勾股定理的应用演示文稿
合集下载
勾股定理数学优秀ppt课件

实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理应用课件

地球重力场测量
利用勾股定理测量地球的重力场, 有助于研究地球的形状、地球自转 、地球内部结构等。
地球磁场
勾股定理在地球磁场测量中用于确 定磁力线的方向和强度,有助于研 究地球的磁场变化和地磁场的起源 。
天文学中的应用
天体定位
通过勾股定理,天文学家 可以计算天体的位置和运 动轨迹,进行精确的天体 定位和测量。
03
勾股定理在日常生活中的 应用
建筑行业中的应用
建筑设计
勾股定理在建筑设计中被广泛应用。设计师利用勾股定理来计算建筑物的垂直 角度和确定建筑物的稳定性。
施工测量
在建筑施工过程中,勾股定理用于测量和定位。例如,确定建筑物的垂直线、 水平线以及确定建筑物的相对位置。
航海中的应用
船舶导航
勾股定理在航海中被用于确定船只的位置和航向。通过测量 太阳或星星与海平面的角度,结合时间差,可以计算出船只 与目标之间的距离和方向。
海洋工程
在海洋工程中,勾股定理用于计算海底深度和定位海底地形 。通过声纳技术测量声波从船只到海底再返回的时间差,结 合声波速度,可以计算出海底深度。
物理学中的应用
力学
在物理学中,勾股定理用于描述力和 运动之间的关系。例如,在自由落体 运动中,物体下落的时间与重力加速 度和初始高度有关,这可以通过勾股 定理进行计算。
电磁学
在电磁学中,勾股定理用于计算电场 和磁场中的矢量关系。例如,在计算 电磁波的传播方向和强度时,需要用 到勾股定理来计算矢量的合成和分解 。
04
勾股定理在现代科技中的 应用
计算机图形学中的应用
01
02
03
3D渲染
勾股定理在3D渲染中用于 确定物体的位置和方向, 以及计算光线在物体表面 反射的角度。
勾股定理的应用-课件

02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
勾股定理的应用举例课件

在天文学中,勾股定理可以用于计算 天体之间的距离和角度等。
物理学
勾股定理可以用于解决一些物理问题, 例如在力学和电磁学中,通过直角三 角形的角度和边长关系来计算力和位 移等。
02
勾股定理在几何图形中的 应用
直角三角形中的勾股定理应用
勾股定理在直角三角形中是最 常见的应用场景,它用于确定 直角三角形的三边关系。
VS
详细描述
在数论问题中,勾股定理常常用于证明与 平方数和完全平方数相关的性质和定理。 例如,证明一个数是否为完全平方数、证 明两个数的平方和等于另一个数的平方等。 通过利用勾股定理,可以推导出与平方数 和完全平方数相关的性质和定理,从而解 决数论问题。
勾股定理在几何问题中的应用
总结词
勾股定理在几何问题中的应用主要涉及与直角三角形和三角形面积相关的性质和定理。
详细描述
在几何问题中,勾股定理常常用于证明与直角三角形和三角形面积相关的性质和定理。 例如,证明直角三角形的面积等于两直角边乘积的一半、证明三角形的面积等于底边和 高的乘积的一半等。通过利用勾股定理,可以推导出与直角三角形和三角形面积相关的
性质和定理,从而解决几何问题。
05
勾股定理的扩展应用
勾股定理在解析几何中的应用
在直角三角形中,直角边的平
方和等于斜边的平方,即$a^2 + b^2 = c^2$,其中$a$和 $b$是直角边,$c$是斜边。
勾股定理在解决实际问题中非 常有用,例如建筑、航海和航 空等领域。
勾股定理在三角形面积计算中的应用
勾股定理也可以用于计算三角形的面积。
已知三角形的三边长度,可以利用勾股 定理求出三角形的面积。
勾股定理在三角函数中还常用于解决 与三角函数图像、性质、变换等相关 的几何问题。
勾股定理的应用课件

勾股定理的发展
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
《勾股定理的应用》勾股定理PPT课件

D1 A1 D A4
C1
B1
1 C
B2
分析: 根据题意分析蚂蚁爬行的路 线有三种情况(如图①②③ ),由勾股 定理可求得图1中AC1爬行的路线最 短.
D D1
C1
D1
①D
C1
1
C
2
A1
②
A
4
B1
C1
1
B2 C
2
③ A 1 A1
4
B1
A
4
B
AC1 =√42+32 =√25 ; AC1 =√62+12 =√37 ; AC1 =√52+22 =√29 .
B
24平方米
12
C 3 D 13
4
A
1.请完成以下未完成的勾股数: (1)8、15、_______;(2)10、26、_____.
2.△ABC中,a2+b2=25,a2-b2=7,又c=5, 则最大边上的高是_______.
3.以下各组数为三边的三角形中,不是直角三角形的是
( ).3 1, 3 1, 2 2
A
A
B
解:台阶的展开图如图:连结AB
在Rt△ABC中根据勾股定理
AB2=BC2+AC2
=552+482=5329
∴AB=73cm C
B
8、如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=10cm,BC=6cm,你能求出CE的长吗?
D A
B
解:连结BE
由已知可知:DE是AB的中垂线, ∴AE=BE
解:过B点向南作垂线, 连结AB,可得Rt△ABC
由题意可知:AC=6千米, BC=8千米
根据勾股定理 AB2=AC2+BC2
勾股定理的应用ppt

勾股定理公式
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 3、数学来源于生活,又服务与生活。
布置作业:
❖ 书面作业:教科书60页习题14.2的1、2、3. ❖ 实践探索:请同学们收集日常生活中可用勾股定理来
解决的实际问题。
C
A B
小结
应用勾股定理解决实际问题的一般思路:
❖ 1、立体图形中路线最短的问题,往往是把立体图形展 开,得到平面图形.根据“两点之间,线段最短” 确 定行走路线,根据勾股定理计算出最短距离.
❖ 2、在解决实际问题时,首先要画出适当的示意图,将 实际问题抽象为数学问题,并构建直角三角形模型,再 运用勾股定理解决实际问题.
勾股定理的应用课 件
B
CB
C
A
A
❖一圆柱体的底面周长为20cm, 高AB为4 cm, BC是上底面的直径 .一只蚂蚁从点A出 发,沿着圆柱的侧面爬行到点C, 试求出爬行 的最短路程.(精确到0.01cm)
B
CB
C
A
A
例2
一辆装满货物的卡
车,其外形高2.5米, A
B
宽1.6米,要开进厂门
2.3米
形状如图的某工厂,
问这辆卡车能否通过
该工厂的厂门?说明理 D 2米 C 由。
分析
由于厂门宽度
ቤተ መጻሕፍቲ ባይዱ
足够,所以卡车能否通
过,只要看当卡车位于
C
厂门正中间时其高度是 A 否小于CH.如图所示,
┏B
OD
2.3米
点D在离厂门中线0.8米
处,且CD⊥AB, 与地面
交于H.
N
M
2米 H
解:OC=1/2x2=1米 (大门宽度一半),
OD=1/2x1.6=0.8米 (卡车宽度一半)
在Rt△OCD中,由勾股定理得
CD= OC2 OD2 = 12 0.82 =0.6米, A
CH=0.6+2.3
C
O
┏B
D
2.3米
=2.9(米)>2.5(米).
因此高度上有0.4米的余量,
所以卡车能通过厂门.
N
M
2米 H
练一练
❖ 如图,从电杆离地面5米处向地面拉一条7米长的钢缆, 求地面钢缆固定点A到电杆底部B的距离.
布置作业:
❖ 书面作业:教科书60页习题14.2的1、2、3. ❖ 实践探索:请同学们收集日常生活中可用勾股定理来
解决的实际问题。
C
A B
小结
应用勾股定理解决实际问题的一般思路:
❖ 1、立体图形中路线最短的问题,往往是把立体图形展 开,得到平面图形.根据“两点之间,线段最短” 确 定行走路线,根据勾股定理计算出最短距离.
❖ 2、在解决实际问题时,首先要画出适当的示意图,将 实际问题抽象为数学问题,并构建直角三角形模型,再 运用勾股定理解决实际问题.
勾股定理的应用课 件
B
CB
C
A
A
❖一圆柱体的底面周长为20cm, 高AB为4 cm, BC是上底面的直径 .一只蚂蚁从点A出 发,沿着圆柱的侧面爬行到点C, 试求出爬行 的最短路程.(精确到0.01cm)
B
CB
C
A
A
例2
一辆装满货物的卡
车,其外形高2.5米, A
B
宽1.6米,要开进厂门
2.3米
形状如图的某工厂,
问这辆卡车能否通过
该工厂的厂门?说明理 D 2米 C 由。
分析
由于厂门宽度
ቤተ መጻሕፍቲ ባይዱ
足够,所以卡车能否通
过,只要看当卡车位于
C
厂门正中间时其高度是 A 否小于CH.如图所示,
┏B
OD
2.3米
点D在离厂门中线0.8米
处,且CD⊥AB, 与地面
交于H.
N
M
2米 H
解:OC=1/2x2=1米 (大门宽度一半),
OD=1/2x1.6=0.8米 (卡车宽度一半)
在Rt△OCD中,由勾股定理得
CD= OC2 OD2 = 12 0.82 =0.6米, A
CH=0.6+2.3
C
O
┏B
D
2.3米
=2.9(米)>2.5(米).
因此高度上有0.4米的余量,
所以卡车能通过厂门.
N
M
2米 H
练一练
❖ 如图,从电杆离地面5米处向地面拉一条7米长的钢缆, 求地面钢缆固定点A到电杆底部B的距离.