(人教版)八年级数学下册《二次根式》同步练习4含答案
八年级数学下册《二次根式计算题》练习题与答案(人教版)

八年级数学下册《二次根式计算题》练习题与答案(人教版)一、选择题1.下列等式成立的是( ) A.9-4= 5 B.5×3=15 C.9=±3 D.(-9)2=-92.计算2(6÷3)的结果是( )A. 3B. 2C.2D.2 23.下列变形正确的是( ) A. ; B. ; C. ; D. ;4.关于8的叙述正确的是( )A.在数轴上不存在表示8的点B.8=2+ 6C.8=±2 2D.与8最接近的整数是35.下列计算正确的是( )A.2+3= 5B.6×2=2 3C.6÷122=12 3D.32﹣2=3 6.已知a ,b 分别是6﹣13的整数部分和小数部分,则2a ﹣b 的值为( ) A.3﹣13 B.4﹣13 C.13 D.2+13二、填空题7.计算:8+2= .8.计算:(2﹣3)2+26= .9.计算:(2-23)2= .10.计算(1-2)2+18的值是________. 11.计算28﹣312+2= .12.比较大小:2+6________3+ 5.三、解答题13.计算:12×68.14.计算:(212-313)× 615.计算:(46-42+38)÷2 2.16.计算:6×(13﹣1)17.计算:(2+1)2﹣8+(﹣2)2.18.计算:(27+72)2﹣(27﹣72)2.19.先化简,再求值:(2x +y)2+(x -y)(x +y)-5x(x -y),其中x =2+1,y =-1.20.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.21.已知a=5+2,b=5﹣2,求a 2+b 2﹣2ab 的值.22.已知121121-=+=y x , ;3x 2+4xy+3y 2求的值.23.阅读下列材料,回答有关问题:在实数这章中,遇到过这样的式子,我们把这样的式子叫做二次根式,根号下的数叫做被开方数.如果一个二次根式的被开方数中有的因数能开得尽方,可以利用a ·b =a ·b(a ≥0,b ≥0);a b =a b (a ≥0,b>0)将这些因数开出来,从而将二次根式化简.当一个二次根式的被开方数中不含开得尽方的因数或者被开方数中不含有分母时,这样的二次根式叫做最简二次根式,例如,13化成最简二次根式是33,27化成最简二次根式是33,几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如上面的例子中的13和27就是同类二次根式.(1)请判断下列各式中,哪些是同类二次根式?(2)二次根式中的同类二次根式可以像整式中的同类项一样合并,请计算:2+75-18-150+127- 3.24.阅读下列解题过程.请回答下列问题:(1)观察上面解题过程,请直接写出的结果为 .(2)利用上面所提供的解法,请化简:的值.(3)不计算近似值,试比较(13-11)与(15-13)的大小,并说明理由.参考答案1.B2.C.3.C.4.D.5.B6.C7.答案为:3 2.8.答案为:5.9.答案为:16-8 3.10.答案为:42﹣1.11.答案为:3 2.12.答案为:<.13.解:原式=12×68=9=3. 14.解:原式=9 2.15.解:原式=4+ 6.16.解:原式=6×13﹣6=2﹣ 6.17.解:原式=3+22﹣22+4=7.18.解:原式=(27+72+27﹣72)×(27+72﹣27+72) =47×142=5614.19.解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy =9xy当x =2+1,y =2-1时原式=9(2+1)(2-1)=9×(2-1)=9×1=9.20.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32. 21.解:∵a=5+2,b=5﹣ 2∴a﹣b=2 2∴a2+b2﹣2ab=(a﹣b)2=(22)2=8.22.解:x=2-1,y=2+1,原式的值为2223.解:(1)75=5 3 18=3 21 50=210127=39∴ 2 18150是同类二次根式;751273是同类二次根式.(2)原式=2+53-32-210+39-3=-21210+3739.24.解:(1);。
16.2.2 二次根式的除法-人教版数学八年级下册分层作业(含答案)

人教版初中数学八年级下册16.2.2 二次根式的除法同步练习夯实基础篇一、单选题:1.下列二次根式中,最简二次根式是()A.B.C.D.【答案】A【分析】满足被开方数不含有分母,被开方数不含有开得尽方的因数或因式两个条件的二次根式是最简二次根式,根据定义逐一分析即可.【详解】解:是最简二次根式,故A符合题意;,不是最简二次根式,故B不符合题意;,不是最简二次根式,故C不符合题意;,不是最简二次根式,故D不符合题意;故选A【点睛】本题考查的是最简二次根式的识别,掌握“最简二次根式的定义”是解本题的关键.2.下列计算正确的是()A.B.C.D.【答案】A【分析】根据分母有理化的方法可判断A,根据二次根式的化简可判断B,D,根据二次根式的乘方运算可判断C,从而可得答案.【详解】解:选项,原式,故该选项符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;故选:.【点睛】本题考查的是二次根式的化简,二次根式的乘方运算,分母有理化,掌握“二次根式的加减乘除乘方运算的运算法则”是解本题的关键.3.下列各式的计算中,结果为2的是()A.÷B.×C.÷D.×【答案】C【解析】略4.能使等式成立的的取值范围是()A.且B.C.D.【答案】C【分析】根据分式有意义和二次根式有意义的条件,即可求得的取值范围.【详解】解得故选C【点睛】本题考查了分式有意义和二次根式有意义的条件,二次根式的除法,掌握以上知识是解题的关键.5.如果,,那么下列各式:①,②,③,④.其中正确的个数()A.1个B.2个C.3个D.4个【答案】C【分析】先根据,得到a<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【详解】解:∵ab>0,,∴a<0.∴,①正确;∵,a<0,∴,无意义,②错误;,③正确;,④正确;正确的有3个,故选C.【点睛】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.6.已知的面积为,底边为,则底边上的高为A.B.C.D.【答案】B【分析】根据三角形的面积公式列出运算式子,再根据二次根式的除法法则即可得.【详解】解:的面积为,底边为,底边上的高为,故选:B.【点睛】本题考查了二次根式除法的应用,熟练掌握二次根式除法的运算法则是解题关键.7.已知最简二次根式与的被开方数相同,则的值为()A.1B.2C.3D.4【答案】D【分析】根据最简二次根式的被开方数相同知开方次数相同,被开方数相同,即可列出二元一次方程组,再解出即可.【详解】根据题意可知,解得:,∴.故选D.【点睛】此题考查最简二次根式的定义,解二元一次方程组,正确理解题意列出方程组是解题的关键.二、填空题:8.在二次根式;;;;;;中是最简二次根式的是______.【答案】,,【分析】根据最简二次根式的定义:如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式;判断即可.【详解】解:,不是最简二次根式;,是最简二次根式;,不是最简二次根式;,是最简二次根式;,是最简二次根式;,不是最简二次根式;,不是最简二次根式;∴是最简二次根式的有:,,,故答案为:,,.【点睛】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键.9.计算;(1)__________________;(2)_________;(3)_________;(4)=__________,(5)__________;(6)____________;(7)__________;(8)__________.【答案】(1);(2);(3);(4),(5),(6);(7),(8)【分析】根据二次根式的除法法则进行计算即可,二次根式的除法法则是:(),反过来,可得;().【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4)=,故答案为:(5),故答案为:;(6),故答案为:;(7),故答案为:;(8),故答案为:.【点睛】本题考查了二次根式的除法运算,掌握二次根数的除法法则是解题的关键.10.计算的结果是______.【答案】##【分析】把被开方数相除,根指数不变,根据法则进行运算即可.【详解】解:故答案为:【点睛】本题考查的是二次根式的除法运算,掌握“二次根式的除法运算法则”是解本题的关键.11.计算:______.【答案】【分析】根据二次根式的除法运算法则进行计算即可.【详解】解:,故答案为:.【点睛】本题考查了二次根式的除法以及二次根式的性质,熟练掌握相关运算法则是解本题的关键.12.计算=_____.【答案】【分析】先由二次根式有意义的条件得到:>且>再利用二次根式的除法运算法则进行运算,再化简即可得到答案.【详解】解:由题意得:>>且>故答案为:【点睛】本题考查的是二次根式有意义的条件,二次根式的除法运算,掌握二次根式的除法运算法则是解题的关键.13.计算:=___.【答案】【分析】根据二次根式的乘除运算计算即可【详解】解:.【点睛】本题主要考查了二次根式的乘除运算,准确计算是解题的关键.14.若,则代数式的值为_____________.【答案】【分析】先计算括号内分式的减法运算,再把除法转化为乘法运算,约分后可得结果,再把代入要求值的代数式,利用二次根式的除法运算可得答案.【详解】解:当时,原式【点睛】本题考查的是分式的化简求值,二次根式的除法运算,掌握“二次根式的除法运算与分式的混合运算”是解本题的关键.三、解答题:15.化简:(1).(2).(3).(4).【答案】(1)(2)(3)(4)【分析】(1)根据积的算术平方根的性质,即进行化简即可;(2)根据积的算术平方根的性质,即进行化简即可;(3)根据商的算术平方根的性质,即进行化简即可;(4)根据商的算术平方根的性质,即进行化简即可.【详解】(1)原式(2)原式(3)原式(4)原式【点睛】本题考查了二次根式的性质,熟练掌握二次根式积和商的算术平方根的性质是解题的关键.16.计算:(1);(2);(3)(,).【答案】(1)(2)(3)【分析】(1)根据二次根式的除法计算法则求解即可;(2)根据二次根式的除法计算法则求解即可;(3)根据二次根式的除法计算法则求解即可.【详解】(1)解:原式;(2)解:原式;(3)解:原式.【点睛】本题主要考查了二次根式的除法,熟知相关计算法则是解题的关键.17.计算:(1);(2).【答案】(1)(2)【分析】根据二次根式的性质和二次根式的乘除运算法则求解即可.【详解】(1)解:原式.(2)解:.【点睛】本题考查二次根式的性质和二次根式的乘除,熟练掌握二次根式的性质和二次根式的乘除,正确化简和求解是解答的关键.18.先化简,再求值:,其中.【答案】,【分析】根据分式的混合运算法则把原式化简,把x的值代入计算即可.【详解】解:当时,原式.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.能力提升篇一、单选题:1.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则空格中代表的实数为()A.B.C.D.【答案】B【分析】根据第一行和第三行列式进行计算即可得.【详解】解:由题意得:,故选:B.【点睛】本题考查了二次根式的乘法与除法的应用,理解题意,正确列出运算式子是解题关键.2.化简二次根式得()A.B.C.D.【答案】A【详解】解析:根据二次根式有意义,即,当时,,即,∴.答案:A易错:B错因:忽略根式有无意义的条件,没有考虑b的取值范围,误以为.易错警示:化简二次根式,要注意以下两点:①利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;②二次根式有意义的前提是被开方数大于等于0.3.已知,且a>b>0,则的值为()A.B.±C.2D.±2【答案】A【分析】已知a2+b2=6ab,变形可得(a+b)2=8ab,(a-b)2=4ab,可以得出(a+b)和(a-b)的值,即可得出答案.【详解】解:∵a2+b2=6ab,∴(a+b)2=8ab,(a-b)2=4ab,∵a>b>0,∴a+b=,a-b=,∴=,故选A.【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.二、填空题:4.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.5.对于任意不相等的两个数,,定义一种运算*如下:.如,那么______.【答案】【分析】根据定义的新运算的方式,把相应的数字代入运算即可;【详解】解:,故答案为:.【点睛】本题主要考查实数的运算,二次根式的化简,解答的关键是理解清楚题意,对实数的运算的相应的法则的掌握.6.已知等式成立,化简|x﹣6|+的结果为_____.【答案】4【分析】直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.【详解】解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.【点睛】此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x的取值范围是解题关键.三、解答题:7.已知和是相等的最简二次根式.求,的值;求的值.【答案】的值是,的值是;(2).【分析】(1)根据题意,它们的被开方数相同,列出方程组求出a,b的值;(2)根据算术平方根的概念解答即可.【详解】∵和是相等的最简二次根式,∴.解得,,∴的值是,的值是;(2).【点睛】考查最简二次根式的定义,根据最简二次根式的定义列出关于a,b的方程组是解题的关键.。
人教版初二数学8年级下册 第16章(二次根式)经典好题专题训练(含答案)

人教版八年级数学下册第16章二次根式经典好题专题训练(附答案)1.下列二次根式中,能与合并的是( )A.B.C.D.2.下列等式正确的是( )A.=3B.=﹣3C.=3D.=﹣3 3.已知a=+2,b=﹣2,则a2+b2的值为( )A.4B.14C.D.14+44.式子在实数范围内有意义,则x的取值范围是( )A.x≤1B.x<1C.x>1D.x≥1 5.若,,则x与y关系是( )A.xy=1B.x>y C.x<y D.x=y6.+()2的值为( )A.0B.2a﹣4C.4﹣2a D.2a﹣4或4﹣2a7.设,,则a、b的大小关系是( )A.a=b B.a>b C.a<b D.a+b=08.若x=2﹣5,则x2+10x﹣2的值为( )A.10+1B.10C.﹣13D.19.若代数式有意义,则x的取值范围是( )A.x>且x≠3B.x≥C.x≥且x≠3D.x≤且x≠﹣310.若实数x、y满足:y=++,则xy= .11.若有意义,则x的取值范围为 .12.若x=+1,y=﹣1,则的值为 .13.计算的结果是 .14.计算(﹣)×的结果为 .15.已知a+b=﹣8,ab=6,则的值为 .16.已知实数a满足+|2020﹣a|=a,则a﹣20202= .17.化简﹣()2的结果是 .18.已知y=+﹣,则x2021•y2020= .19.若x=3+,y=3﹣,则x2+2xy+y2= .20.如果=,则a的取值范围是 .21.当b<0时,化简= .22.计算:(1)2•÷5;(2).23.24.已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.25.先化简,再求值:(+)﹣(+),其中x=,y=27.26.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.27.已知.(1)求代数式m2+4m+4的值;(2)求代数式m3+m2﹣3m+2020的值.28.已知关于x、y的二元一次方程组,它的解是正数.(1)求m的取值范围;(2)化简:.参考答案1.解:A、不能与合并,本选项不合题意;B、==2,不能与合并,本选项不合题意;C、==2,不能与合并,本选项不合题意;D、==2,能与合并,本选项符合题意;故选:D.2.解:A、()2=3,本选项计算正确;B、=3,故本选项计算错误;C、==3,故本选项计算错误;D、(﹣)2=3,故本选项计算错误;故选:A.3.解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.4.解:∵式子在实数范围内有意义,∴≥0,∴1﹣x>0,∴x的取值范围是x<1.故选:B.5.解:∵==2+,,∴x=y.故选:D.6.解:要使有意义,必须2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.7.解:a=(﹣)2=3,b==3,则a=b,故选:A.8.解:x2+10x﹣2=x2+10x+25﹣27=(x+5)2﹣27,当x=2﹣5时,原式=(2﹣5+5)2﹣27=28﹣27=1,故选:D.9.解:由题意得,3x﹣2≥0,x﹣3≠0,解得,x≥且x≠3,故选:C.10.解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.11.解:由题意得:1﹣2x≥0,且x+1≠0,解得:x≤且x≠﹣1,故答案为:x≤且x≠﹣1.12.解:∵x=+1,y=﹣1,∴x+y=(+1)+(﹣1)=2,则====,故答案为:.13.解:﹣4=3﹣2=,故答案为:.14.解:(﹣)×=×﹣×=4﹣=3.故答案为:3.15.解:∵a+b=﹣8,ab=6,∴a<0,b<0,∴+=﹣﹣=﹣×=﹣×()=,故答案为:.16.解:要使有意义,则a﹣2021≥0,解得,a≥2021,∴+a﹣2020=a,∴=2020,∴a=20202+2021,∴a﹣20202=2021,故答案为:2021.17.解:要使有意义,则1﹣x≥0,解得,x≤1,则﹣()2=﹣(1﹣x)=2﹣x﹣1+x=1,故答案为:1.18.解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,则y=﹣,∴x2021•y2020=x•x2020•y2020=2×(﹣×2)2020=2,故答案为:2.19.解:x+y=3++3﹣=6,∴x2+2xy+y2=(x+y)2=62=36,故答案为:36.20.解:∵=,∴a﹣5≥0,且6﹣a≥0,∴5≤a≤6,则a的取值范围是5≤a≤6.故答案为:5≤a≤6.21.解:当b<0时,==﹣b.故答案为:﹣b .22.解:(1)原式=4••=;(2)原式=(6×﹣5×)(×2﹣)=(3﹣)(﹣)=3﹣6﹣+=﹣.23.解:原式=5+(24﹣3)﹣(27﹣6+2)=5+21﹣29+6=6﹣3.24.解:(1)x ===2+,则=2﹣,∴x +=2++2﹣=4;(2)(7﹣4)x 2+(2﹣)x +=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.25.解:原式=6x ×+×y ﹣4y ×﹣6=6+3﹣4﹣6=﹣,当x =,y =27时,原式=﹣=﹣=﹣3.26.解:(1)由题意得,x ﹣2020≥0,2020﹣x ≥0,解得,x =2020,则y =﹣2019,∴x +y =2020﹣2019=1,∵1的平方根是±1,∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0,解得,a =﹣,则a +2=﹣+2=﹣,∴x=(﹣)2=.27.解:(1)m2+4m+4=(m+2)2,当m=﹣1时,原式=(﹣1+2)2=(+1)2=3+2;(2)∵m=﹣1,∴m+1=,∴m3+m2﹣3m+2020=m3+2m2+m﹣m2﹣4m+2020=m(m+1)2﹣m2﹣4m+2020=2m﹣m2﹣4m+2020=﹣m2﹣2m﹣1+2021=﹣(m+1)2+2021=﹣2+2021=2019.28.解:(1)解关于x、y的二元一次方程组,得,∵方程组的解是一对正数,∴,解得;(2),当时,m﹣2<0,m+1>0,m﹣1<0,∴=2﹣m﹣(m+1)﹣(1﹣m)=2﹣m﹣m﹣1﹣1+m=﹣m;当时,m﹣2<0,m+1>0,m﹣1≥0,∴=2﹣m﹣(m+1)﹣(m﹣1)=2﹣m﹣m﹣1﹣m+1=2﹣3m.。
八年级数学(下)第十六章《二次根式》同步练习(含答案)

八年级数学(下)第十六章《二次根式》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.式子1x -在实数范围内有意义,则x 的取值范围是A .x ≤1B .x ≥1C .x <1D .x >1【答案】B【解析】由题意得,x -1≥0,∴x ≥1.故选B .2.下列各式中①38;②()b --;③2a ;④1||0.1x +;⑤221x x ++,一定是二次根式的有 A .1个B .2个C .3个D .4个【答案】C3.(a -2的值为A .aB .-aC aD .a 【答案】B a -a ≤0,∴(a -2=-a .故选B .4.下列各式中,一定能成立的是A 22( 2.5)( 2.5)-=B 22(a a =C 221x x -+x -1D 2933x x x -=-+【答案】A【解析】A 22( 2.5)( 2.5)-=,成立;B 2||a a =,2()a =a ,则B 不成立;C 22+1|1x x x -=-|,则C 不成立;D 29(3)(3)x x x -=-+33x x -+,则D 不成立,故选A .5.已知55553y x x =-+--,则5xy 的值是A .15-B .15C .152-D .152【答案】A二、填空题:请将答案填在题中横线上.6.已知b >0,化简3a b -=__________.【答案】-a ab - 【解析】∵3a b ->0,b >0,∴a <0,∴原式=2()a ab ⋅-=-a ab -.故答案为:-a ab -. 7.二次根式2(32)-的值是__________.【答案】2-3【解析】∵32<,∴原式=2-3.故答案为:2-3.8.a ,b 在数轴上的位置如图所示,化简244a a -+-|a -b |=__________.【答案】2-2a +b【解析】由数轴可得:1<a <2,−1<b <0,244a a -+|a −b |=2−a −(a −b )=2−2a +b .故答案为:2−2a +b . 三、解答题:解答应写出文字说明、证明过程或演算步骤.9.计算:(1)23)5;(2)2(43);(32(6)-;(4)21()8-; (52(25)-6222169(13)x x x x x -+-+≤≤.【解析】(1)233)55=. (2)222(43)4(3)16348=⨯=⨯=.(3)2(6)|6|6-=-=. (4)2111()||888--=--=-. (5)2(25)|25|52-=-=-.(6)∵1≤x ≤3,∴x -1≥0,x -3≤0.221169x x x x -++-+22(1)(3)x x =-+-|1||3|x x =-+-13x x =-+-2=.10.先简化,再求值:221x x ++-21664x x -+,其中x =6.11.设a ,b ,c 为△ABC 2222()()()()a b c a b c b a c c b a ++------【解析】根据三角形的三边关系可得:a +b +c >0,a -b -c <0,b -a -c <0,c -b -a <0,原式=a +b +c +b -a +c +a -b +c +b -c +a =2(a +b +c ).。
2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案

word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式(16页)(K12教育文档)

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式(16页)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式(16页)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式(16页)(word版可编辑修改)的全部内容。
第十六章 二次根式测试1 二次根式学习要求 掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果:(1)49=_______; (2)2)7(_______;(3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______.二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ).A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>a B .21<aC .21≥aD .21≤a三、解答题9.当x 为何值时,下列式子有意义?(1);1x -(2);2x -(3);12+x(4)⋅+-x x2110.计算下列各式:(1);)23(2(2);)1(22+a (3);)43(22-⨯-(4).)323(2- 综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-x C .x-21 D .121-x16.若022|5|=++-y x ,则x -y 的值是( ).A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22-- (3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______. 2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ).A .532=⋅B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ).A .±3B .3C .-3D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯(5);131aab ⋅(6);5252acc b b a ⋅⋅(7);49)7(2⨯-(8);51322- (9) .7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号 13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11 C .44- D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______;(4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <14.下列计算不正确的是( ).A .471613=B .xy x x y 63132= C .201)51()41(22=- D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281D .241 三、计算题6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷ (7);211311÷(8).125.02121÷ 综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式:(1)=51_______(2)=x 2_________(3)=322__________(4)=yx5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =bB .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题 12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求 掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______. 2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ).A .10B .12C .21D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并 5.下列计算,正确的是( ).A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +-11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确"或“错误") 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+--16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”. ①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求 会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax 45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ).A .ab 与2abB mn 与nm 11+C .22n m +与22n m -D .2398b a 与4329b a5.下列计算正确的是( ).A .b a b a b a -=-+2))(2(B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ).A .7B .223366-+-C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________.二、选择题14.b a -与a b -的关系是( ).A .互为倒数B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式:(1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0。
八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版一、选择题1.下列函数中,自变量x的取值范围为x<1的是( )A.y=11-xB.y=1-1xC.y=1-xD.y=11-x2.若a<1,化简(a-1)2﹣1= ( )A.a﹣2B.2﹣aC.aD.﹣a3.下列根式是最简二次根式的是( )A.13B.0.3C. 3D.204.下列运算正确的是( )A.2+3= 5B.18=2 3C.2·3= 5D.2÷12=25.当a<0,b<0时,把化为最简二次根式,得( )A. B.- C.- D.6.下列二次根式中,与3是同类二次根式的是( )9 B.30 C.12 D.87.下列运算正确的是( )2+5=7 B.22×32=6 2 C.8÷2=2 D.32﹣2=38.已知a,b分别是6﹣13的整数部分和小数部分,则2a﹣b的值为( )A.3﹣13B.4﹣13C.13D.2+139.化简a+1+aa+1-a﹣a+1-aa+1+a的结果是( )A.2a+2B.4a+2C.4a2+aD.﹣4a2+a10.已知a+b=3,a﹣b=2,c=5,则代数式a2﹣b2﹣c2﹣2bc的值是( )A.正数B.负数C.零D.无法确定二、填空题11.当x________时,二次根式2x +3在实数范围内有意义. 12.当x =-2时,二次根式2-7x 的值 .13.计算:8+2= .14.计算(1-2)2+18的值是________.15.若a+b=5+ 3 ,ab=15- 3 ,则x+y=_______.16.比较大小:2+6________3+ 5.三、解答题17.计算:.18.计算:(32-23)(32+23).19.计算:1212﹣(313+2).20.计算:33﹣(3)2+(π+3)0﹣27+|3﹣2|;21.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.22.有一个长、宽之比为5∶2的长方形过道,其面积为 10 m2.(1)求这个长方形过道的长和宽;(2)用40块大小一样的正方形地板砖刚好把这个过道铺满,求这种地板砖的边长.23.设x=2+5,y=-2+5,求x2+y2﹣2xy的值.24.对于任意不相等的两个实数a,b,定义运算“*”如下:a*b=a+ba-b﹣a-ba-b(a>b>0).如4*3=4+34-3﹣4-34-3=7﹣1,试求下列各式的值:(1)13*5.(2)6*5﹣5×(8*3).25.小明在学习《二次根式》后,发现一些含根号的式子可以写成另一个式子的平方如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+2mn 2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+2b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________3=(________+________3)2;(3)若a+43=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案1.D.2.D.3.C.4.D.5.B6.C7.C.8.C9.C.10.B11.答案为:≥-3212.答案为:4.13.答案为:3 214.答案为:42﹣1.15.答案为:4- 316.答案为:<.17.解:原式=-22;18.解:原式=6.19.解:原式=3﹣3﹣2=﹣ 2.20.原式=﹣3 3.21.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32.22.解:(1)设这个长方形过道的长为5x(m),宽为2x(m)则5x·2x=10∴x2=1,解得x1=1,x2=-1(不合题意,舍去).答:这个长方形过道的长为5 m,宽为2 m;(2)设这种地板砖的边长为m(m)则40m2=10∴m2=0.25解得m1=0.5,m2=-0.5(不合题意,舍去).答:这种地板砖的边长为0.5 m.23.解:∵x2+y2﹣2xy=(x﹣y)2∴把x=2+5,y=﹣2+5代入得:原式=(2+5+2﹣5)2=16.24.解:(1)13*5=13+513-5﹣13-513-5=328﹣228=28.(2)6*5﹣5×(8*3)=6+56-5﹣6-56-5﹣5×(8+38-3﹣8-38-3)=11﹣1﹣11+5=5﹣1.25.解:(1)∵a+b3=(m+n3)2∴a+b3=m2+3n2+2mn 3∴a=m2+3n2,b=2mn.(2)答案不唯一,如:设m=1,n=1∴a=m2+3n2=4,b=2mn=2.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m,n为正整数∴m=2,n=1或m=1,n=2∴a=22+3×12=7或a=12+3×22=13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式练习题
双基演练
1.(-7)2的平方根是_______________.
2x=_______.
3.当x_______a的值是_______.
4________.
5a≥2)
式的个数是()
A.1个 B.2个 C.3个 D.4个
6.下面算式中,错误的是()
A=±0.03 B=±0.07
C. =-0.13
7.面积为6cm2的正方形的边长为()
A cm B.2cm C.3cm D.36cm
8.若方程(y-2)2=144,则y的值是()
A.10 B.-10 C.-10或14 D.12
9.若A的算术平方根是()
A.a2+3 B.(a2+3)2 C.(a2+9)2 D.a2+9
10.x为何值时,下面各式有意义:
;
能力提升
11.当x_______
12.
13.代数式m n
m-是二次根式,则应满足的条件是_______________。
14.式子
4
x-
中,x的取值范围是()
A.x≤3 B.x≥3 C.x>3 D.x≥3且x≠4
15x有()个.
A.0 B.1 C.2 D.无数
16.x、y都是实数,且满足1
2
,试化简
|1|
1
y
y
-
-
的值.
17.已知a、b=b+4,求a、b的值.
聚焦中考
18.正数x 的平方根是3a +1和-a -3
19.函数
x 的取值范围是( )
A .x ≥-1
B .-1≤x ≤2
C .-1≤x<2
D .x<2
20.已知代数式11
-x 有意义时,字母且x 的取值范围是( )
A x >0
B x ≥0
C x >0且x ≠1
D x ≥0且x ≠1
答案:
1.±7,3 2.0 3.≥1,-1 4.≤-1
5.C 6.A 7.A 8.C 9.D 10.•①0≤x≤1,②x>-1,③x取任意实数
11.<1 12.1
3
13.m = 2 ,n≤2 14.D 15.B
16.1-y > 0 ,|1|
1
y
y
-
-
=-1 17.a=5,b=-4
18.(3a+1)+(-a-3)=0,∴a=1,x=(3a+1)2=16,
=5 19. C 20. D。