初中数学二次函数精选题

合集下载

二次函数测试题及答案

二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。

答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。

初中二次函数经典例题20题

初中二次函数经典例题20题

以下是20个初中二次函数的经典例题:1. 已知二次函数y=x^2-2x-3,求出这个函数的对称轴、顶点坐标和开口方向。

2. 已知二次函数y=ax^2+bx+c的图像经过点(1,0),(0,3),且对称轴为x=2,求这个函数的解析式。

3. 已知二次函数y=x^2+mx-n的图像与x轴交于点(1,0)和(x2,0),求m和n的值。

4. 已知二次函数y=x^2-6x+8,求出这个函数的最大值和最小值。

5. 已知二次函数y=-x^2+4x-3,求出这个函数的顶点坐标、对称轴和开口方向。

6. 已知二次函数y=ax^2+bx+c的图像经过点(2,0)、(4,0)和(1,3),求这个函数的解析式。

7. 已知二次函数y=x^2-8x+12,求出这个函数的对称轴、顶点坐标和开口方向。

8. 已知二次函数y=ax^2+bx+c的图像与x轴交于点(x1,0)和(x2,0),且x1<x2,当自变量为何值时,函数值为0?9. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(1,1)和(-1,3),求这个函数的解析式。

10. 已知二次函数y=x^2-4x+1,求出这个函数的最大值和最小值。

11. 已知二次函数y=-x^2+6x-8,求出这个函数的顶点坐标、对称轴和开口方向。

12. 已知二次函数y=ax^2+bx+c的图像与x轴交于点(m,0)和(n,0),且m<n,当自变量为何值时,函数值为0?13. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(4,0)和(2,3),求这个函数的解析式。

14. 已知二次函数y=x^2-2mx+m^2-m,求出这个函数的对称轴、顶点坐标和开口方向。

15. 已知二次函数y=-x^2+8x-15,求出这个函数的最大值和最小值。

16. 已知二次函数y=ax^2+bx+c的图像经过点(m,0)和(n,0),且m>n,当自变量为何值时,函数值为0?17. 已知二次函数y=ax^2+bx+c的图像经过点(0,0)、(4,0)和(-2,-5),求这个函数的解析式。

(专题精选)初中数学二次函数全集汇编及答案

(专题精选)初中数学二次函数全集汇编及答案

(专题精选)初中数学二次函数全集汇编及答案一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<1【答案】D【解析】【分析】根据已知条件求出抛物线与x轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.所以答案为:D.【点睛】此题考查抛物线的性质,利用对称轴及图象与x轴的一个交点即可求出抛物线与x轴的另一个交点坐标.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a﹣2b+c>0;②3a+b>0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.故选:B .【点睛】 本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x +=m+1, ∴x 2+x 3=2m+2, ∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m , ∴x 1+x 2+x 3=﹣2m+2m+2=2,故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.7.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位.故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.8.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=14m m -,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.9.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.10.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12AB•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.故选:D.【点睛】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.13.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.15.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A(-5,y1),B(2.5,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.故选:C.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.19.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A.B.C.D.【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a >0,c <0,b >0, ∴, 故③错误; ∵.∴B (-c ,0)∴抛物线y=ax 2+bx+c 与x 轴交于A (-2,0)和B (-c ,0)两点, ∴, ac 2-bc+c=0 ∴,ac-b+1=0, ∴,故②正确; ∴,b=ac+1 ∴,∴2b-c=2,故①正确;故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P的横坐标相同,把x=1代入得:解得:y=12 -,平移的最短距离为152=22⎛⎫--⎪⎝⎭,即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。

(易错题精选)初中数学二次函数经典测试题附解析

(易错题精选)初中数学二次函数经典测试题附解析

(易错题精选)初中数学二次函数经典测试题附解析一、选择题1.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:)2x BF x CM 2-==,.∴.故选A .2.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.3.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意. 当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点,故选:B .【点睛】 考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.4.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1,∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .5.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.6.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】 由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =,故可得4,0a b c -==①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.7.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.8.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a【答案】C【解析】【分析】 根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.9.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

《二次函数》经典50题含解析

《二次函数》经典50题含解析

《二次函数》50题一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤26.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.27.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y28.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y29.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y012.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.413.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.1615.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.418.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.519.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣522.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<823.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.427.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣228.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.229.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为531.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.232.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.1133.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<334.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=235.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<036.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.740.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定44.若二次函数y=﹣x2+px+q的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1 45.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)46.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个47.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②b2﹣4ac≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个48.若二次函数y=|m|x2+nx+c的图象经过A(a,b)、B(0,y1)、C(5﹣a,b)、D(,y2)、E(3,y3),则y1、y2、y3的大小关系是()A.y2<y3<y1B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 49.如图,在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.50.如图,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴的负半轴交于点B,点M是对称轴上的一个动点.连接AM,BM,当|AM﹣BM|最大时,点M的坐标是()A.(1,4)B.(1,2)C.(1,﹣2)D.(1,﹣6)参考答案与试题解析一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)【解答】解:∵抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,∴(﹣+)=﹣1,∴m+n=﹣5,∴抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是(﹣2,y),∴2m﹣4=4+2(3m+n)+n,∴4m+3n=﹣8,解得m=7,∴y=2m﹣4=10,∴在抛物线W2上的对应点A′坐标是(﹣2,10),故选:B.2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【解答】解:抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,∴抛物线开口向上,对称轴为x==﹣1.∵|﹣1﹣(﹣2)|<|1+1|<|+1|∴y3>y2>y1,故选:D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵点B到直线x=﹣2的距离大于2,∴点A到直线x=﹣2的距离大于2,即点A在(﹣4,0)的左侧,∴当x=﹣4时,y>0,即16a﹣4b+c>0,∴a﹣b+c>0,所以②正确;∵C(0,c),OB=OC,∴B(c,0),∴ac2+bc+c=0,即ac+b+1=0,所以③错误;∵点A与点B关于直线x=1对称,∴A(﹣4﹣c,0),∴﹣4﹣c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:C.4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②正确;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,所以④正确;故选:D.5.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤2【解答】解:∵二次函数y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的对称轴为x=1,顶点(1,1),∴当y=1时,x=1,当y=2时,x2﹣2x+2=2,x=0或2,∵当0≤x≤a时,y的最大值为2,y的最小值为1,∴1≤a≤2,故选:D.6.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,可知函数的对称轴x=1,∴﹣=1,∴b=2;故选:D.7.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【解答】解:∵抛物线y=﹣2x2+4x+c的对称轴为直线x=1,且抛物线的开口向下,∴离抛物线对称轴的水平距离越远,对应函数值越小,∵点(4,y3)离对称轴的距离最远,点(,y2)离对称轴的距离最近,∴y2>y1>y3,故选:C.8.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y2【解答】解:∵抛物线y=3x2﹣6x+m,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点(﹣4,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.9.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【解答】解:∵x0满足关于x的方程ax+2=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+4x+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以①正确;∵抛物线的顶点坐标为(,1),∴抛物线得对称轴为直线x=﹣=,∴b=﹣a,即a+b=0,所以②正确;∵抛物线与x轴的负半轴的交点到原点的距离小于1,∴x=﹣1时,y<0,∴a﹣b+c<0,即b>a+c,所以③错误;∵抛物线的顶点的纵坐标为1,∴=1,把b=﹣a代入得4c﹣a=4,所以④正确.故选:C.13.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④【解答】解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△P AB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.16【解答】解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20.故选:A.15.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,所以①正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∴当x=﹣3时,y>0,即9a﹣3b+c>0,所以②错误;∵抛物线开口向下,点(﹣2,y1)到直线x=﹣1的距离比点(,)到直线x=﹣1的距离小,∴y1>y2,所以③错误;∵x=2,y=0,∴4a+2b+c=0,把b=2a代入得4a+4a+c=0,解得c=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,所以④正确.故选:B.16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限【解答】解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.18.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.5【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.19.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.【解答】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣5【解答】解:∵抛物线y=﹣2x2﹣3向右平移2个单位长度,∴平移后解析式为:y=﹣2(x﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y=﹣2(x﹣2)2﹣3+1.即y=﹣2(x﹣2)2﹣2;故选:B.22.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<8【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=2.∴﹣=2,解得:b=﹣4,∴y=x2﹣4x+3,∴一元二次方程x2+bx+3﹣t=0有实数根可以看做y=x2﹣4x+3与函数y=t只有一个交点,∵方程x2﹣4x+3﹣t=0(t为实数)在1<x<5的范围内只有一个实数根,当x=1时,y=0;当x=5时,y=8;当x=2时,y=﹣1;∴t的取值范围是0≤t<8或t=﹣1.故选:A.23.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 【解答】解:∵抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),∴点A(﹣2,0),点B(2,0),该抛物线的顶点坐标为(0,4),∵将抛物线M绕点B旋转180°,得到新的抛物线M',∴新的抛物线M'的顶点坐标为(4,﹣4),点A关于点B的对称点为(6,0),∴新的抛物线M'的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,故选:D.24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+【解答】解:∵抛物线y=x2+2x﹣3=(x+3)(x﹣1),∴令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则(x+3)(x﹣1)=0,∴x=﹣3或1,∴B(1,0),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴对称轴为x=﹣1,∵CD∥AB,∴C、D两点关于x=﹣1对称,∴D(﹣2,﹣3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x﹣1,∴E(0,﹣1),令y=﹣1,则y=x2+2x﹣3=﹣1,解得,x=﹣1,∴F(﹣1﹣,﹣1),G(﹣1+,﹣1),∴FG=(﹣1+)﹣(﹣1﹣)=2,故选:C.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)当x=﹣2时,y>0,∴4a﹣2b+c>0,故本说法错误;(2)方程ax2+bx+c=0两根分别为1,3,都大于0,故本说法正确;(3)当x>2时,y随x的增大而增大,故本说法错误;(4)由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,一定不过第二象限,故本说法正确;故选:B.26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.27.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣2【解答】解:∵k<0,∴函数y=kx2+(4k+3)x+1的图象在对称轴直线x=﹣的左侧,y随x的增大而增大.∵当x<m时,y随着x的增大而增大∴m≤﹣,而当k<0时,﹣=﹣2﹣>﹣2,所以m≤﹣2,故选:D.28.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.2【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.29.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧【解答】解:∵二次函数y=ax2+(1﹣2a)x(a>0),∴当a=时,该函数的对称轴是y轴,故选项A正确;该函数的对称轴为直线x=﹣=1﹣<1,当x>2时,y随x的增大而增大,故选项B、C正确;∵该函数的对称轴为x=1﹣<1,∴当a=时,x=﹣1,则此时对称轴在y轴左侧,故选项D错误;故选:D.30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为5【解答】解:A、y=2(x﹣2)2+5=2x2﹣8x+13,则图象与y轴的交点坐标为(0,13),原题说法正确,故此选项不合题意;B、对称轴为x=2,图象的在y轴的右侧,原题说法正确,故此选项不合题意;C、a=2,开口向上,对称轴为x=2,则当x>2时,y的值随x值的增大而增大,原题说法错误,故此选项符合题意;D、顶点坐标为(2,5),开口向上,则当x=2时,函数有最小值为5,原题说法正确,故此选项不合题意;故选:C.31.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.2【解答】解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.32.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.11【解答】解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.33.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<3【解答】解:设y=ax2+b|x|+c,则函数y=ax2+b|x|+c的图象,如右图所示,∵抛物线y=ax2+bx+c的图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,∴ax2+b|x|+c=k有四个不相等的实数根时,k满足﹣3<k<﹣1,故选:C.34.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=2【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b),则斜边上的高为h,故h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴CD=,∴=,方程两边平方得b﹣a2=(a2﹣b)2,即h=(﹣h)2,因为h>0,所以h=1,是个定值.故选:B.35.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<0 【解答】解:由图象可知,函数函数y=ax2+bx图象的对称轴为直线x=﹣<1,∵a<0,∴2a+b<0,故C正确;∵当x=2时,函数y=ax2+bx中y<0,即4a+2b<0,当x=1时,y<1,即a+b<1∴5a+3b<1,故A正确;∵a+b<1,∴2a+2b<2∵2a+b<0,∴4a+3b<2故B正确;∵﹣>,a<0,∴b>﹣a,∴2b>﹣2a,∴a+2b>﹣a,∴a+2b>0,故D错误;故选:D.36.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.【解答】解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个【解答】解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b的图象在第一、二、三象限,二次函数y=ax2+bx的图象经过原点,顶点在y轴的左侧,故选项A、B错误;当a>0,b<0时,一次函数y=ax+b的图象在第一、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的右侧,函数图象开口向上,函数y=ax2+bx与y=ax+b 交点在x轴上,故选项C正确;当a<0,b<0时,一次函数y=ax+b的图象在第二、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的左侧,函数图象开口向下,故选项D错误;故选:C.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.7【解答】解:设各自抛出后1.2秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t﹣1.2)2+h,由题意a(t﹣1.2)2+h=a(t﹣2﹣1.2)2+h,解得t=2.2.故第一个小球抛出后2.2秒时在空中与第二个小球的离地高度相同.故选:A.40.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵﹣=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④【解答】解:由图象可知,抛物线开口向下,则a<0,∵对称轴为直线x=,∴x=0与x=3所对应的函数值相同,∵当x=0时y<0,∴x=3时y<0,∴x>3时,y<0,∴①正确;∵x==﹣,∴b=﹣3a,∴4a+b=4a﹣3a=a<0,∴②正确;∵抛物线经过点A(,0),∴a+b+c=0,∴c=a,∵B在(0,0)和(0,﹣1)之间,∴﹣1<c<0,∴﹣1<a<0,∴﹣<a<0,∴③正确;4ac+b2﹣4a=4a×a+(﹣3a)2﹣4a=5a2+9a2﹣4a=14a2﹣4a=2a(7a﹣2),∵a<0,∴2a(7a﹣2)>0,∴4ac+b2﹣4a>0,∴④不正确;故选:B.43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定【解答】解:y=(x﹣m)(x﹣n)与x轴的交点为(m,0),(n,0),由(x﹣m)(x﹣n)﹣x=0,则y=(x﹣m)(x﹣n)与y=x的两个交点为(a,a),(b,b),如图1:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴正半轴时,(m,0),(n,0)在(a,a),(b,b)点的下方,∴a<m<n<b,∴(a﹣m)(b﹣n)<0,不符合;如图2:当函数y=(x﹣m)(x﹣n)与x轴交点分别在x轴正半轴和负半轴时,此时m<a<n<b,∴(a﹣m)(b﹣n)>0,∴mn<0;如图3:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴负半轴时,此时m<a<b<n,∴(a﹣m)(b﹣n)<0,不符合题意;综上所述:当(a﹣m)(b﹣n)>0时,mn<0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学二次函数精选题解答题(共28小题)1.已知:关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0.(1)当m取何整数值时,关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0的根都是整数;(2)若抛物线y=mx2﹣3(m﹣1)x+2m﹣3向左平移一个单位后,过反比例函数y=(k≠0)上的一点(﹣1,3),①求抛物线y=mx2﹣3(m﹣1)x+2m﹣3的解析式;②利用函数图象求不等式﹣kx>0的解集.2.已知:关于x的一元二次方程mx2﹣(2m+n)x+m+n=0①.(1)求证:方程①有两个实数根;(2)求证:方程①有一个实数根为1;(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2﹣(2m+n)x+m+n的解析式;(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大(总利润=总收入﹣总成本)?4.(2004•长沙)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.5.如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP 交直线AB于点E,设PD=x,AE=y,(1)写出y与x的函数解析式,并指出自变量的取值范围;(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.6.(2007•义乌市)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.7.如图,在直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于A、B两点(其中A在原点左侧,B在原点右侧),C为抛物线上一点,且直线AC的解析式为y=mx+2m(m≠0),∠CAB=45°,tan∠COB=2.(1)求A、C的坐标;(2)求直线AC和抛物线的解析式;(3)在抛物线上是否存在点D,使得四边形ABCD为梯形?若存在,请求出点D的坐标;若不存在,请说明理由.8.(2006•达州)如图,抛物线y=﹣x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.(1)求A、B、C三点的坐标;(2)求证:∠ACB是直角;(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.9.(A)抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y 的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.(3)对于二次三项式x2﹣10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.10.(2012•赤峰)如图,抛物线y=x2﹣bx﹣5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.11.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_________),点C的坐标为(_________);(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M 的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.12.(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.13.(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.15.如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2﹣9与x轴的两个交点的横坐标.(1)求抛物线的解析式;(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.16.(2011•永州)如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.17.(2009•江西)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.18.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),与y轴交于点D.(1)求点A、B、D的坐标;(2)若点C在该抛物线上,使△ABD≌△BAC.求点C的坐标,及直线AC的函数表达式;(3)P是(2)中线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值.参考答案与试题解析解答题(共28小题)1.已知:关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0.(1)当m取何整数值时,关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0的根都是整数;(2)若抛物线y=mx2﹣3(m﹣1)x+2m﹣3向左平移一个单位后,过反比例函数y=(k≠0)上的一点(﹣1,3),①求抛物线y=mx2﹣3(m﹣1)x+2m﹣3的解析式;②利用函数图象求不等式﹣kx>0的解集.和=2;y=(时,>即:不等式﹣2.已知:关于x的一元二次方程mx2﹣(2m+n)x+m+n=0①.(1)求证:方程①有两个实数根;(2)求证:方程①有一个实数根为1;(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2﹣(2m+n)x+m+n的解析式;(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.,若的另一个根为3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大(总利润=总收入﹣总成本)?4.(2004•长沙)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.理由是:∵EC=cm==5.如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP 交直线AB于点E,设PD=x,AE=y,(1)写出y与x的函数解析式,并指出自变量的取值范围;(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.,,PE=PC=2,EC=6.(2007•义乌市)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C 两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.,4+﹣),时,;,,,x+4+.因此直线,﹣7.如图,在直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于A、B两点(其中A在原点左侧,B在原点右侧),C为抛物线上一点,且直线AC的解析式为y=mx+2m(m≠0),∠CAB=45°,tan∠COB=2.(1)求A、C的坐标;(2)求直线AC和抛物线的解析式;(3)在抛物线上是否存在点D,使得四边形ABCD为梯形?若存在,请求出点D的坐标;若不存在,请说明理由.;﹣;﹣对称,(舍去),8.(2006•达州)如图,抛物线y=﹣x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.(1)求A、B、C三点的坐标;(2)求证:∠ACB是直角;(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.情况讨论P点坐标.D=,++2对称.的对称点x=点坐标为(9.(A)抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y 的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.(3)对于二次三项式x2﹣10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.(t+10.(2012•赤峰)如图,抛物线y=x2﹣bx﹣5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.,11.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M 的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.×,∴=,x+,﹣m mxmm m m mMN CE=(﹣m12.(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.=﹣×t+×S=×t=﹣t=13.(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.×t+×t+(,(,﹣)±.舍去.,,﹣),14.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.(﹣x+15.如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2﹣9与x轴的两个交点的横坐标.(1)求抛物线的解析式;(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.=,=,== =,=,,MN==的坐标为(,x+的坐标为(,﹣,y=x+y=﹣16.(2011•永州)如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.,2,2,217.(2009•江西)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.﹣)分别代入得:PF PF OM=PF×m m18.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),与y轴交于点D.(1)求点A、B、D的坐标;(2)若点C在该抛物线上,使△ABD≌△BAC.求点C的坐标,及直线AC的函数表达式;(3)P是(2)中线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值.﹣+时,=。

相关文档
最新文档