定积分在物理中的应用

合集下载

定积分在物理中的某些应用

定积分在物理中的某些应用

解: 建立坐标系如图. 所论半圆的
方程为
(0 x R)
利用对称性 , 侧压力元素
dF 2 g x R2 x2 dx
端面所受侧压力为
F

R
0
2g
x
小R窄2 条x上2 d各x点的2压g 强R3 P g x3
2019年12月9日9时34分
上一页 下一页 主 页 返回 退出
2
由于质点在细杆的中垂线上,从而水平合力为零.
垂直方向合力为: Fx
l
2

kmMa
(a 2

x
2

)
3 2
dx
l 2
l
2019年12月9日9时34分
上一页 下一页 主 页 返回 退出
12
Fx
l
2

kmMa
(a 2

x
2
)

3 2
dx
l 2
l
2
l
2

kmMa
(a2

x2
3
对质点的万有引力.
y
解: 建立坐标系如图. 任取
a
[x , x dx] [ l , l ] , 22
则位于该区间上的细杆的质量为
M
dM dx .
于是它对质点
m
l
的引力的大小为

l 2
xdx
o x lx
2
dF

km dM r2

km a2 x2

M l
dx
.
2019年12月9日9时34分
窄条形所受的压力约为
O
A(0,3)

定积分物理应用公式

定积分物理应用公式

定积分物理应用公式定积分在物理学中有着广泛的应用,可以帮助我们计算一些重要的物理量,如质心、力矩和功等。

下面我们将分别介绍这些应用。

1. 质心的计算:质心是一个物体的平均分布位置,可以用定积分来计算。

对于一维情况下的质心计算,我们可以使用以下公式:质心位置x_c = (1/M) * ∫(x * dm)其中,M是物体的总质量,x是物体的位置,dm是质量元素。

通过对物体的质量进行微元的划分,然后对每个微元的位置乘以质量进行积分,就可以得到质心的位置。

2. 力矩的计算:力矩是一个物体受力时产生的转动效应,可以通过定积分来计算。

对于一维情况下的力矩计算,我们可以使用以下公式:力矩M = ∫(r x F) dx其中,r是力矩臂的长度,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,再乘以力矩臂的长度,就可以得到力矩的大小。

3. 功的计算:功是一个物体在受力作用下所做的功,可以通过定积分来计算。

对于一维情况下的功计算,我们可以使用以下公式:功W = ∫(F dx)其中,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,就可以得到功的大小。

以上是定积分在物理学中的一些应用。

通过定积分的计算,我们可以得到质心的位置,力矩的大小和功的大小,从而帮助我们更好地理解和分析物体的运动和受力情况。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

在实际应用中,我们可以通过测量和实验来获取所需的物理量,然后将其代入相应的定积分公式中进行计算。

这样可以帮助我们更好地理解物体的运动和受力情况,从而指导我们的实际操作和应用。

定积分在物理学中有着重要的应用,可以帮助我们计算质心、力矩和功等物理量。

通过定积分的计算,我们可以更好地理解和分析物体的运动和受力情况,从而指导我们的实际操作和应用。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

定积分在物理上的应用

定积分在物理上的应用

定积分在物理上的应用
一、变力做功
1.某质点受到F=6x2的力的作用,从x=0处移动到x=
2.0m处,求力F做了多少功
2.半径等于r的半球形水池,期中充满了水,把池内完全抽干,至少要做多少功?
3.地球质量M,半径为R,万有引力常量G,地球表面质量为m的物体具有的重力势能多大?
4.一质量为m的机动小车,以恒定速度v在半径为R的竖直圆轨道内绕“死圈”运动,已知动摩擦因数为μ,问在小车从最低点运动到最高点过程中,摩擦力做了多少功?
二、求位移或时间
5.蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心L1=1m 的A点处时,速度为v1=2cm/s。

问蚂蚁继续由A点爬到距离巢中心2m的B点需要多长时间?
三.求力
6.设有一竖直的阐门,形状是等腰梯形,尺寸如图所示,当水面齐闸门顶时,求闸门所受的水的压力
3m
7.有一密度为ρl,半径为r的半球放在盛有密度为ρ2的液体的容器底部,它与容器底部密切接触(即半球表面与容器底面间无液体),若液体深度为H,问半球体上表面所受压力是多大?
8.一根长为L的均匀直棒,其线密度为ρ在它的一端垂线上距直棒a处有质量为m的质点,求棒对质点一引力。

四、求转动动能
9.长为L,质量为m均质杆在水平面内以角速度ω绕通过杆端的竖直轴o转动,试求杆的动能
10一圆环质量为m,半径为R,绕它的一条直径为轴以角速度ω转动,求其动能
11.上题改为球壳,求球壳的动能
12.上题改为球体,求球的动能
五、证明正弦交流电的最大值的有效值的2倍。

定积分在物理学中的应用

定积分在物理学中的应用

定积分在物理学中的应用积分在物理学中作为一种“全局”而非局部的方法,能够用来求解许多复杂系统的总体属性,广泛地应用于物理学中各个方面,其中最常用的就是力学。

积分在力学中的应用主要有两个方面:求解力的动力学和求解位置的力学。

其中动力学通常应用导数,如布朗-特里安力学中的机械动力学,而位置力学则通常使用积分,像是拉格朗日力学的位置力学等。

布朗-特里安力学是一种建立在冯·诺依曼结构的物理学理论。

它主要用于描述与经典力相关联的系统,通过使用细分和积分来求解系统。

简而言之,使用导数和积分,就可以求出系统的运动方程。

而根据拉格朗日力学,可以得出一个系统的动力学特性,也就是说可以得出其运动轨迹方程。

积分在电磁学中也有重要的应用。

例如,世界著名的电磁学家盖伊·法拉第曾将电磁学的所有现象描述为电磁场的密度和磁场的流量,他提出了一个统一的方程——完全电磁学方程(Maxwell's equation),它将电磁波的表现形式写作∮⃗E.dt,其中⃗E为电场的强度矢量,把这个积分写成A=∫E⃗Adt⃗。

综上所述,Maxwell's equation可以用来求出电磁波在任何情况下的分布情况。

积分在物理学中也有许多应用,例如量子力学中的对称性分析。

量子力学中常使用到对称性和对称性分析,而积分正好可以帮助我们求出量子力学模型的特殊参数的值。

此外,积分还被广泛用于统计力学中,例如统计力学方程和各种热力学量的求解等。

总之,积分在物理学中有着广泛而重要的应用,使得物理学家可以更好地理解和探索现实物理世界。

历史上有着许多杰出物理学家,如爱因斯坦和爱迪生等,他们都在物理学领域有着杰出的贡献,而积分则是其中不可或缺的工具。

定积分在物理上的简单应用

定积分在物理上的简单应用

v /m/s
30
A
B
20
10
C t/s
oห้องสมุดไป่ตู้
10
20 30
40 50
60
图1.7 3
S 3tdt 30dt 1.5t 90dt
3 2 40 3 2 t 30t 10 t 90t 1350m. 2 0 4 40
10 60
答 汽车在这1min 行驶的路程是 1350m.
• 法二:由定积分的几何意义,直观的可以得出路程 即为如图所示的梯形的面积,即
30 60 s 30 1350 2
练习: 1. 物体以速度 v(t ) 3t 2 2t 3 (m/s) 作直线运动 , 它 在时刻 t 0 (s)到 t 3 (s)这段时间内的位移是( )m (A)9 (B)18 (C)27 (D)36
1.7.2 定积分在物理中的应用
1、变速直线运动的路程
设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
s v(t )dt
a
b
v
v v(t )
O
a
b
t
v /m/s
例: 一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
30
A
B
20
10
C t/s
o
10
20 30
40 50
60
图1.7 3
解 由速度 时间曲线可知 : 3t , 0 t 10 ; 10 t 40; vt 30 , 1.5t 90, 40 t 60. 因此汽车在这 1min 行驶的路 程是 :

定积分的应用于物理学

定积分的应用于物理学

定积分的应用于物理学定积分是微积分中一个极为重要的概念,它可以描述一个函数在一定区间内的面积。

除了数学上的应用之外,定积分在物理学中也有广泛的应用。

一、定积分在物理学中的应用1.速度和加速度在物理学中,速度和加速度是两个基本的物理量。

对于一个以某个加速度运动的物体,我们可以通过求解其速度关于时间的定积分来得到运动过程中的位移。

而得到位移后,我们还可以对它进行求导来获得速度和加速度的函数式。

2.质量和质心质量是物理学中另外一个基本的物理量,而质心则是一个系统的重心。

对于一个由若干个质点组成的系统,我们可以将每个质点的质量加起来,然后用质心的坐标来描述整个系统。

这个质心的坐标可以用各个质点坐标的定积分来求解。

3.力和功在物理学中,力是另一个基本的物理量。

对于一个物体在某个力场中做功,我们可以通过对力在某段距离上的积分来得到。

与此同时,我们也可以通过对某个物体所受多个力的叠加效应进行积分来得到最终的合力。

二、例子:牛顿第二定律牛顿第二定律是经典力学中的一个基本法则,它表明力等于物体质量乘以物体的加速度。

具体而言,我们可以用定积分来解决一个常见的牛顿第二定律问题。

假设一个物体受到一个恒定的力F作用,那么根据牛顿第二定律,我们可以得到以下方程:F = ma其中,a是物体的加速度,m是物体的质量。

为了求解这个方程,我们需要将其改写为以下形式:a = F/m这个定理告诉我们,当一个物体受到一个力的作用时,它的加速度是与它的质量成反比例的。

因此,我们可以用定积分来求解运动过程中的位移。

假设我们知道物体的初始速度v0和它所受的力F(t)关于时间t 的函数式,我们可以求出物体在某段时间内的加速度函数a(t)。

一旦我们知道了加速度函数,我们就可以将它关于时间的定积分求解出来,得到物体在受到力的作用下所走过的位移。

这个过程可以用以下公式来描述:x(t) = v0t + ∫0t a(t)dt其中,v0是物体的初始速度,a(t)是物体在受到力的作用下的加速度函数。

高等数学中定积分在物理学领域中的应用

高等数学中定积分在物理学领域中的应用

在物理学中,定积分是一种非常重要的数学工具,它被广泛应用于各种物理问题的建模与求解。

通过对定积分的运用,我们可以更好地理解物理现象,解释实验结果,并推导出物理定律。

本文将就高等数学中定积分在物理学领域中的应用展开探讨。

一、定积分在质心、转动惯量和力矩的计算中的应用在物理学中,质心、转动惯量和力矩是常见的物理量,它们的计算与定积分有着密切的联系。

1. 质心的计算质心是一个物体或系统的平均位置,其坐标可以通过下式进行计算:在这个公式中,x 表示物体上各个微小质量元的横坐标,f(x) 表示单位质量元在相应位置的质量密度。

通过对质心的计算,我们可以更好地理解物体的分布特性,分析物体的运动规律。

2. 转动惯量的计算转动惯量描述了物体对旋转的惯性大小,它可以通过下式进行计算:在这个公式中,r 表示物体上各个微小质量元到旋转轴的距离,f(r) 表示单位质量元在相应位置的质量密度。

转动惯量的计算在研究物体的旋转运动、平衡问题以及惯性驱动等方面具有重要意义。

3. 力矩的计算力矩是描述物体受到旋转影响的力的大小,它可以通过下式进行计算:在这个公式中,r 表示物体上各个微小质量元到旋转轴的距离,f(r) 表示单位质量元在相应位置的质量密度,F 表示施加在物体上的力。

力矩的计算在分析物体的平衡条件、弹性形变以及稳定性等方面有着重要的应用。

通过以上介绍,我们可以看到定积分在质心、转动惯量和力矩的计算中具有重要的应用价值,它为我们理解物体的运动特性提供了重要的数学工具。

二、定积分在牛顿第二定律、万有引力定律和电磁学中的应用牛顿第二定律、万有引力定律和电磁学中的一些重要公式也与定积分有着密切的联系。

1. 牛顿第二定律的应用牛顿第二定律描述了物体受到外力作用时的加速度大小与所受合外力成正比的关系,可以通过下式进行表达:在这个公式中,F 表示物体所受的合外力,m 表示物体的质量,a 表示物体的加速度。

通过定积分,我们可以更好地理解力的作用及其引起的加速度变化。

定积分在物理上的应用举例

定积分在物理上的应用举例
1 2
浅谈定积分的意义
纯粹几何图形而言,定积分的意义是由曲线、x轴,区间起点的垂直线x=a、
区间终点的垂直线x=b,所围成的面积。
也可以广义而言,定积分的几何意义就是“抽象的面积”。例如:如果横 轴是体积,纵轴是压强,“抽象面积”的意义是热力学系统对外做功; 如果横轴是时间,纵轴是电流,“抽象面积”的意义是电源对外放出的电 量、、、、、、 定积分是一种重要的数学思想,如今定积分思想广泛应用于物理、医学、 经济学、化工等领域,具有极大的应用价值。
上述公式计算,而是应用定积分思想,采用元素法来计算。
例.有一长度为L,密度为ρ的均匀细棒,在其中垂线上距棒a单位处有一质量为m
的质点M,计算该棒对质点M的引力。
解:建立坐标系
取y为积分变量,y∈[这一区间对应
y+dy],
的棒上小段可近似看成质点,
质量为ρdy,小段与质点的距 离为
定积分在物理上的应用举例
目录
1.用定积分求解平均功率问题 2.用定积分求解引力问题
一、平均功率问题
二、引力问题
质量分别为M、m的质点,相距r,两者间引力: 大小:
F K
Mm
方向:沿两质点的连线
r
2
如果要计算一根细棒对一个质点的引力,那么,由于细棒上各点与该
点的距离是变化的,且各点对该点的引力方向也是变化的,故不能用
THANK YOU
r
a
2

y
2
细杆对质点的引力:
dF k mρdy
a
2

y
2
水平方向的分力:
dFx dF cos( π - ) -dF cos a amρdy
a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3 设一半径为 r 的圆弧形导线,均匀带电,电荷
密度为 ,在圆心正上方距圆弧所在平面为 a 处有
一电荷为 q 的点电荷. 试求圆弧形导线与点电荷之
间的作用力.
解 把点电荷置于原点,z轴垂直向下,圆弧形导线
置于水平面 z a上. 根据
库仑定律,电量为q1 , q2
的两个点电荷之间
O g dFt
dFz dF
P
3
2 x
9 x2dx 18 .
0
=g (比重=重力加速度 密度)
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
注 当桶内充满液体时, 小狭条上的压强为
静压力 dP 2(R x) R2 x2 dx ,
故闸门所受静压力为
功与功率
4R R R2 x2 dx 0
的作用力为
F
kq1q2
2
.
数学分析 第十章 定积分的应用
高等教育出版社
r ag d
z
§5 定积分在物理中的应用
液体静压力
引力
功与功率
其中 为两点电荷之间的距离,k 是库仑常数.
把中心角为 d 的一小段导线弧看作一点电荷,其
电量为
dQ ds rd.
O g dFt
dFz dF
它对点电荷 q 的作用力为
dFy
dF
量为 m 的质点,试求细杆对 l / 2
O
质点的引力.
x l/2 x xdx
解 建立直角坐标系如图所示. 细杆位于 x 轴上的
l 2 ,l 2, 质点位于 y 轴上点 a .
任取
[ x , x Δx ] l 2 , l 2
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
高等教育出版社
后退 前进 目录 退出
§5 定积分在物理中的应用
液体静压力
引力
功与功率
由于在相同深度处水的静压强相同, 其值等于水的
比重与深度的乘积, 故当 Δx 很小时, 从深度 x 到 x
+dx 的狭条 ΔA 上所受的静压力为
Δ P dP x 2 9 x2dx,
而总静压力为各狭条所受的静压力之和, 因此
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
而 因此
dV
π 151
x 10
2
dx,
dW
π
x
15
1
x 10
2
dx
,
于是求得
W
225π
10 0
x
1
x 10
2
dx
1875π ( KJ ).
数学分析 第十章 定积分的应用
高等教育出版社
功与功率
§5 定积分在物理中的应用
W
I
2 0
R
T sin2 t dt,
0
数学分析 第十章 定积分的应用
高等教育出版社
T 2 ,
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
功与功率
功与功率
例4 一圆锥形水池, 池
口直径 30 米, 深 10米, 池中盛满了水. 试求将 全部池水抽出池外需作 的功? 解 如图建立直角坐标系.
O
15 y
x x+Δx
10
x
将池中深度为 x 到 x + Δx 的一薄层水抽到池口
所作的功 W 的微元为 dW xdV (KN).
力 dFt 互相抵消.而
dFz dF cos
a dF a2 r2
k raq(a2 r 2 )3 2d .
于是垂直方向的总合力为
O g dFt
dFz dFr ag dFra bibliotekFz
2 0
dFz
2 k raq
(a2 r 2 )3 2
.
z
这就是圆弧形导线与点电荷之间作用力的大小.
数学分析 第十章 定积分的应用
液体静压力
引力
功与功率
则其质量微元为 dM M dx. l
它对质点 m 的引力为
线密度
dF
kmdM r2
km a2 x2
M l
dx.
由于细杆上各点对质点m的引力方向不同, 因此不
能直接对 dF 积分, 为此将 dF 分解到 x 轴和 y 轴
两个方向上, 得
由 cos
dFx
sin
a
dF , dFy cos dF .
得垂直方向总合力为
a2 x2
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
功与功率
Fy
l
2 l
dFy
2
l 2
kmMa
0l
a2 x2 3 2 dx
2
l
2kmMa l
1 a2
x2 a2 x2
0
2kmM . a 4a2 l 2
负号表示合力与 y 轴方向相反.
sin
x a2
x2

l 2
,
l 2
上的奇函数,
l

Fx
2 l
dFx
=0
故dF细杆a对2km质x2点2 的Ml 引dx力. d大F小y 为cosF
dF2kmM a a 4a2 a2l 2
. x
2
dF
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
功与功率
§5 定积分在物理中的应用
液体静压力
引力
功与功率
液体静压力
例1 如图所示为管道 的圆形闸门(半径为 3 米). 问水平面齐及直 径时,闸门所受到的水 的静压力为多大(设水
的比重为 )?
O
x
x dx
3 x
y
A
解 取圆心为原点, 建立坐标系如图.
此时圆的方程为 x2 y2 9.
数学分析 第十章 定积分的应用
W
I
2 0
R
T sin2 t dt,
0
于是,平均功率为:
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
P W
I
2 0
R
T sin2 t dt
T 2 0
I02R
2 sin2 sds
I
2 0
R
2 1 - cos2sds
2 0
4 0
1 2
I
2 0
R.
功与功率
液体静压力
引力
功与功率
例5 求交流电 I (t ) I0 sint 的平均功率,其中 I0
表示电流的最大值.
解 显然,只须计算在一个周期上的平均功率. 这时
周期
T
2
,
功率Pt
I 2R
I02 R sin 2
t ,
其中
R是所使用的电器的电阻. 从时刻t到时刻t t
所作功的微元为 I02Rsin2 tdt. 一个周期所作功为
数学分析 第十章 定积分的应用
§5 定积分在物理中的应用
定积分在物理中 有着极其广泛的应用.在 物理问题中, 常遇到的物 理量具有连续性与可加性.
要求出某物理量 , 重要 的是找到d f ( x)dx,
然后应用微元法化为计算
b
a f ( x)dx.
一、液体静压力 二、引力 三、功与功率
*点击以上标题可直接前往对应内容
dF
kqdQ
2
k rq
a2 r2
d .
r ag d
z
把 dF 分解为 z 轴方向的分力 dFz 和水平方向的分
力dFt . 由于点电荷位于圆弧形导线的对称轴 Oz上,
数学分析 第十章 定积分的应用
高等教育出版社
§5 定积分在物理中的应用
液体静压力
引力
功与功率
且导线上的电荷密度恒为常数,因此水平方向分
奇函数
( x Rsin t)
4R x R2 x2 R2 arcsin x R
2
2
R0
R3
数学分析 第十章 定积分的应用
高等教育出版社
O
x
y
xdx
R
x
§5 定积分在物理中的应用
引力
液体静压力
例2 一根长为 l 的均匀细
引力
y
功与功率
杆, 质量为 M, 在其中垂线
a
dFx
上相距细杆为 a 处有一质
相关文档
最新文档