【数据库】ch6-theory-2
Theory_2_solutions

Copyright notice© 2006-2008 byWired Communications Group (Fachgebiet Leitungsgebundene Übertragungstechnik) Institute for Communications Engineering (LNT)Technische Universität München (TUM)D-80290 MünchenGermanyPhone: +49 89 23472ContentsTheoretical Background (4)1. Mach-Zehnder Modulators (4)1.1. Physical Background and Mathematical Modeling (4)1.2. Pulse shaping and Modulation (8)1.2.1. NRZ (8)1.2.2. RZ (9)1.2.3. CSRZ (13)1.2.4. Duobinary (13)Bibliography (14)Theoretical BackgroundAs we have seen in the first session of this simulation lab, it is difficult to generate intensity modulation by direct modulation of a semiconductor laser for high-speed communications (e.g. > 5 Gbit/s) due to the limited bandwidth of direct modulation. This problem can be solved if an additional optical component is introduced. The laser is then operated with a constant injection current, simply generating a constant light carrier. This carrier is modulated in a new device, the so-called external modulator . The most frequently used external modulator is applying a Mach-Zehnder interferometer structure, and is therefore called Mach-Zehnder Modulator (MZM). This device is investigated in the following.1. Mach-Zehnder Modulators1.1. Physical Background and Mathematical ModelingIn a MZM the incoming non-modulated carrier according to ˆ()c j t in E t E e ω=⋅ is first split up into two optical paths (see Fig. 1).Figure 1: General structure of a Mach-Zehnder Modulator (dual-drive configuration)The incoming light power is split up in the left Y-branch according to the power splittingratios 21κ and 211κ−, i.e. 11ˆˆ(0)in Ez E κ==⋅, ˆˆ(0)E z E ==. The waveguide is made of a special material showing a strong electro-optic effect, typically Lithium-Niobate (LiNbO 3). Due to this electro-optical effect the refractive index of LiNbO 3changes with an externally applied electrical voltage u(t) according to0()().EO n t n u t ς=+⋅ (2.1)Here n 0 is the refractive index without external field, EO ς models the strength of the electro-optical effect. As a consequence, the phase velocity of a propagating electrical wave is modified as /n c c n =, and thus the wave number k changes according to ()/n k c n ω=⋅, where c is the speed of light in vacuum. Therefore the phase shift of the waves propagating in branch 1 and 2 of the waveguide can be tuned by the applied voltages u 1(t) and u 2(t), respectively, resulting in111ˆˆ()(0)j E z L E z e ϕ−∆===⋅ and 2ˆˆ()(0)j E z L E z e ϕ−∆===⋅, (2.2)Session 22-5with ()11n k u L ϕ∆=⋅and ()22n k u L ϕ∆=⋅, respectively. The attenuation of the waveguidesis neglected for the sake of simplicity. 1ˆEand ˆE are then combined at the output of the device according to212ˆˆˆ()().out E E z L E z L κ=⋅=+= (2.3)22κ and 221κ− are the power splitting ratios of the Y-branch on the right-hand side inFig. 1. This results finally in the output field ()out E t according to1212ˆ()c j t j j out E t E e e e ωϕϕκκ−∆−∆ =⋅⋅+⋅. (2.4)Under the condition of symmetrical splitting, i.e. 221212κκ==, we get121ˆ().2c j t j j in E t E e e e ωϕϕ−∆−∆ =⋅+⋅ (2.5)It can be seen from (2.5) that, depending on the relative phases ∆ϕ1 and ∆ϕ2, neither amplitude nor phase of the outcoming field are modified. This becomes more obvious after a simple modification of (2.5), resulting in121212122221221ˆ()2ˆ cos .2c c j j j j t out j j t in E t E e e e e E e e ϕϕϕϕϕϕωϕϕωϕϕ∆−∆∆−∆∆+∆−−∆+∆− =⋅+⋅⋅= ∆−∆ =⋅⋅⋅(2.6)There is a linear relation between the phase shift difference ∆ϕ1 - ∆ϕ2 and the voltage difference u 1-u 2. Also, it is important to notice that these quantities are usually time-dependent. This leads us to()()()()()1212.u t u t t t u t V V πππϕϕπ−∆−∆=⋅=⋅ (2.7)The parameter V π denotes the voltage difference u(t) = u 1(t)-u 2(t) that generates a relative phase shift of π between upper and lower branch of the MZM. The phase term in (2.6) is now re-written as()()()()121222,u t u t t t j jV eeππϕϕ− ∆+∆−Θ⋅ −= where ()()()()()()()()12121212t t u t u t t t u t u t ϕϕϕϕ∆+∆+Θ==∆−∆−. (2.8)Substituting (2.7) and (2.8) into (2.6) finally results in()()()()12212ˆ()cos .2c u t u t j V j t out in u t u t E t E ee V ππωππ−−Θ⋅⋅− =⋅⋅⋅⋅(2.9)Lab on Simulation of Optical Communication Systems2-6 The parameter Θ is called the asymmetry factor of the dual-drive MZM. To make Θ a time-independent constant, u 1(t) and u 2(t) can no longer be selected independently, but are constrained by()()12()()()1,()1,22u t u t u t u t =⋅Θ+=⋅Θ− (2.10)with the definition: 1 1.−≤Θ≤The way the selection of the asymmetry factor Θ acts on u 1 and u 2 is depicted in Figure 2.Figure 2: Effect of the asymmetry factor ΘAs we can see from (2.9), if Θ = 0 is selected, i.e. u 1(t) = u(t)/2, u 2(t) = -u(t)/2, the modulator generates pure amplitude (or intensity) modulation without any time-dependent modification of the signal phase. If asymmetry is introduced by selecting Θ ≠ 0, the intensity modulation is not modified; however, an additional phase modulation is generated. This parasitical, time-dependent phase modulation modifies the instantaneous frequency of the light wave according to()().2c du t t V dtππωωΘ=−⋅⋅ (2.11)As we know from Session 1 of this course, this frequency chirp, i.e. the deviation ∆f(t) = ∆ω(t) / 2π of the instantaneous signal from the carrier frequency, has a negative influence on the propagating signal due to the chromatic dispersion of the fiber. Therefore, strong efforts are made generally to reduce this chirp to negligible values. As we could see above, selecting Θ = 0, i.e. u 2(t) = -u 1(t), results in chirp-free intensity modulation. This operation of the dual-drive MZM is called push-pull mode .Another solution is a re-design of the Mach-Zehnder modulator: If the poles of the applied voltage are changed according to Figure 3, the condition u 2(t) = -u 1(t) is met automatically. In this single-drive configuration the voltage difference u(t) is directly impressed on the modulator. In this session, we will only be using dual-drive MZMs.Session 22-7Figure 3: Single-drive Mach-Zehnder ModulatorIf the dual-drive MZM is operated in chirp-free mode, the electrical output field is simplygiven as()ˆˆ()cos ().2c c j t j t out inout u t E t E e E t e V ωωππ =⋅⋅⋅=⋅(2.12)From (2.12) it can be seen that the amplitude ˆ()E t depends on the input voltage u(t) according to a cosine function. The power P(t) of the modulated carrier is therefore calculated as222()ˆˆ()()()cos .2out in u t P t E t E t V ππ=⋅⋅ ∼(2.13)The curves relating ˆoutE and P with u are depicted in Figures 4 and 5. Figure 4: ˆoutE (normalized) as a function of input voltage u 1-1-1 1 2 3 41X X X 23Lab on Simulation of Optical Communication Systems2-8Figure 5: P (normalized) as a function of input voltage uThe operation point of the MZM is defined by applying a specific bias voltage. The points 1 (trough ), 2 (quadrature ) and 3 (crest ) marked in Figure 4 are used to generate specific optical modulation schemes. Of course any other adequate operation point could be selected due to the periodicity of the curves.1.2. Pulse shaping and ModulationDespite their simple working principle, Mach-Zehnder modulators are extremely versatile and can be used to create many different pulse shapes and modulation formats at very high bit rates. The curves depicted in Figures 4 and 5 are the key to creating the various transmitter configurations.In this lab session, we will concentrate on the pulse shapes Non-Return-to-Zero (NRZ ), Return-to-Zero (RZ ) with various duty cycles and Carrier-Suppressed Return-to-Zero (CSRZ ). As a modulation format, we will consider On-Off-Keying (OOK ). However, if you have some time left at the end of the session, you can try and use Mach-Zehnder Modulators to set up a DPSK transmitter.1 Lastly, we are going to experiment with a duobinary transmitter. Although duobinary is commonly referred to as a modulation scheme, strictly speaking, it is achieved by a combination of a logical precoder (so-called line coding ) with Amplitude Shift Keying (ASK).21.2.1. NRZA single MZM can be used to produce an NRZ OOK signal. The MZM is biased in the quadrature point, i.e. /2Bias u V π=−. The driving or modulation voltage mod u has a range of V π and produces NRZ pulses corresponding to the binary data stream.3 Table 1 summarizes these parameters. In Figure 6, the modulation voltage is depicted along the time axis (which is drawn shifted by Bias u ) for the bit sequence …010011….1There is a multitude of other pulse shapes (e.g. Chirped RZ – CRZ pulses) and modulation schemes (e.g. multilevel ASK, DPSK, DQPSK, D8-PSK, as well as combinations of ASK and PSK, etc.), whosetransmission properties are in the center of research attention. Some of these advanced transmission systems are already deployed in undersea optical communication links. The transmitter structures covered in this lab session, however, are still by far the most popular in current systems. 2Line coding (for which AMI codes are another example) is a technique used to equip the signal with certain desired properties in the time or frequency domain (spectral shaping ). It must be distinguished from channel coding, where redundancy is added to the signal in order to combat transmission errors at the receiver. 3Bias u can be regarded as the constant offset (bias) of u(t). Hence mod ()()Bias u t u u t =+.1-1 1 2 3 4Session 22-9Table 1: Voltage Parameters of a MZM producing OOK NRZ modulation1.2.2. RZCompared to the simpler NRZ pulses, Return-to-Zero (RZ) pulses have several advantages:• In long sequences of ones , RZ pulses still allow the receiver to recover the signal clock.• For the same pulse energy, the peak power is higher in RZ than in NRZ pulses, resulting in a higher SNR at the sampling instant.• Depending on the system configuration, RZ pulses can yield a better systemperformance than NRZ pulses. It is, however, difficult to make general statements about the performance gain of RZ over NRZ, as this gain depends on many system parameters such as signal power, filter bandwidths, fiber nonlinearities, dispersion1-1uV π-1 1 2 3 4Lab on Simulation of Optical Communication Systems2-10map and data rate. As a rough rule, it can be said that RZ plays out its advantages with increasing data rates and signal powers (i.e. higher fiber nonlinearities) [5]. These advantages, however, come at the cost of an increased transmitter complexity. To generate a signal with RZ pulses, a setup employing two MZMs is used (Figure 7). The first MZM, called the pulse carver (PC), is generating a train of identical pulses, which serve as an input to the second MZM, the data or gating modulator (DM). The purpose of the DM, which is configured as an NRZ OOK modulator as introduced in the previous section, is simply to block or let pass single pulses depending on the data to be transmitted.Figure 7: Setup of RZ transmitterThe pulse carver is driven by a cosine function. Depending on the bias voltage and the modulation voltage’s range and frequency, different types of RZ pulses can be generated. RZ pulses are characterized by their duty cycle , which is the pulse’s full width at half intensity relative to the bit slot duration. RZ33 denotes an RZ pulse with 33% duty cycle; RZ50 has 50% duty cycle. In contrast to these two, RZ67 pulses have an alternating field sign. They are covered in the next section.RZ50 Pulse GenerationTo produce RZ pulses with 50% duty cycle, the PC is driven with the parameters given in Table 2.Table 2: Voltage Parameters of a MZM producing RZ 50 pulsesQuestionWhat are A and B in ()mod cos u A B t =⋅⋅ if we want to produce RZ50 pulses for a 10Gbit/ssignal? Sketch the modulation voltage versus time in Figure 8.mod ()(),bias u t u u t =+ where /2bias u V π= andmod ()/2cos 210 GHz B A u t V t ππ=⋅⋅⋅Figure 8: Generation of RZ50 pulses (E (solid) and P (dashed) normalized)RZ33 Pulse GenerationRZ33 pulses are even narrower in the time domain than RZ50 pulses and accordingly have a broader spectrum. They can be generated using the parameters given in Table 3.Table 3: Voltage Parameters of a MZM producing RZ 33 pulsesBias u 0 (crest)mod u function Cosinemod u frequency Half the bit frequency (e.g. 5 GHz for a 10 Gbit/s signal) mod u range[];V V ππ−1.2.3. CSRZAt V π, the power P is minimum and the electrical field changes its sign. When the bias voltage is set to this point, a pulse carver driven by a cosine function will produce pulses that have alternating field signs. Therefore, the generated signal is DC-free (in the electric field domain). In the frequency spectrum, this property corresponds to an absence of discrete spectral components at the carrier frequency. For that reason, these pulses are called Carrier-Suppressed RZ (CSRZ). The parameters used to create CSRZ pulses are given in Table 4. The duty cycle of CSRZ pulses is 67%, so they are also called RZ67.Table 4: Voltage Parameters of a MZM producing CSRZ pulsesBias u V π (trough)mod u function Cosinemod u frequency Half the bit frequency (e.g. 5 GHz for a 10 Gbit/s signal) mod u range[];V V ππ−CSRZ pulses have the advantage of being quite robust against ISI caused by dispersion. To understand why, imagine two neighboring pulses spreading in time such that they overlap partly. Adjacent CSRZ pulses have contrary signs, so that ideally, they completely cancel. In the lab, this can be observed from a larger eye opening compared to other RZ pulses.1.2.4. DuobinaryDuobinary modulation is, strictly speaking, not a modulation format, but rather 3-level Amplitude Shift Keying (ASK) with a logical precoder. The values transmitted are 0P = (i.e. u V π=) for a logical zero, and 1normalized P = (i.e. 0u = or 2u V π=) for a logical one. The data modulator is therefore driven by a three-level (0,,2u V V ππ=) electrical NRZ signal. The transformation of the binary data sequence to a ternary sequence is achieved by a logical precoder, whose coding rule is as follows: • A logical zero is always coded as 0.• A logical one is coded as +1 or -1. If an odd number of zeros is transmitted, thesign of the following one is changed.The block diagram of a duobinary coder is depicted in Figure 9. Figure 9: Block diagram of duobinary precoderFor the system in Figure 9 to make sense, two conventions are important:The output of the XOR element is bipolar, i.e. a 1 is output as +1, a 0 as -1.The output of the total system will have an absolute amplitude of 2, i.e. to obtainthe duobinary code described above, we would have to divide by 2.The block diagram in Figure 9, however, illustrates the way duobinary signals are generated in OptiSystem . The first dotted box corresponds to the OptiSystem element Binary NOT , the second to the element Duobinary Precoder , and the third box corresponds to the Duobinary Pulse Generator .The example given in Table 5 will help clarify the principle.Table 5: Example of duobinary line codingA 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1B 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0C 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 D0 +2 0 -2 -2 -2 -2 0 0 -2 -2 0 0 0 +2 +2 0 -2The main advantage of duobinary modulation is its dispersion tolerance. In particular, isolated zeros (such as in …101…) cause the sign of the ones to change. Because of the opposed field signs, the neighboring pulses ideally cancel when leaking into the zero bit slot.Duobinary coding is usually used with NRZ pulses. Therefore, only one MZM is required at the transmitter. Because of the broad NRZ pulses used, duobinary signals have a narrow spectrum suitable for WDM systems with a small channel separation, which is another advantage.QuestionWhat bias voltage Bias u do you choose for duobinary modulation? Which values does mod u take (compare with Figure 6)?Bias u V π= (trough){}mod ,0,u V V ππ∈−Bibliography[1] N. Hanik; Optical Communication Systems, Lecture Notes at Technische UniversitätMünchen (TUM), 2008[2] G.P. Agrawal; Fiber-Optic Communication Systems, Third Edition, John Wiley &Sons, New York, 2002[3] E. Voges, K. Petermann (eds.); Optische Kommunikationstechnik, Springer, Berlin,2002[4] I. Kaminov, T. Li (eds.), Optical Fiber Telecommunications IV, Academic Press, SanDiego, 2002[5] P.J. Winzer, R.-J. Essiambre, Advanced Modulation Formats, Proceedings of theIEEE, Vol. 94, No. 5, pp. 952-985, May 2006。
db06

数据库系统及应用
6.14
金培权(jpq@)
二、函数依赖
什么是函数依赖 基本概念 平凡和不平凡的函数依赖
函数依赖集的闭包
属性集的闭包
最小函数依赖集
数据库系统及应用
6.15
金培权(jpq@)
1、什么是函数依赖?
函数依赖是指一个关系模式中一个属性集
F={A→BC, B→E, CD→EF}
AD→F对于函数依赖集F是否成立? A→BC(已知) A→C (分解律) AD→CD(增广律) CD→EF(已知) AD→EF(传递律) AD→F(分解律)
数据库系统及应用
6.23
金培权(jpq@)
(2)码的形式化定义
设关系模式R(U),F是R的一个FD集,X
T3
数据库系统及应用
A3
C6
6.11
N6
金培权(jpq@)
4、问题(4):删除异常
如果教师T3现在不带课了,则需将T3的元
组删去,但同时也把他的姓名和地址信息 删掉了
Tname T1 T1 T1 T2 T2 T3
数据库系统及应用
Addr A1 A1 A1 A2 A2 A3
001
002 003
张三
李四 王五
20
21 22
数 据 库
数据库系统及应用
6.4
金培权(jpq@)
问题的提出
如何把现实世界表达成数据库模式? 针对一个具体应用,应该如何构造一个适
合于它的数据库模式?
这是数据库的逻辑设计问题
关系数据库的模式设计理论是数据库逻辑
设计的理论基础
和另一个属性集间的多对一关系
例如选课关系SC(S#, C#, Score)
Ch6-鸽巢原理与Ramsey定理

使 mk1 = mk 2 = L = mk n+1 = i, 1 ≤ i ≤ n
15
n 2 + 1个实数 a 1 , a 2 , L , a n 2 + 1 组成的序列 例3: 任意 中, 必有一个长度为 n + 1 的单调递增或单调递减的子序列.
下面证明对应这些下标 k1 , k 2 , L , k n +1 的实数序列必满足
= (b1 + b2 + L + bi + bi +1 + L + b j ) − (b1 + b2 + L + bi ) = bi +1 + bi + 2 + L + b j
说明从第 i+1天到第j天这连续j-i天中,该棋手刚好下了21 盘棋。
9
例7: 设 a1 , a2 , a3 是3个任意整数, b1 , b2 , b3 是 a1 , a2 , a3 的 任一排列, 则 a1 − b1 , a2 − b2 , a3 − b3 至少有一个是偶数.
j +1
与 mk = mk 矛盾,从而可知 ak , ak ,L, ak 长度为 n + 1 的递减子序列。
j j +1
1
2
n +1
就是所存在的
16
例4: 网络服务器 一家公司有15台网络服务器和10个因特网端口,任意 时刻都不会有超过10台的服务器同时需要端口。每5分钟, 这些服务器的某个子集请求端口。若希望以这样的方式把每 一个服务器与某些端口相连接:使用尽可能少的连接,总是 确保一台网络服务器有一个存取端口(一个端口一次至多被 一个服务器使用),需要多少次连接? 例5:调制解调器 在15天的周期内,某调制解调器连接使用了300个小 时,则在连续3天的某个周期内,该调制解调器至少使用了 60个小时。
数据库原理及应用 chp2课后习题答案

2.1 试述关系模型的三个组成部分。 答:关系模型的三个组成部分为关系结构、关系操作和关系完整性约束。 在关系模型中,无论是实体集,还是实体集之间的联系均由单一的关系表示。关系模式
可以形式化地表示为:R(U,D,Dom,F),其中 R 为关系名,U 为组成该关系的属性集 合,D 为属性组 U 中属性所来自的域,Dom 为属性向域的映像的集合,F 为属性间数据的 依赖关系集合。
2.5 假定关系 R 和 S 分别有 n 和 m 个元组,试说明下列运算结果中的最小和最大元组个数:
(1) R U S
(2)R
S
(3)σ F (R) × S ,其中 F 是条件表达式 (4) Π L (R) − S ,其中 L 是属性集合
答:
(1) R U S 的结果,最大元组个数为 m+n,最小为 m( R ⊇ S )个或者 n( R ⊆ S )
属性)为候选码。当一个关系有多个候选码时,应选定其中的一个候选码为主码;而如果关 系中只有一个候选码,这个惟一的候选码就是主码。
设 F 是基本关系 R 的一个或一组属性,但不是关系 R 的主码(或候选码)。如果 F 与基 本关系 s 的主码 KS 相对应,则称厅是基本关系 R 的外码。
2)给定一组域 D1,D2,…, Dn.这些域中可以有相同的部分,则 D1,D2,…, Dn 的笛卡地积为:D1×D2×…×Dn﹦{(dl,d2,…,dn)∣di∈Di,i=1,2, …,n}。
说明:SC 自乘之后,同一个学号下两个课程号不同的元组 若修改为:检索至少选修一门课的学生学号
πSNO(SC)
(7) 检索全部学生都选修的课程的课程号和课程名;
π (C CNO,CNAME
(πSNO,CNO(SC)÷πSNO(S)))
Ch6 利率决定理论_货币银行学

I I (r )
古典利率理论:储蓄供给和投资需求决定了利率水平
iff : when r r * has S (r ) I (r ) r * is equilibrium interestrate
S S (r ) Md Ms Bd Bs S (r ) Bd I I (r ) I S I (r ) Bs Bd Bs I (r ) Bd
6.5 流动性偏好理论和利率
流动性偏好理论关注货币供给对利率的影响 6.5.1 流动性需求: • 货币需求:M/p=f(Y, i)
6.5.2 均衡利率:货币 需求和供给相等时的 利率
6.5 流动性偏好理论和利率
6.5 流动性偏好理论和利率
LP 理论是分析投资者行为和政府政策对经济和金融影响的一个 工具,它描述了中央银行如何影响短期利率
• 名义利率是以实际支付的货币数量计算的利率水平。 • 实际利率是即使不存在通货膨胀和风险的情况下借入者被 要求支付的利率水平。实际利率是纯粹的放弃一段时间货 币使用权所需的回报,由于时间具有价值,长期的资金出 让所得到的回报应高于短期资金出让所得到的回报。长期 利率也应高于短期利率。
6.3 古典利率决定理论
6.1 利率在经济中的作用 1. 利率是决定储蓄 向投资转化规模 的关键因素 2. 利率影响了储蓄 和信贷资源的分 配 3. 影响货币需求和 供给的主要因素 4. 一个重要的确定 其他金融工具的 价格的基准 (benchmark) 5. 一个重要的货币 政策工具或指标
6.2 利率的概念
• 利息是资金借入者向借出者支付的对后者一段 时间内出借一定数量资金的补偿。补偿的比率 就是利率
•
一些批评:
– 关于公众如何形成预期的模型不可信。 – 零交易成本假设不现实。 – 决策信息过于简单,难以认为基于这些信息的 决策是理性的行为。
第二章 粘附分子

(五) 纤维粘连蛋白二、免疫球蛋白超家族三、selectin家族(一) selectin分子的基本结构(二) selectin家族的组成(三) selectin分子识别的配体四、Cadherin家族(一) Cadherin分子的结构(二) Cadherin家族的组成和分布(三) Cadherin分子识别的配体五、其它未归类的粘附分子(一) selectin分子结合的配体(二) CD44第二节 粘附分子表达的调节一、粘附分子构型改变影响细胞的粘附作用(一) LFA-1分子构型改变对其粘附作用的影响(二) 其它粘附分子构型的改变对粘附作用的影响二、细胞粘附分子表达数量改变对粘附作用的调节第三节 粘附分子的功能一、炎症过程中白细胞与血管内皮细胞的粘附二、粘附分子与淋巴细胞的归巢(一) T细胞前体向胸腺的归巢(二) 淋巴细胞向外周淋巴器官的归巢(三) 淋巴细胞向非淋巴组织的归巢(四) 淋巴细胞归巢过程中激活粘附作用的分子三、粘附分子参与免疫细胞的识别作用四、粘附分子参与细胞发育、分化、附着及移动(一) 粘附分子参与细胞间的附着(二) 粘附分子参与细胞与基质的附着(三)粘附分子参与细胞的移动五、粘附分子与肿瘤(一) 粘附分子与肿瘤的浸润与转移(二) 粘附分子对杀伤细胞杀伤肿瘤细胞的影响(三) 粘附分子与肿瘤的诊断六、粘附分子与凝血(一) 粘附分子与动脉凝血(二) 粘附分子与静脉凝血七、粘附分子与细胞内信号传导(一) 粘附分子与细胞内酪氨酸磷酸化(二) 粘附分子与细胞膜磷酯酰肌醇代谢第四节 可溶性粘附分子(一) 可溶性L-selectin(sL-selectin)(二) 可溶性P-selectin(sP-selectin)(三) 可溶性E-selectin(sE-selectin)(四) 可溶性ICAM-1(sICAM-1)(五) 可溶性VCAM-1(sVCAM-1)参考文献(三) Cadherin分子识别的配体五、其它未归类的粘附分子(一) selectin分子结合的配体(二) CD44一、粘合素超家族国内将integrin译为粘合素、整合素等,本书暂命名为粘合素。
Ch06 The Theory of Consumer Choice(经济学,英文版-复旦,周翼)

Preferred region
d a
Dominated region
c
b
e
Quantity of meals
6.4
Modelling consumer preferences (3)
U2
An indifference curve like U2U2 shows all the consumption bundles that yield the same utility to the consumer
C E
H BL1
U2
U1 BL0
Meals
6.14
The substitution effect
H
Films
U2 U1 D
The SUBSTITUTION
EFFECT is from C to D
C E
H BL1
along U2U2.
U2
U1 BL0
Meals
– –
It is always negative a price increase leads
Four key elements in consumer choice
Consumer’s income
Prices of goods Consumer preferences The assumption that consumers maximize utility6.1源自The budget line
6.12
Response to a price change
The response to a price change comprises two effects: The SUBSTITUTION EFFECT
数据仓库与数据挖掘教程(第2版)课后习题答案第七章

数据仓库与数据挖掘教程(第2版)课后习题答案第七章第七章作业1.信息论的基本原理是什么?一个传递信息的系统是由发送端(信源)和接收端(信宿)以及连接两者的通道(信道)组成的。
信息论把通信过程看做是在随机干扰的环境中传递信息的过程。
在这个通信模型中,信息源和干扰(噪声)都被理解为某种随机过程或随机序列。
在进行实际的通信之前,收信者(信宿)不可能确切了解信源究竟会发出什么样的具体信息,也不可能判断信源会处于什么样的状态。
这种情形就称为信宿对于信源状态具有不确定性,而且这种不确定性是存在于通信之前的,因而又叫做先验不确定性。
在通信后,信宿收到了信源发来的信息,这种先验不确定性才会被消除或者被减少。
如果干扰很小,不会对传递的信息产生任何可察觉的影响,信源发出的信息能够被信宿全部收到,在这种情况下,信宿的先验不确定性就会被完全消除。
但是,在一般情况下,干扰总会对信源发出的信息造成某种破坏,使信宿收到的信息不完全。
因此,先验不确定性不能全部被消除, 只能部分地消除。
换句话说,通信结束之后,信宿仍具有一定程度的不确定性。
这就是后验不确定性。
2.学习信道模型是什么?学习信道模型是信息模型应用于机器学习和数据挖掘的具体化。
学习信道模型的信源是实体的类别,采用简单“是”、“非”两类,令实体类别U 的值域为{u1,u2},U 取u1表示取“是”类中任一例子,取u2表示取“非”类中任一例子。
信宿是实体的特征(属性)取值。
实体中某个特征属性V ,他的值域为{v1,v2……vq}。
3.为什么机器学习和数据挖掘的分类问题可以利用信息论原理?信息论原理是数据挖掘的理论基础之一。
一般用于分类问题,即从大量数据中获取分类知识。
具体来说,就是在已知各实例的类别的数据中,找出确定类别的关键的条件属性。
求关键属性的方法,即先计算各条件属性的信息量,再从中选出信息量最大的属性,信息量的计算是利用信息论原理中的公式。
4自信息:单个消息ui 发出前的不确定性(随机性)称为自信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1={A→B,A→C,BCD→E,B→D,A→D,E→A}
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
结论:一个给定的函数依赖集F的最小函数依赖集不是 唯一的。 原因:在求解过程中由于考察FD的次序的不同会产生不 同的结果,但一个函数依赖集F的所有最小函数依赖集 是等价的(都等价于F)。 例:F = { A→B, B→A, B→C, A→C, C→A } Fm1、Fm2都是F的最小依赖集: Fm1= { A→B, B→C, C→A } Fm2= { A→B, B→A, A→C, C→A }
(1) X ⊆ XF+ ;
数据库系统 – Principle of DataBase System
例:已知关系模式R<U,F>,其中U={A, B, C, D, E},F= {AB→C, B→D, C→E, EC→B, AC→B },求 (AB)F+。
}
(2) 逐一考察F中的FD,如果存在V→W∈F,且V中的全部 属性都出现在当前的XF+中,将属性组W并入XF+;
合并规则: 合并规则:{X→Y,X→Z } ╞ X→YZ。 证明: 已知(P规则) 证明 (1) X→Y (2) X→XY A2,(1) (3) X→Z 已知 (4) XY→YZ A2,(3) (5) X→YZ A3,(2),(4) ∴ {X→Y,X→Z } ╞ X→YZ
注: 合并规则属于逻辑推理规则,其证明方法属于逻辑推证,下 同。
函数依赖集的闭包
定义: 定义:在关系模式R<U,F>中为F所逻辑蕴含的函数依 赖的全体叫作 F的闭包(Closure),记为F+。
例: 已知R<U, F>,其中U={A, B, C},F={A→B, B→C}, 求关系模式R上的函数依赖集F的闭包F+。
解: F+= { Ф→Ф, A→Ф, A→A, …, AB→A, … //A1 A→B,A→AB,AB→B,…,ABC→BC,… //A2 B→C, AB→AC, …… //A2 A →C } //A3 注:本题F+共计43个不重复的FD。 |F+|属于NP完全问题
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
意义: 意义:给出了两个函数依赖集等价的判定方法。 定义: 定义:如果函数依赖集F满足下列条件,则称F为一个极 小函数依赖集。亦称为最小依赖集或最小覆盖。
(1) F中任一函数依赖的右部仅含有一个属性; (2) F中不存在这样的函数依赖X→A,使得F与F-{X→A}等 价; (3) F中不存在这样的函数依赖X→A,X有真子集Z使得 (F -{X→A} )∪{Z→A}与F等价。
6.3 数据依赖的公理系统
最小函数依赖集
数据库系统 – Principle of DataBase System
函数依赖集的闭包是给定FD所蕴涵的全部的属性间的函 数依赖关系。换一个角度,怎样用最少的函数依赖来表达全 部的属性间的依赖关系?这就是最小函数依赖集讨论的内容。
(充分性) 先证F+ ⊆ G+:任取Y∈XF+,根据闭包的定 义, F╞ X→Y,又因为F ⊆ G+,G+包含了所有F中的函数依 赖,X→Y也可以由G+逻辑地推出,即G+╞ X→Y。由闭包的 定义,G+可由G逻辑地推出,即G╞ G+,由A3知G╞ X→Y , 即Y∈XG+,故F+ ⊆ G+。同理可证G+⊆F+,即F+=G+。
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
定理: 定理:设F为属性集U上的一组函数依赖,X,Y ⊆ U, X→Y能由F 根据Armstrong公理导出的充分必要条件是 Y ⊆XF+。
证明: 证明:(充分性)设Y=A1A2…Am, 且Y ⊆XF+。由XF+的定义知 X→Ai(i=1,…,m)逻辑地推出,由并规则得X→ A1A2…Am, 即 X→Y。 (必要性) 设F╞ X→Y,由分解规则,X→Ai(i=1,…,m), 由XF+的定义得A1A2…Am ∈ XF+,即Y⊆XF+。
最小函数依赖集求解算法: 最小函数依赖集求解算法:
(1) 对F中每一函数依赖X→Y ,若Y= A1A2…Am(m≥2), 则用{ X→Ai | i=1,…,m }替换X→Y ;(等价变换) (2) 对F中每一函数依赖X→A,若X= B1B2…Bn,逐一考察 Bi,若A∈(X-Bi)F+,则用(X-Bi)→A替换X→A,Bi 称为无关属 性;(等价变换) (3) 对于F中的每一函数依赖X→A,若A ∈XF-{X→A}+,则从 F中去掉X→A。 (等价变换)
(1) 令X (0)=X,i=0; (2) 令X(i+1)=X(i)∪{ A |(∃V)( ∃W)(V→W∈F∧V ⊆X(i)∧A∈W)}; (3) 若已没有V→W ∈F,使得X(i+1) ≠ X(i),算法结束, XF+=X(i);否则,令i=i+1,转(2)。
6.3 数据依赖的公理系统
解:(AB)F+= {ABCDE
数据库系统 – Principle of DataBase System
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
定理: 定理:X→A1A2…Ak成立的充分必要条件是X→Ai成立(i=1, 2, …,k)。 证明方法:由分解规则证必要性,合并规则证充分性。 (作业:证明此定理)
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
的意义: F+的意义:包含了给定函数依赖集F(部分)所蕴涵的属性集U 上的全部函数依赖。 缺点: 缺点:这些依赖信息太多太庞杂,很难管理和利用。
属性集的闭包 定义: 定义:设F为属性集U上的一组函数依赖,X ⊆U, X关 于函数依赖集F 的闭包(closure of X under F ) XF+ ={ A | X→A能由F 根据Armstrong公理导出}。 的算法: 求XF+的算法:
注:A1属于逻辑推理规则,其证明方法属于语义证明,下同。
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
(A2)增广律(Augmentation): 增广律(Augmentation): 增广律 若F╞ X→Y,Z ⊆U,则F╞ XZ→YZ。 证明:对于关系模式R<U,F>的任一关系r中的任意两个元 证明 组t和s,若t[XZ]=s[XZ];则有t[X]=s[X]和t[Z]=s[Z];由 X→Y,则有t[Y]=s[Y];所以t[YZ]=s[YZ],故F╞XZ→YZ。 (A3)传递律(Transitivity): 传递律( 传递律 Transitivity): 若F╞ X→Y, F╞ Y→Z ,则F╞ X→Z。 证明:对于关系模式R<U,F> 的任一关系 r中的任意两个 证明 元组 t和s,若t[X]=s[X],由于X→Y,有 t[Y]=s[Y];再由 Y→Z,有t[Z]=s[Z],所以F ╞ X→Z。 注:自反律(A1)是平凡的函数依赖,与函数依赖集F无关, 是关系自身就有的性质。 定理:以上三条推理规则是正确的。(已证明) 定理
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
定理: 定理:每一函数依赖集F均与其对应的最小函数依赖集 Fmin等价。(构造性证明,在构造Fmin的过程中每一步变 换都是等价的)
例:设关系模式R(ABCDE) 上的函数依赖集F={A→BC, BCD→E, B→D, A→D, E→A},求F的最小函数依赖集。 解:① 对每个函数依赖右部属性分离,得: ② 去掉左部冗余属性 ∵ (BC)+=BCDEA,包含E,BCD→E中的D人为冗余 属 性,以BC→E取代BCD→E,得: F2={A→B,A→C,BC→E,B→D,A→D,E→A} ③ 去掉多余函数依赖 ∵ A→B, B→D可以得到A→D,故A→D多余,去 掉,得Fmin={A→B, A→C, BC→E, B→D, E→A}
6.3 数据依赖的公理系统
分解规则: 分解规则: {X→Y,Z ⊆Y } ╞ X→Z。 证明: 已知 证明: (1) X→Y (2) Z ⊆Y 已知 (3) Y→Z A1 (4) X→Z A3,(1),(3) ∴ {X→Y,Z ⊆Y } ╞ X→Z 伪传递规则: 伪传递规则:{X→Y, WY→Z } ╞ WX→Z。 证明: 已知 证明: (1) X→Y (2) WX →WY A2,(1) (3) WY→Z 已知 (4) WX→Z A3,(2),(3) ∴ {X→Y, WY→Z } ╞ WX→Z
定义: 定义:假设在关系模式R<U, F>上有两个函数依赖集F 和G。如果F+=G+,则称F和G是等价的,或称F与G相 互覆盖。 定理: 定理:F+=G+,当且仅当F⊆G+且G⊆F+。 证明: 证明:(必要性) 任给一个FD:X→Y ∈F,则X→Y ∈F+,又 由F+=G+,得X→Y∈G+,故F ⊆ G+;同理可证G ⊆ F+。
(3) 当当前的XF+包含全部属性U,或者按(2)重新遍历F而没 有对当前XF+ 增加任何属性时算法结束。
6.3 数据依赖的公理系统
数据库系统 – Principle of DataBase System
设X(0)=AB; 逐一的扫描F集合中各个函数依赖,找左部为A、B或 AB的函数依赖,有AB→C,B→D,于是 X(1)=AB∪CD=ABCD。 因为X(0)≠X(1),所以再找出 左部为ABCD子集的那些函数依赖,又得到AB→C, B→D,C→E,AC→B,于是X(2)= X(1)∪BCDE=ABCDE。 因为X(2)=U,算法终止, (AB)F+ =ABCDE。