据处理和分析,得出了相应的曲线和结论。

在密度的测量实验中,我们使用了称量器和容量瓶,通过测定液体的质量和体积,计算出了液体的密度。

在测量液体的浮力时,我们使用了弹簧测量装置,将液体浸入弹簧中,通过测量弹簧的伸长量计算出液体所受的浮力。

在压力与深度关系的测定实验中,我们使用了压力传感器和水桶,通过改变水桶的水深,测量压力传感器的输出信号,得出了压力与深度的关系曲线。

在流速分布的测量实验中,我们使用了流速仪和导管,将流速仪安装在导管中不同位置,通过读出流速仪的示数,绘制出流速与导管位置的关系曲线。

在管道阻力的实验中,我们通过改变导管的直径和流速,测量压力传感器的输入信号,计算出阻力与流速的关系。

4. 结论与讨论通过以上实验和数据处理,我们得出了以下结论:1. 密度的测量实验验证了液体的密度与质量和体积的关系,得到了各种液体的密度数值,并发现不同液体的密度差异较大。

2. 测量液体的浮力实验验证了浮力与液体所受重力的关系,进一步加深了我们对浮力的理解。

3. 压力与深度关系的测定实验验证了帕斯卡定律,即液体的压强与深度成正比,且与液体的密度无关。

4. 流速分布的测量实验揭示了流体在导管中的流动规律,得到了流速随着导管位置的变化而变化的曲线,为后续的流体动力学研究提供了基础。

流动流体综合实验报告(3篇)

流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。

2. 学习使用流体力学实验设备,如流量计、压差计等。

3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。

4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。

二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。

直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。

局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。

直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。

局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。

三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。

2. 流量计:涡轮流量计。

3. 压差计:U型管压差计。

4. 温度计:水银温度计。

5. 计时器:秒表。

6. 量筒:500mL。

7. 仪器架:实验台。

四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。

2. 连接流量计和压差计,确保仪器正常运行。

3. 在实验台上设置实验管道,调整管道长度和管件布置。

4. 开启实验台水源,调整流量计,使流体稳定流动。

5. 使用压差计测量直管和管件处的压力差,记录数据。

6. 使用温度计测量流体温度,记录数据。

7. 计算直管摩擦阻力损失和局部阻力损失。

8. 重复步骤4-7,改变流量和管件布置,进行多组实验。

五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。

2. 记录不同流量下的压力差、流体温度等数据。

3. 计算直管摩擦阻力损失和局部阻力损失。

4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。

六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。

流体力学实验报告(全)

流体力学实验报告(全)

工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

流动状态(中国石油大学流体力学实验报告)

流动状态(中国石油大学流体力学实验报告)

中国石油大学(华东) 工程流体力学 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:实验六、流动状态实验一、实验目的1.测定液体运动时的沿程水头损失(f h )及断面的 平均流速(υ) ;2.绘制流态(f lg h —v lg )曲线图,找出下临界点并计算 临界雷诺数(Re c ) 的值。

二、实验装置本室验的装置如图所示。

本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。

在图1-6-1横线上正确填写实验装置各部分的名称图1-6-1 流态实验装置1. 稳压水性 ;2. 进水管 ;3. 溢流管 ;4. 试验管路 ;5. 压差计 ;6. 流量调节阀 ;7. 回流管线 ;8. 试验台 ;9. 蓄水线 ; 10. 抽水泵 ;11. 出水管三、实验原理 填空1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。

层流 特点是质点互不掺混,成线状流动。

在 紊流 中流体的各质点相互掺混,有脉动现象。

不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。

层流的沿程水头损失与断面平均流速的 一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2.0 ) 。

层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。

2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为 稳定流 ,此种情况下v 1=v 2。

那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程导出:221122f 12121212()()22()()p v p v h z z g gp pz z h h hγγγγ=++-++=+-+=-=∆h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。

3.雷诺数(Reynolds Number )判断流体流动状态。

雷诺数的计算公式为:Dv Re ν=D —圆管内径;v —断面平均速度;ν—运动粘度系数当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320;当cRe Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。

流体力学综合实验报告

流体力学综合实验报告

浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:流体力学综合实验指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:Ⅰ流体流动阻力的测定一、实验目的1)掌握测定流体流经直管、管件(阀门)时阻力损失的一般实验方法。

2)测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re的关系曲线。

3)测定流体流经管件(阀门)时的局部阻力系数ξ。

4)识辨组成管路的各种管件、阀门,并了解其作用。

二、试验流程与装置图 1 流体力学综合实验流程示意图三、基本原理1.流量计校核通过计时称重对涡轮流量计读数进行校核。

2.雷诺数求解Re=ρudμ (1)u=V900πd2 (2)式中:V----流体流量,m3ℎ⁄3.直管阻力摩擦系数λ的测定流体水平等径直管中稳定流动时,阻力损失为:ℎf=Δp fρ=λldu22 (3)即λ=2dΔp fρlu2 (4)式中:Δp f----直管长度为l的压降,Pa4.局部阻力系数ξ的测定阻力系数法:流体通过某一管件(阀门)时的机械能损失可表示为流体在管径内流动时平均动能的某一倍数,即:ℎf′=Δp f′ρg=ξu22g (5)即ξ=2Δp f′ρu2 (6)式中:Δp f′----局部阻力压力降,Pa局部阻力压力降的测量方法:测量管件及管件两端直管(总长度为l′)总的压降为∑Δp,减去其直管段的压降,该直管段的压降可由直管阻力Δp f(长度为l)实验结果求取,即Δp f′=∑Δp−l′lΔp f (7)四、实验步骤1)离心泵灌水,关闭出口阀(23),打开电源,启动水泵电机,待电机转动平稳后,把泵的出口阀(23)缓缓开到最大;2)对压差传感器进行排气,完成后关闭排气口阀,使压差传感器处于测量状态;3)开启旁路阀(24),选定自最小到最大若干流量,对流量计做流量校核试验;4)开启流量调节阀(21),先调至最大流量,然后在最小流量1m3ℎ⁄之间再连续取8组等比数据,每次改变流量,待流量稳定后,,记录压差、流量、温度等数据;5)实验结束,关闭出口阀(23),停止水泵电机,清理装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学
实验报告
学院:交通运输工程学院
班级:交通设备1206
姓名:邱瑞玢
学号:1104120907
雷诺数测定实验
【实验目的】
1. 观察水的层流和紊流的形态及特征;
2. 学习测量和计算流体的雷诺数和临界雷诺数。

【实验原理】
雷诺数是流体惯性力
L
υ
ρ2
与黏性力
L
v
2
μ的比值,它是一个无因次化的量。

R e =μρVl =l
l V l V 22
)/(2
μρ
雷诺说较小时,粘滞力对流场的影响大于惯性力,流场中流速的扰动会因粘滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于粘滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的紊流流场。

【实验内容】
1. 缓慢调节水量控制阀,观察透明水管中红色水流线的变化。

观察水的层流态、紊流态的
特征。

2. 找出层流和紊流转换临界点,在临界点测量水的流速,往复测量三次。

3. 根据测量数据计算出水的临界雷诺数。

【实验现象】
1. 当水流流速较低时,水管中水流处于层流状态,示踪剂(红色墨水)呈线状,无分散;
2. 逐渐开大控制阀,水流速度加大,呈线状流动的红色墨水开始出现波动,逐渐散开,这
时水流处于过渡状态;
3. 再开大控制阀,水流速度继续增大,红色墨水消失,此时水流处于紊流状态。

层流状态
紊流状态
【实验结果】
项目组别时间(s)水量(mL)
流量(mL/s)
流量均值120120060220110055320125062.51306002023070023.33
30720
24
从层流到紊流
从紊流到层流59.1
22.4
实验中,水流束的特征长度l=D=3CM,流速由公式D
2
π4q
v V =
求得,得到
V1=0.032m/s,V2=0.084m/s ,而水在标准大气压,室温时的动力粘度
s p 10
000.1a
-3
×∙=μ,则雷诺数
R e1 =μ
ρVD =960
R e2 =μ
ρVD =2520
【结果分析】
查阅资料可知一般管道雷诺数Re <2000为层流状态,Re >4000为紊流状态,Re =2000~4000为过渡状态。

而本次实验所测得的紊流状态下的雷诺数比理论值小,产生误差的原因为:
1. 偶然误差:观察出现偏差,将水流处于由层流向紊流的过渡状态当作紊流状态,从而测
得的水流速度偏小,造成所计算的雷诺数偏小。

2. 系统误差:示踪剂(红色墨水)很容易在水中扩散,当处于过渡状态时,由于水流开始
产生搅动,从而将红色墨水打散,扩散在水中,造成水流已处于紊流状态的假象,导致
误差产生。

文丘里管实验
【实验目的】
观察文丘里效应,学习文丘里管测量流量的原理和方法。

【实验原理】
文丘里效应,以其发现者,意大利物理学家文丘里(Giovanni Battista Venturi )命名。

这种效应是指在高速流动的气体附近会产生低压,从而产生吸附作用。

利用这种效应可以做出文丘里管。

文丘里管在现今科技发展中得到应用,因为其制造和维护成本比较低。

P 1+21v 12ρ+h g 1ρ=P 2+21
v 22ρ+h g 2ρ+ζ
基于文丘里效应制造的设备,叫做文丘里xxxx ,如文丘里水膜除尘器、文丘里扩散管、文丘里收缩管、文丘里喷射泵、文丘里流量计等。

【实验内容】
1. 认识文丘里管,并观察透明文丘里管内水流产生的文丘里效应。

2. 通过调节流量控制阀,设定高中低三种水流速度,分别测量对应流速下文丘里管的最大
压差,并且用量杯和秒表分别测量水流的真实流量。

3. 通过文丘里管和伯努利方程计算出水流速度,与用量杯秒表测量的真实流速对比,评估
文丘里管测量流量的准确性,讨论消除误差的方法。

【实验数据】
组别时间/s 水量/mL h1/cm h2/cm △h/cm 12572034.332.8 1.5220110031.426 4.63
10
950
26
12.2
13.8
【数据处理】
本次实验中,d1=40mm ,d2=10mm ; 由





P+
v 2
ρ1+gh ρ=C 可求得
【结果分析】
本次实验,由水柱高度差所求得的管内流速(非缩颈处)均比由水管出水流量所求得的管内
流速大,其误差原因来源于两方面: 1. 偶然误差:
(1) 在读取h1与h2的高度值时,读书出现偏差(仰视读数,俯视读数),造成△h 存在
偏差,进而导致v1,v2的计算出现误差;
(2) 在用量杯测取水量时,量杯的接入滞后于秒表开始记时,导致量杯水量偏少,进而
所求得的v1实测值偏小。

2. 系统误差:
实验室器材老化严重,在文丘里管缩颈与立管连接的地方,漏水较为严重,也就是说,所测得的h2要偏小,故△h 偏大,所求得的v1,v2也随之偏大。

漏水导致从水管末端接入量杯的水减少,由此求得的v1实测值也将偏小。

要提高文丘里管的测量精度,首先应该着眼于提高文丘里管的密封性,使其密封性达到一个相对来说密闭的状态;其次在文丘里管内部,在主管与缩颈的连接处应采用光滑连接,内壁尽量采用对流体粘滞力的材料,以减少水头损失,提高测量精度。

皮托管及伯努利方程应用实验
【实验目的】
1. 学习皮托管的使用方法。

2. 增强对伯努利方程的理解和认识。

【实验原理】
1. 伯努利方程:
流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。

这个理论是由瑞士数学家丹尼尔-伯努利在1738年提出的,被称为伯努利原理。

重力场中无粘性流体定常流动的能量方程称为伯努利定理。

或称为伯努利方程,是流体动力学基本方程之一。

P+
v 2
ρ2
1+gh ρ=C 2. 皮托管
皮托管是测量气流总压和静压以确定气流速度的一种管状装置,由法国H ·皮托发明而得名。

皮托管的构造如图,头部为半球形,后为一双层套管。

测速时头部对准来流,头部中心处小孔(总压孔)感受来流总压
p
,经内管传送至压力计。

头部后约3-8D 处的外套管壁上均匀地开有一排孔(静压孔),感受来流静压p ,经外套管也传送至压力计。

皮托管常用在测量通风管道、工业管道、炉窑烟道内的气流速度,经过换算来确定流量,也
可测量管道内的水流速度。

用皮托管测速和确定流量,有可靠的理论根据,使用方便、准确,是一种经典的广泛的测量方法。

此外,它也可用来测量流体的压力。

【实验内容】
1. 控制水量调节阀,分别调出高中低三种水流速度;
2. 在每一种速度下,用皮托管测量出水管内的动压;
3. 用量杯和秒表测量水管内的真实流量;
4.
分别计算出二中不同方法的测量结果并比较,讨论皮托管测量流速的优势和不足。

【实验数据】
组别时间/s 水量(mL)静压孔/cm 总压孔/cm △h/cm 15115020.427.77.3210135029.731.5 1.83
10
600
34.5
35
0.5
【数据处理】
由伯努利方程P+v 2
ρ21+gh ρ=C 可以推导出h 22
∆=g
v ,则得到:
V1=119.6cm/s;
V2=59.4cm/s; V3=31.1cm/s.
由量杯/秒表测得的水流量求得的流速: V1=114.4cm/s; V2=67.1cm/s; V3=29.8cm/s.
【结果分析】
由皮托管测得管内水流流速与从管末端通过量杯/秒表测得的管内水流流速有一定的出入。

首先这可能源于量杯/秒表方法测水流流速偶然误差发生的概率比较大,尤其是当水流流速很大的时候,秒表开始的时间与量杯接入的时间稍微有点不同步,就会导致极大的误差。

皮托管本身测量的误差就很小,质量越高的皮托管,其精度也越高,故其在实际中有很广泛的运用空间。

但是,皮托管必须是建立在一端伸入管内的基础上,所以拆装很不方便,灵活性差,不适用于在管道路线上进行随机测量。

相关文档
最新文档