2018-2019学年高中北师大版数学必修2:第1章单元测试一 含解析

合集下载

2018-2019学年北师大版必修2 第一章 立体几何初步 单元测试 (1)

2018-2019学年北师大版必修2 第一章 立体几何初步 单元测试 (1)

2018-2019学年北师大版必修2 第一章立体几何初步单元测试 (2)1.平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:D [若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a ∥β,b∥α,故排除C.故选D.]2.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a ⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a ∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是( )A.①③B.②④C.①④ D.②③解析:C [对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.]3.(2018·合肥市二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条解析:C [如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD,∴CD∥平面EFGH.同理AB∥平面EFGH.故选C.]4.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是( )A .①②B .①④C .②③D .③④解析:A [由线面平行的判定定理知图①②可得出AB ∥平面MNP .]5.如图所示,在空间四边形ABCD 中,E ,F 分别为边AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:B [由AE ∶EB =AF ∶FD =1∶4知EF ∥BD ,且EF =15BD ,∴EF ∥平面BCD .又H ,G分别为BC ,CD 的中点,∴HG ∥BD ,且HG =12BD ,∴EF ∥HG 且EF ≠HG .∴四边形EFGH 是梯形.]6.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件 时,有MN ∥平面B 1BDD 1.解析:由题意,得HN ∥平面B 1BDD 1,FH ∥平面B 1BDD 1.∵HN ∩FH =H ,∴平面NHF ∥平面B 1BDD 1.∴当M 在线段HF 上运动时,有MN ∥平面B 1BDD 1. 答案:M ∈线段HF7.空间四面体A -BCD 的两条对棱AC ,BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是 .解析:设DH DA =GH AC =k (0<k <1),所以AH DA =EHBD=1-k ,所以GH =5k ,EH =4(1-k ),所以周长=8+2k . 又因为0<k <1,所以周长的范围为(8,10). 答案:(8,10)8.已知平面α∥β,P ∉α且P ∉β,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且PA =6,AC =9,PD =8,则BD 的长为 .解析:如图1,∵AC ∩BD =P , ∴经过直线AC 与BD 可确定平面PCD .∵α∥β,α∩平面PCD =AB ,β∩平面PCD =CD , ∴AB ∥CD .∴PA AC =PBBD,即69=8-BD BD ,∴BD =245.如图2,同理可证AB ∥CD .∴PA PC =PB PD ,即63=BD -88, ∴BD =24.综上所述,BD =245或24.答案:245或249.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明:(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.10. (理)(2018·桂林市、北海市、崇左市调研)在如图所示的多面体ABCDE中,AB ⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=3,AD=DE=2.(1)在线段CE上取一点F,作BF∥平面ACD(只需指出F的位置,不需证明);(2)对(1)中的点F,求三棱锥B-FCD的体积.解:(1)取CE的中点F,连接BF ,BF ∥平面ACD (如图).(2)因为AD 2=AC 2+CD 2, 所以∠ACD =90°. 所以AC ⊥CD . 因为DE ⊥平面ACD , 所以AC ⊥DE . 因为DE ∩CD =D , 所以AC ⊥平面CDE .因为DE ⊥平面ACD ,AB ⊥平面ACD , 所以AB ∥DE .因为AB ⊄平面CED ,DE ⊂平面CED , 所以AB ∥平面CED .所以B 到平面FCD 的距离为AC . 又S △FCD =12S △ECD =12×12×1×2=12,所以V B -FCD =13AC ·S △FCD =36.10. (文 )如图,多面体ABCDEF 中,平面ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解:(1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下: 取AD 的中点H ,连接GH ,GE ,BH .∵GH ∥DF 且GH =12DF ,∴GH ∥BE 且GH =BE .∴四边形BEGH 为平行四边形,∴EG ∥BH . 又BH ⊂平面ABCD ,EG ⊄平面ABCD , ∴EG ∥平面ABCD .(2)连接BD ,BD =a ,AC =3a ,S BDFE =a +2a2·a =32a 2,由V =V A -BDFE +V C -BDFE =2V A -BDFE =2×13·32a ·32a 2=32a 3. [能力提升组]11.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H ,点D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为( )A.452B.4532C .45D .45 3解析:A [取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点, 从而得HF ∥DE ,HF =DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.]12. (理 )如图,在四面体A -BCD 中,截面PQMN 是正方形,且PQ ∥AC ,则下列命题中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°解析:C [由题意可知PQ ∥AC ,QM ∥BD ,PQ ⊥QM ,所以AC ⊥BD ,故A 正确;由PQ ∥AC 可得AC ∥截面PQMN ,故B 正确;由PN ∥BD 可知,异面直线PM 与BD 所成的角等于PM 与PN 所成的角,又四边形PQMN 为正方形,所以∠MPN =45°,故D 正确;而AC =BD 没有论证.12. (文 )如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,G 为MC 的中点.则下列结论中不正确的是( )A .MC ⊥ANB .GB ∥平面AMNC .平面CMN ⊥平面AMND .平面DCM ∥平面ABN解析:D [显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN 的中点H ,连接HB ,MH ,GB ,则MC ∥HB ,又HB ⊥AN ,所以MC ⊥AN ,所以A 正确;由题意易得GB ∥MH ,又GB ⊄平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB ∩BN =B ,CD ∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.]13.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ = .解析:∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ , 设PQ ∩AB =M ,∵AB ∥CD , ∴△APM ∽△DPQ .∴PQ PM =PD AP=2,即PQ =2PM . 又知△APM ∽△ADB ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .答案:223a14. (理 )如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,AD 上,AE =AF =4,现将△AEF 沿线段EF 折起到△A ′EF 位置,使得A ′C =2 6.(1)求五棱锥A ′-BCDFE 的体积;(2)在线段A ′C 上是否存在一点M ,使得BM ∥平面A ′EF ?若存在,求出A ′M 的长;若不存在,请说明理由.解:(1)连接AC ,设AC ∩EF =H ,连接A ′H .因为四边形ABCD 是正方形,AE =AF =4, 所以H 是EF 的中点,且EF ⊥AH ,EF ⊥CH , 从而有A ′H ⊥EF ,CH ⊥EF , 又A ′H ∩CH =H ,所以EF ⊥平面A ′HC ,且EF ⊂平面ABCD . 从而平面A ′HC ⊥平面ABCD .过点A ′作A ′O 垂直HC 且与HC 相交于点O , 则A ′O ⊥平面ABCD .因为正方形ABCD 的边长为6,AE =AF =4, 故A ′H =22,CH =42,所以cos ∠A ′HC =A ′H 2+CH 2-A ′C 22A ′H ·CH=8+32-242×22×42=12,所以HO =A ′H ·cos∠A ′HC =2,则A ′O =6, 所以五棱锥A ′-BCDFE 的体积V =13×⎝⎛⎭⎪⎫62-12×4×4×6=2863. (2)线段A ′C 上存在点M ,使得BM ∥平面A ′EF ,此时A ′M =62.证明如下: 连接OM ,BD ,BM ,DM ,且易知BD 过点O .A ′M =62=14A ′C ,HO =14HC ,所以OM ∥A ′H .又OM ⊄平面A ′EF ,A ′H ⊂平面A ′EF , 所以OM ∥平面A ′EF .又BD ∥EF ,BD ⊄平面A ′EF ,EF ⊂平面A ′EF , 所以BD ∥平面A ′EF .又BD ∩OM =O ,所以平面MBD ∥平面A ′EF , 因为BM ⊂平面MBD ,所以BM ∥平面A ′EF .14. (文 )如图,空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.解:(1)当M 是线段AE 的中点时,AC ∥平面MDF .证明如下:连接CE 交DF 于N ,连接MN ,由于M ,N 分别是AE ,CE 的中点, 所以MN ∥AC ,又MN 在平面MDF 内, 所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,三棱柱ADE -B 'CF 的体积为V =S △ADE ·CD =12×2×2×4=8.则几何体ADE -BCF 的体积V ADE -BCF =V 三棱柱ADE -B ′CF -V F -BB ′C =8-13×⎝ ⎛⎭⎪⎫12×2×2×2=203,又三棱锥F -DEM 的体积V 三棱锥F -DEM =13×⎝ ⎛⎭⎪⎫12×2×4×1=43,所以两几何体的体积之比为43∶⎝ ⎛⎭⎪⎫203-43=14.。

2018-2019学年高中数学 第一章 立体几何初步单元测试2 北师大版必修2

2018-2019学年高中数学 第一章 立体几何初步单元测试2 北师大版必修2

第一章 立体几何初步(时间:100分钟;满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·北京高一检测)圆锥的侧面展开图是( ) A .三角形 B .正方形 C .圆 D .扇形 解析:选D.圆锥的侧面展开图是扇形.2.一个简单几何体的主视图、左视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中正确的是( )A .①②B .②③C .①③D .①②解析:选B.从所给的几何体的主视图,左视图可知其俯视图不可能是正方形和圆. 3.设l 是直线,α,β是两个不同的平面,则下列说法正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥βm ,则l ∥m .因为l ⊥β,则m ⊥β.又m α,,那么正方体的棱长等于( )B.223 D.433R =2.设正方体的棱长为a ,则3a 2=(2R )2=16.∴a 2=163,∴a =433.5.如图是一个几何体的三视图.若它的体积是33,则a =( )A .2 3 B. 6 C. 3 D .2 6解析:选C.该几何体是一个横着放的三棱柱,由已知的数据可得12a ×2×3=33,所以a = 3.6.(2014·潍坊高一检测)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( )A.316B.916C.38D.58解析:选A.设球的半径为R ,截面圆的半径为r ,则r =R 2-⎝ ⎛⎭⎪⎫R 22=32R ,S 截面=πr 2=34πR 2,S 球=4πR 2, S 截面S 球=316. 7.已知一个空间几何体的三视图如图所示,其中主视图、左视图都是由半圆和矩形组成,根据图中标出的尺寸,可得这个几何体的体积是( )A .2πB.43π C.53π D .3π 解析:选C.由三视图知,此几何体下部为圆柱,上部为半球,且圆柱底面半径均为1,圆柱高为1,所以这个几何体的体积为V =π·12×1+12×43π·13=53π.8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为( )A .30°B .45°C .60°D .90°解析:选C.由棱锥体积公式可得底面边长为23,高为3,在底面正方形的任一边上,取其中点,连接棱锥的顶点及其在底面的射影,根据二面角定义即可判定其平面角,在直角三角形中,因为tan θ=3,所以二面角为60°,选C.9.在长方体ABCD ­A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.34解析:选C.利用三棱锥A 1­AB 1D 1的体积变换:VA 1­AB 1D 1=VA ­A 1B 1D 1,则13×6×h =13×2×4,h =43.10.(2014·潍坊高一检测)已知直线a 和平面α,β,α∩β=l ,a α,a β,且a 在α,β内的射影分别为直线b 和c ,则b 和c 的位置关系是( )A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面解析:选D.由题意,若a ∥l ,则利用线面平行的判定,可知a ∥α,a ∥β,从而a 在α,β内的射影直线b 和c 平行;若a ∩l =A ,则a 在α,β内的射影直线b 和c 相交于点A ;若a ∩α=A ,a ∩β=B ,且直线a 和l 垂直,则a 在α,β内的射影直线b 和c 相交;否则直线b 和c 异面.综上所述,b 和c 的位置关系是相交、平行或异面,选D.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(2014·北京高一检测)已知各面均为等边三角形的四面体的棱长为2,则它的表面积是________.解析:四面体每个面的面积为S ′=34×22=3,故四面体的四个面面积之和即为表面积S =4 3. 答案:4 312.(2014·北京高一检测)一个几何体的三视图如图所示,则这个几何体的体积为________.解析:该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD ,高h =6,V =Sh =[12×(2+4)×2]×6=36.答案:3613.如图,AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,PA 垂直于⊙O 所在的平面,AE ⊥PB 于E ,AF ⊥PC 于F ,因此,________⊥平面PBC .(填图中的一条直线).解析:因为AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,所以BC ⊥AC .因为PA 垂直于⊙O 所在的平面,所以BC ⊥PA .又PA ∩AC =A ,所以BC ⊥平面PAC .又AF 平面PAC ,所以AF ⊥BC .又AF ⊥PC ,BC ∩PC =C ,所以AF ⊥平面PBC .答案:AF14.已知三棱锥P ­ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为________.解析:因为PA ,PB ,PC 两两相互垂直,所以V P ­ABC =V A ­PBC . 设S △APB =S 1,S △APC =S 2,S △PBC =S 3,因为12AP ·PB =S 1,12AP ·PC =S 2, 12PB ·PC =S 3, 所以14AP 2·PB ·PC =S 1S 2,所以AP 2=2S 1S 2S 3,所以AP =2S 1S 2S 3,=1AP 的长为2,其余各棱长都为1,则二面角A ­CD ­B 的F (图略),则EF =12,BE =22,BF =32,结合图形=BF =33. 答案:33三、解答题(本大题共5小题,共55分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)(2014·瑞安高一检测)某几何体的三视图如图,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.解:依题意得侧面的高h ′=(2-1)2+32=10, S =S 上底+S 下底+S 侧面=22+42+4×12×(2+4)×10=20+1210,所以几何体的表面积为20+1210.体积V =13(42+22+2×4)×3=28.17.(本小题满分10分)如图,在底面为正三角形且侧棱垂直于底面的三棱柱ABC ­A 1B 1C 1中,F ,F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.证明:(1)在底面为正三角形且侧棱垂直于底面的三棱柱ABC ­A 1B 1C 1中, ∵F ,F 1分别是AC ,A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F , ∴平面AB 1F 1∥平面C 1BF .(2)在底面为正三角形且侧棱垂直于底面的三棱柱ABC ­A 1B 1C 1中,∵AA 1⊥平面A 1B 1C 1, ∴B 1F 1⊥AA 1.又∵B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1平面AB 1F 1, ∴平面AB 1F 1⊥平面ACC 1A 1.18.(本小题满分10分)(2014·呼和浩特高一检测)已知正四棱台ABCD ­A 1B 1C 1D 1的上底面、下底面周长分别为8和16,高为 3.(1)求上、下底面面积; (2)求斜高及侧面积; (3)求表面积.解:设上底边长为a ,下底边长为b ,斜高为h ′.(1)因为4a =8,所以a =2,所以S 上=a 2=4.因为4b =16,所以b =4,所以S 下=b 2=16.故上、下底面面积分别为4、16.(2)由于上、下底边心距a 2、b2的差,高h ,斜高h ′构成一个直角三角形,如图.所以h ′=h 2+⎝ ⎛⎭⎪⎫b 2-a 22=3+1=2,即斜高为2.所以侧面积为4×12×(2+4)×2=24.(3)该几何体的表面积为侧面积与上、下底面面积之和,所以表面积为4+16+24=44. 19.(本小题满分12分)(2014·周口店高一检测)如图,圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,且AB ⊥CD ,SO =OB =2,P 为SB 的中点.(1)求证:SA ∥平面PCD ;(2)求异面直线SA 与PD 所成角的正切值.解:(1)证明:连接PO ,因为P ,O 分别为SB ,AB 的中点,PO SA 平面, SA ∥平面 , SOB ,中,2,OP =12SA =12SB =2,所以异面直线SA 与PD 所成角的正切值为 2.20.(本小题满分13分)(2014·无锡高一检测)如图所示,在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为DD 1,DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1­EFC 的体积.解:(1)证明:连接BD 1,在△DD 1B 中,E ,F 分别为D 1D ,DB 的中点,则EF ∥D 1B .因为EF ∥D 1B ,D 1B 平面ABC 1D 1,EF 平面ABC 1D 1, 所以EF ∥平面ABC 1D 1.(2)证明:因为B 1C ⊥AB ,B 1C ⊥BC 1,AB ,BC 1平面ABC 1D 1,AB ∩BC 1=B , 所以B 1C ⊥平面ABC 1D 1. 又BD 1平面ABC 1D 1,所以B 1C ⊥BD 1.又因为EF ∥BD 1, 所以EF ⊥B 1C .(3)因为CF ⊥平面BDD 1B 1,所以CF ⊥平面EFB 1且CF =BF =2,因为EF =12BD 1=3,B 1F =BF 2+BB 21=(2)2+22=6, B 1E =B 1D 21+D 1E 2=(22)2+12=3,所以EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,所以VB 1­EFC =VC ­B 1EF =13·S △B 1EF ·CF=13×12·EF ·B 1F ·CF =13×12×3×6×2=1.。

(北师大版)2018-2019年度高中数学必修2同步习题-:第一章立体几何初步 1.6.1.2(含解析)

(北师大版)2018-2019年度高中数学必修2同步习题-:第一章立体几何初步 1.6.1.2(含解析)

第2课时平面与平面垂直的判定1.下列命题正确的是()①过平面外一点有且仅有一个平面与已知平面垂直;②如果一条直线和两个垂直平面中的一个垂直,那么它必和另一个平面平行;③过不在平面内的一条直线可作无数个平面与已知平面垂直;④如果两个平面互相垂直,那么经过一个平面内一点与另一平面垂直的直线在该平面内.A.①③B.②③C.②③④D.④解析:过平面外一点可作一条直线与平面垂直,过该直线的任何一个平面都与已知平面垂直,所以①不对;若α⊥β,a⊥α,则a⫋β或a∥β,所以②不对;当平面外的直线是平面的垂线时,能作无数个平面与已知平面垂直,否则只能作一个,所以③不对;④正确.故选D.答案:D2.已知PA⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有()A.1对B.4对C.5对D.6对解析:因为DA⊥AB,DA⊥PA,AB∩PA=A,所以DA⊥平面PAB,同理BC⊥平面PAB,AB⊥平面PAD,DC⊥平面PAD,所以平面ABCD⊥平面PAD,平面ABCD⊥平面PAB,平面PBC⊥平面PAB,平面PDC⊥平面PAD,平面PAB⊥平面PAD.答案:C3.在三棱锥P-ABC中,∠ABC=90°,PA=PB=PC,则下列说法正确的是()A.平面PAC⊥平面ABCB.平面PAB⊥平面PBCC.PB⊥平面ABCD.BC⊥平面PAB解析:如图所示,因为∠ABC=90°,PA=PB=PC,所以点P在底面的射影落在△ABC的斜边AC的中点O处,连接OB,OP,则PO⊥OB,又PA=PC,所以PO⊥AC,且AC∩OB=O,所以PO⊥平面ABC,又PO⫋平面PAC,所以平面PAC⊥平面ABC.答案:A4.如图所示,△ADB和△ADC都是以D为直角顶点的等腰直角三角形,且∠BAC=60°,则下列说法错误的是()A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD解析:由题意可知,AD⊥BD,AD⊥DC.∴AD⊥平面BDC.又△ABD与△ADC均是以D为直角顶点的等腰直角三角形,∴AB=AC,BD=DC=AB.∵∠BAC=60°,∴△ABC为等边三角形.∴BC=AB=BD.∴∠BDC=90°,即BD⊥DC,∴BD⊥平面ADC.同理DC⊥平面ABD,故A,B,C均正确.答案:D5.已知两条不同直线m,l,两个不同平面α,β,在下列条件中,可以得出α⊥β的是()A.m⊥l,l∥α,l∥βB.m⊥l,α∩β=l,m⫋αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⫋α解析:对于A,l∥α,l∥β,α与β可以平行或相交;对于B,α与β不一定垂直;对于C,由m∥l,m⊥α,得l⊥α,又l⊥β,则α∥β,故C不正确;对于D,由m∥l,l⊥β,得m⊥β,又m⫋α,则α⊥β.答案:D6.在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是边长为的等腰三角形,则二面角V-AB-C的平面角的大小为.解析:取AB,CD的中点E,F,连接VE,VF,EF,因为底面ABCD是边长为2的正方形, 侧面都是棱长为的等腰三角形,所以VE⊥AB,EF⊥AB,所以∠VEF即为二面角V-AB-C的平面角.又EF=BC=2,VE=-=2=VF,故△VEF为等边三角形,所以∠VEF=60°.答案:60°7.在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的平面角的大小为. 解析:如图所示,AD⊥AB,AD1⊥AB,所以∠D1AD即为二面角D1-AB-D的平面角.由正方形的对角线平分对角的性质知∠D1AD=45°.答案:45°8.如图所示,一山坡的坡面与水平面成30°的二面角,坡面上有一直道AB,它和坡脚的水平线成30°的角,沿这一直道行走20 m后升高m.答案:59.如图所示,已知三棱锥P-ABC,∠ACB=90°,D为AB的中点,且△PDB是正三角形,PA⊥PC.求证:(1)PA⊥平面PBC;(2)平面PAC⊥平面ABC.证明(1)因为△PDB是正三角形,所以∠BPD=60°.因为D是AB的中点,所以AD=BD=PD.又∠ADP=120°,所以∠DPA=30°,所以∠DPA+∠BPD=90°,即∠APB=90°,所以PA⊥PB.又PA⊥PC,PB∩PC=P,所以PA⊥平面PBC.(2)因为PA⊥平面PBC,所以PA⊥BC.因为∠ACB=90°,所以AC⊥BC.又PA∩AC=A,所以BC⊥平面PAC.因为BC⫋平面ABC,所以平面PAC⊥平面ABC.★10.如图所示,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.求证:平面DEG⊥平面CFG.证明因为DE⊥EF,CF⊥EF,CD∥EF,所以四边形CDEF为矩形.由GD=5,DE=4,得GE=-=3,由GC=4,CF=4,得FG=-=4,所以EF=5.在△EFG中,有EF2=GE2+FG2,所以EG⊥GF.又因为CF⊥EF,CF⊥FG,EF∩FG=F,所以CF⊥平面EFG,所以CF⊥EG.又FG∩CF=F,所以EG⊥平面CFG.因为EG⫋平面DEG,所以平面DEG⊥平面CFG.★11.如图所示,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.证明(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以有BB1⊥平面ADC,即有AD⊥BB1.又AD⊥DE,且BB1与DE必相交,所以AD⊥平面BCC1B1.又AD⫋平面ADE,所以平面ADE⊥平面BCC1B1.(2)在直三棱柱ABC-A1B1C1中,A1B1=A1C1,所以有AB=AC.又由(1)知AD⊥平面BCC1B1,所以AD⊥BC,所以D为BC的中点.如图所示,连接DF,得四边形AA1FD为平行四边形,故A1F∥AD.又AD⫋平面ADE,A1F⊈平面ADE,所以直线A1F∥平面ADE.。

2018-2019学年高中北师大版数学必修2:第1章2 直观图 含解析

2018-2019学年高中北师大版数学必修2:第1章2 直观图 含解析

2直观图时间:45分钟满分:80分班级________姓名________分数________一、选择题(每小题5分,共5×6=30分)1.水平放置的梯形的直观图是()A.梯形B.矩形C.三角形D.任意四边形答案:A解析:斜二测画法的规则中平行性保持不变,故选A.2.利用斜二测画法可以得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④答案:A解析:因为斜二测画法是一种特殊的平行投影画法,所以①②正确;对于③④,只有平行于x轴的线段长度不变,所以不正确.3.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()答案:A解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.4.已知一条边在x轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是()A.16 B.64C.16或64 D.以上都不对答案:C解析:根据直观图的画法,平行于x轴的线段长度不变,平行于y轴的线段变为原来的一半,于是直观图中长为4的边如果平行于x′轴,则正方形的边长为4,面积为16;长为4的边如果平行于y′轴,则正方形的边长为8,面积是64.5.若用斜二测画法把一个高为10 cm 的圆柱的底面画在x ′O ′y ′平面上,则该圆柱的高应画成( )A .平行于z ′轴且长度为10 cmB .平行于z ′轴且长度为5 cmC .与z ′轴成45°且长度为10 cmD .与z ′轴成45°且长度为5 cm答案:A解析:平行于z 轴的线段,在直观图中平行性和长度都不变,故选A.6.若一个水平放置的图形的直观图是一个底角为45°且腰和上底均为1的等腰梯形如图所示,则原平面图形的面积是( ) A.2+22 B.1+22C .2+ 2D .1+ 2答案:C解析:由题意,知直观图中等腰梯形的下底为2+1,根据斜二测画法规则,可知原平面图形为直角梯形,上底为1,下底为2+1,高为2,所以其面积为2+ 2.二、填空题(每小题5分,共5×3=15分)7.一条边在x 轴上的正方形的面积是4,按斜二测画法所得的直观图是一个平行四边形,则这个平行四边形的面积是________.答案: 2解析:正方形的面积为4,则边长为2,由斜二测画法的规则,知平行四边形的底为2,高为22,故面积为2.8.一个水平放置的平面图形的直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,则这个平面图形的面积为________. 答案:4+22解析:由直观图,可知原图形为直角梯形,且上底为1,下底为22+1,高为2,故面积为12×⎝⎛⎭⎫1+22+1×2=2+22. 9.给出下列各命题:(1)利用斜二测画法得到的三角形的直观图还是三角形;(2)利用斜二测画法得到的平行四边形的直观图还是平行四边形;(3)利用斜二测画法得到的正方形的直观图还是正方形;(4)利用斜二测画法得到的菱形的直观图还是菱形;(5)在画直观图时,由于选轴的不同所画的直观图可能不同;(6)水平放置的矩形的直观图可能是梯形.其中正确的命题序号为____________.答案:(1)(2)(5)三、解答题(共35分,11+12+12)10.将图中所给水平放置的直观图绘出原形.。

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版2018-2019学年高中数学必修2全册习题含解析

北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。

2018-2019年高中数学北师大版《必修二》《第一章 立体几何初步》《1.7 简单几何体的面积和体

2018-2019年高中数学北师大版《必修二》《第一章 立体几何初步》《1.7 简单几何体的面积和体

2018-2019年高中数学北师大版《必修二》《第一章立体几何初步》《1.7 简单几何体的面积和体积》课后练习试卷【3】含答案考点及解析班级:___________ 姓名:___________ 分数:___________ 题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题 1.若直线不平行于平面,则下列结论成立的是()A.内的所有直线都与直线异面B.内不存在与平行的直线C.内的直线都与相交D.直线与平面有公共点【答案】D 【解析】试题分析:直线不平行于平面,则与平面相交或,所以D正确.考点:直线与平面的位置关系.2.已知a、b、c为三条不重合的直线,下面结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( ) A.0个B.1个C.2个D.3个【答案】B 【解析】试题分析:在空间,若a⊥b,a⊥c,则b、c可以平行,也可以相交,也可以异面,所以①②错;③显然成立所以选B. 考点:空间直线的位置关系.3.设、是两个不同的平面,、是两条不同的直线,给出下列4个命题,其中正确命题是() A.若∥,∥,则∥B.若∥,∥,∥,则∥ C.若⊥,⊥,⊥,则⊥ D.若、在平面内的射影互相垂直,则⊥【答案】C【解析】解:因为命题A中,平行与同一平面的两直线有三种位置关系,因此错误选项B中,只有a,b相交时成立。

选项D中,射影垂直,但是原来的直线未必垂直,错误,选C. 4.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是()A.20+3πB.24+3πC.20+4πD.24+4π【答案】A【解析】此题考查三视图的知识点,根据三视图还原出原图是关键。

有三视图可知:此几何体是是一个组合体:是有一个正方体和半个圆柱组合而成的,其中圆柱的轴截面和正方体的底面重合,正方体的棱长是2,半个圆柱的高是2,底面半径是1,所以该几何体的表面积是由长方体的5个面的面积加上圆柱的侧面积的一半再加上一个圆的面积:即 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1B.2C.3D.4【答案】D【解析】试题分析:由题意可知,几何体为三棱锥,将其放置在长方体模型中即可得出正确答案.解:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示(图中红色部分),利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.故选:D.考点:由三视图还原实物图.6.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于() A.B.C.D.【答案】B【解析】试题分析:由三视图可知该几何体为三棱锥,底面为等腰直角三角形,直角边为,高为,所以体积为考点:三视图7.一个水平放置的平面图形的直观图是一个底角为,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A.B.C.D.【答案】D 【解析】试题分析:∵平面图形的直观图是一个底角为,腰和上底长均为的等腰梯形,∴平面图形为直角梯形,且直角腰长为,上底边长为,∴梯形的下底长为,∴平面图形的面积.故选D.考点:平面图形的直观图. 8.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.① C.③④D.①②③④【答案】A【解析】试题分析:根据斜二测画法的规则可知,平行于坐标轴的直线平行性不变,平行轴的线段长度不变,平行于轴的长度减半,①三角形的直观图中,三角形的高减少为原来的一半,显然是三角形,所以正确;②根据平行性不变原则,平行四边形的直观图是平行四边形,所以是正确的;③正方形中的直角,在直观图中边为角,不是正方形,所以是错误的;④菱形的直观图中高的长度减半,对应的直观图不是菱形,所以是错误的,故选A.考点:斜二测画法的应用.9.某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是()A.2 B.4 C.D.【答案】C【解析】试题分析:由三视图可得原几何体如图,该几何体的高PO=2,底面ABC为边长为2的等腰直角三角形,所以,该几何体中,直角三角形是底面ABC和侧面PBC.事实上,∵PO⊥底面ABC,∴平面PAC⊥底面ABC,而BC⊥AC,∴BC⊥平面PAC,∴BC⊥PC.PC=.S=×2×=.△PBC S=×2×2=2.△ABC 所以,则该四面体的四个面中,直角三角形的面积和是考点:由三视图求面积、体积10.如图,在正方体中,为线段的中点,则异面直线与所成角的大小为()A.B.C.D.【答案】C【解析】设BD与AC交于O,则四边形DOBE为平行四边形,因此异面直线与所成角为1,设正方体棱长为1,则即,选C.评卷人得分二、填空题11.若某多面体的三视图(单位:cm)如图所示,其中正视图与俯视图均为等腰三角形,则此多2 面体的表面积为________cm.v 【答案】【解析】由三视图知:多面体为右图所示,其表面积为:12.已知四面体ABCD中,DA=DB=DC=,且DA,DB,DC两两互相垂直,点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线 BC所成角的余弦值的取值范围是。

高中数学北师大版(2019)必修第二册第一章单元测试卷及答案

高中数学北师大版(2019)必修第二册第一章单元测试卷及答案

北师大版(2019)数学必修第二册第一章单元测试题一、单选题 1.11cos 3π=( )A B .C .12-D .122.已知角α的终边经过点()3,4-,则1sin cos αα+= A .15-B .3715C .3720D .13153.点()sin 2019,cos 2019A 位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin 2y x =的图象( )A .向左平移6π个单位 B .向右平移12π个单位 C .向左平移12π个单位D .向右平移12π个单位 5.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .6.已知51cos 123πα⎛⎫+=⎪⎝⎭,且2ππα-<<-,则cos 12πα⎛⎫- ⎪⎝⎭等于( )AB .13C .13-D. 7.已知tan 3θ=,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于A .32-B .32C .0D .238.设322sin,cos ,tan 555a b c πππ===,则 A .a b c << B .a c b <<C .b c a <<D .b a c <<二、多选题9.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将该函数的图象向左平移6π个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是( ) A .()102f =B .函数()y f x =的图象关于直线6x π=对称C .函数()y f x =的图象关于点5,012π⎛⎫⎪⎝⎭对称D .函数()y f x =的图象关于直线12x π=对称 10.已知函数()1212()tan ,,,22f x x x x x x ππ⎛⎫=∈-≠ ⎪⎝⎭,则下列结论中正确的是A .()()11f x f x π+=B .()()11f x f x -=C .()()12120f x f x x x ->-D .()()()121212022f x f x x x f x x ++⎛⎫>> ⎪⎝⎭11.关于函数()cos cos f x x x =+有下述四个结论中正确的是( ) A .()f x 是偶函数 B .()f x 在区间()0,π上递减 C .()f x 为周期函数D .()f x 的值域为[]1,1-12.已知函数()sin()f x A x ωϕ=+(其中0,0,0A ωϕπ>><<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则下列判断正确的是( ) A .函数()sin()f x A x ωϕ=+中,2T πω==B .直线2x π=是函数()f x 图象的一条对称轴C .点,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心D .函数1y =与35()1212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象的所有交点的横坐标之和为7π三、填空题13.cos 6y x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的值域为________.14.已知一扇形的弧所对的圆心角为54°,半径r =20cm ,则扇形的周长为___cm. 15.已知函数f (x )=sin (3x -4π),x∈[2π,π],则函数f (x )的单调递增区间为__________.16.tan(2)3x π+≥..为_____________________________________四、解答题17.设函数()sin(),0,0,2f x A x x πωϕωϕ⎛⎫⎛⎫=+∈>∈ ⎪ ⎪⎝⎭⎝⎭R 的部分图象如图所示,求()f x 的表达式.18.求下列函数的定义域:(1)y =(2)lg(1)y x =.19.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,π<ϕ)的一段图象如图所示.(1)求函数()f x 的单调递增区间; (2)若3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.20.方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.21.已知函数()()2cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.(1)求()f x 的单调增区间和对称轴;(2)若,63x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的最大值和最小值.22.已知函数2()sin sin 1f x x a x =-++ (1)当1a =时,求函数()f x 的值域;(2)若当0a >时,函数()f x 的最大值是3,求实数a 的值;参考答案 1.D 【分析】利用诱导公式化简可直接求得结果. 【详解】 111coscos 4cos 3332ππππ⎛⎫=-== ⎪⎝⎭. 故选:D. 2.D 【详解】因为角α的终边经过点()3,4-,所以5r =,则43sin ,cos 55αα=-=,即113sin cos 15αα+=.故选D . 3.C【详解】2019=5360+2192019⨯∴,为第三象限角,则sin 20190,cos 20190<<,∴点()sin 2019,cos 2019A 在位于第三象限角,故选C.4.D 【分析】根据函数sin()y A x ωϕ=+的图象变换规律,可得结论. 【详解】解:sin(2)sin 2()612y x x ππ=-=-,故将函数sin 2y x =的图象向右平移12π个单位,可得sin(2)6y x π=-的图象, 故选:D . 5.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 6.D 【分析】先利用诱导公式51cos 123πα⎛⎫+= ⎪⎝⎭化简得,1sin 123πα⎛⎫-= ⎪⎝⎭,然后利用同角三角函数的关系求cos 12πα⎛⎫- ⎪⎝⎭的值. 【详解】依题意551cos sin sin 12212123ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 由于2ππα-<<-,所以713121212πππα<-<,故cos 12πα⎛⎫-= ⎪⎝⎭故选:D. 【点睛】此题考查诱导公式和同角三角函数间的关系,属于基础题. 7.B 【详解】 因为tanθ=3,∴()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭=3cos 333.cos sin 1tan 132θθθθ---===--- 故选B . 8.D 【分析】利用三角函数的诱导公式,结合三角函数的单调性进行比较即可. 【详解】 sin35π=cos (2π﹣35π)=cos (﹣10π)=cos 10π,而函数y =cosx 在(0,π)上为减函数,则1>cos 10π>cos 25π>0,即0<b <a <1,tan 25π>tan 4π=1,即b <a <c , 故选D . 【点睛】本题主要考查了三角函数值的大小比较,利用三角函数的诱导公式,结合三角函数的单调性是解决本题的关键,属于基础题.9.ABC 【分析】利用正弦函数的周期性以及图像的对称性,求出函数的解析式,再根据函数()()sin f x x ωϕ=+的图像变化规律、正弦函数的图像的对称性,得出结论. 【详解】函数()()sin f x x ωϕ=+的最小正周期为2ππω=,2ω∴=,故()()sin 2f x x ϕ=+,将该函数的图象向左平移6π个单位后,得到()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭的图像, 根据得到的图象对应的函数为偶函数,可得32ππϕ+=,6πϕ∴=,故()sin 26f x x π⎛⎫+ ⎝=⎪⎭,对于A ,()10sin 62f π==,故A 正确;对于B ,当 6x π=时,则sin 1636f πππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对于C ,55sin 01266f πππ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,故C 正确;对于D ,sin sin 12663f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,故D 错误;故选:ABC 【点睛】本题考查了三角函数的平移变换以及三角函数的性质,解题的关键是求出函数的解析式,属于基础题. 10.AC 【分析】根据正切函数的周期性可得A 正确,根据奇偶性判断B 错误,根据单调性判断C 正确,结合函数图象即可判断D 错误. 【详解】()tan f x x =的周期为π,故A 正确;函数()tan f x x =为奇函数,故B 不正确;C 表明函数为增函数,而()tan f x x =为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故C 正确;由函数()tan f x x =的图像可知,函数在区间,02π⎛⎫- ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,在区间0,2π⎛⎫ ⎪⎝⎭上有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 不正确.故选:AC 【点睛】此题考查正切函数图象性质的辨析,涉及单调性,奇偶性周期性,结合图象理解凹凸性. 11.AC 【分析】根据奇偶性的定义判断出()f x 为偶函数,A 正确;通过,2x ππ⎛⎫∈ ⎪⎝⎭时()f x 解析式,可知不满足单调递减定义,B 错误;通过分类讨论的方式去掉解析式的绝对值,得到分段函数的性质,可确定函数最小正周期,知C 正确;根据余弦函数值域可确定()f x 值域,知D 错误. 【详解】()()()()cos cos cos cos f x x x x x f x -=-+-=+=()f x ∴为偶函数,A 正确;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()cos cos 0f x x x =-=,不满足单调递减定义,B 错误;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()2cos f x x =;当32,222x k k ππππ⎡⎤∈++⎢⎥⎣⎦,k Z ∈时,()0f x = ()f x ∴是以2π为最小正周期的周期函数,C 正确;当2,222x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈时,()[]2,2f x ∈-,故()f x 值域为[]22-,,D 错误. 故选:AC 【点睛】本题考查与余弦型函数有关的函数的性质及值域的相关命题的辨析,涉及到函数奇偶性、单调性、周期性和值域的求解;关键是能够通过分类讨论的方式确定函数在不同区间内的解析式,进而研究函数性质. 12.ACD 【分析】首先根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】解:函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,且与点M 相邻的一个最低点为2(,3)3N π-,则2543124T πππ=-=, T π∴=,进一步解得22πωπ==,3A =,故A 正确.由于函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0)ϕπ<<的图象关于点5(,0)12M π成中心对称,52()12k k Z πϕπ∴⨯+=∈, 解得56k ϕπ=π-, 由于0ϕπ<<,∴当1k =时,6π=ϕ. ()3sin(2)6f x x π∴=+.对于B :当2x π=时,3()3sin262f ππ=-=-,故B 不正确; 对于C :由26x k ππ+=,k Z ∈,解得212k x ππ=-,k Z ∈, 当0k =时,对称中心为:,012π⎛⎫- ⎪⎝⎭,故C 正确;对于D :由于:351212xππ-, 则:0266x ππ+,∴函数()f x 的图象与1y =有6个交点.根据函数的交点设横坐标从左到右分别为1x 、2x 、3x 、4x 、5x 、6x ,由2262x k πππ+=+,k Z ∈,解得6x k ππ=+,k Z ∈,所以12263x x ππ+=⨯=,432263x x ππππ⎛⎫+=⨯+=+ ⎪⎝⎭,5622463ππx x ππ⎛⎫+=⨯+=+ ⎪⎝⎭,所以156423247333x x x x x x ππππππ+++++=++++=所以函数的图象的所有交点的横坐标之和为7π,故D 正确.∴正确的判断是ACD .故选:ACD . 13.1,12⎡⎤⎢⎥⎣⎦【分析】 由02xπ,可得663x πππ--,结合余弦函数的性质即可求解.【详解】 解:02xπ, ∴663x πππ--,∴1cos()126x π- 即112y ,即1,12y ⎡⎤∈⎢⎥⎣⎦, 故答案为:1,12⎡⎤⎢⎥⎣⎦.14.6π+40 【分析】根据角度制与弧度制的互化,可得圆心角310πα=,再由扇形的弧长公式,可得弧长l ,即可求解扇形的周长,得到答案. 【详解】由题意,根据角度制与弧度制的互化,可得圆心角35410πα==, ∴由扇形的弧长公式,可得弧长6l r απ=⋅=, ∴扇形的周长为(640)cm π+. 【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题. 15.711,1212ππ⎡⎤⎢⎥⎣⎦【分析】将π34x -代入三角函数的递增区间,求得的x 的范围,然后对k 进行赋值,从而求得在π,π2⎡⎤⎢⎥⎣⎦范围内的增区间. 【详解】 令232242k x k πππππ-+≤-≤+ ()Z k ∈,解得323244k x k ππππ-+≤≤+ ()Z k ∈, 故2212343k k x ππππ-+≤≤+ ()Z k ∈,令1k =,解得7111212x ππ≤≤, 故函数的单调递增区间为711,1212ππ⎡⎤⎢⎥⎣⎦.【点睛】本小题主要考查正弦型类型的三角函数的单调区间的求法,采用的是先求得所有的增区间,然后对k 进行赋值,来求得给定区间内的单调增区间. 16.{|,}2212k k x x k Z πππ≤<+∈ 【分析】 由题得2,332k x k k Z πππππ+≤+<+∈,解不等式得不等式的解集.【详解】 由题得2,332k x k k Z πππππ+≤+<+∈,所以2,,62212k k k x k x k Z ππππππ≤<+∴≤<+∈. 所以不等式的解集为{|,}2212k k x x k Z πππ≤<+∈. 故答案为{|,}2212k k x x k Z πππ≤<+∈ 【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.17.()sin 24f x x π⎛⎫=+ ⎪⎝⎭.【分析】通过图像最高点的纵坐标即可求得A ,然后根据图像求最小正周期,再根据最小正周期公式求ω,再通过代点并结合ϕ的范围即可求解. 【详解】由图象可得1A =,32=48844T ππππω=-=, ∴2ω=,从而()sin(2)f x x ϕ=+,又∵点,18π⎛⎫ ⎪⎝⎭在函数的图象上,∴sin 14πϕ⎛⎫+= ⎪⎝⎭,从而2,42k k ππϕπ+=+∈Z ,即2,4k k πϕπ=+∈Z ,∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴4πϕ=,故()f x 的表达式:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.故答案为:()sin 24f x x π⎛⎫=+ ⎪⎝⎭.18.(1)22/,2cot ()33x k πππ⎡⎤∈++∈⎢⎥⎣⎦Z ; (2)3572,22,2()4444x k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .【分析】(1)由题可得2sin 0x ,即3sin 2x,在单位圆中作出满足该不等式的角的集合,即可得答案;(2)由题可得1010x x ⎧->⎪⎨+⎪⎩即cos x <,在单位圆中作出满足该不等式的角的集合,即可得答案.【详解】(1)∵2sin 0x ≥,∴3sin 2x,在单位圆中作出满足该不等式的角的集合,如图①所示,可得22,2()33x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z .①(2)∵1010x x ⎧>⎪⎨+⎪⎩∴cos x <,在单位圆中作出满足该不等式的角的集合,如图②所示,可得3572,22,2()4444x k k k k k ππππππππ⎛⎤⎡⎫∈++⋃++∈ ⎪⎥⎢⎝⎦⎣⎭Z .② 【点睛】本题考查借助三角函数线解三角不等式问题,属于基础题.19.(1)5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z ;(2)2⎡⎤⎣⎦ 【分析】(1)易知2A =,由13ππ288T ⎛⎫=-- ⎪⎝⎭,及2πT ω=,可求出ω,进而将点π,28⎛⎫- ⎪⎝⎭代入()f x 中,可求出ϕ,即可得到函数()f x 的表达式,进而求出单调递增区间即可; (2)由x 的范围,可求出3π24x +的范围,再结合正弦函数的性质,可求出()f x 的值域. 【详解】(1)由题意可知2A =,因为13πππ2882T ⎛⎫=--= ⎪⎝⎭,所以πT =, 所以2π2Tω==,此时()()2sin 2f x x ϕ=+, 把点π,28⎛⎫- ⎪⎝⎭代入()f x 表达式,得πsin 14ϕ⎛⎫-+= ⎪⎝⎭,则ππ2π42k ϕ-+=+,即3π2π4k ϕ=+,又πϕ<,故3π4ϕ=,故()3π2sin 24f x x ⎛⎫=+ ⎪⎝⎭,令π3ππ2π22π242k x k -+≤+≤+()k ∈Z , 解得5ππππ88k x k -+≤≤-+()k ∈Z , ∴函数()f x 的单调增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦()k ∈Z .(2)∵3ππ,84x ⎡⎤∈-⎢⎥⎣⎦,∴3π5π20,44x ⎡⎤+∈⎢⎥⎣⎦,当3π5π244x +=即π4x =时,()f x 取得最小值,()min 5π2sin 4f x == 当3ππ242x +=即π8x =-时,()f x 取得最大值,()max π2sin 22f x ==.∴函数()f x 的值域为2⎡⎤⎣⎦. 【点睛】本题考查了利用三角函数的图象求函数的解析式,考查求三角函数的值域,考查学生的计算求解能力,属于基础题. 20.(]1,0- 【分析】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,结合图象交点的个数即可得到结果.【详解】作出cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦与12a y -=的大致图象,如图所示.由图象,可知当11122a -≤<,即10a -<≤时, cos ,,3y x x π⎡⎤=∈-π⎢⎥⎣⎦的图象与12a y -=的图象有两个交点,即方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根, 故实数a 的取值范围为(]1,0-. 【点睛】本题主要考查了余弦函数在给定区间内的图象,将题意转化为两图象交点的个数是解题的关键,属于中档题.21.(1)()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z ,()122k x k ππ=-+∈Z ;(2)()max 2f x =,()min f x =【分析】(1)利用函数的最小正周期求出()f x ,利用余弦函数的单调增区间和对称轴求出答案;(2)利用,63x ππ⎡⎤∈-⎢⎥⎣⎦,求出52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,可得()f x 的最大值和最小值.【详解】(1)由题意知2T ππω==,解得2ω=,所以()2cos 26f x x π⎛⎫=+ ⎪⎝⎭,令()2226k x k k ππππ-+≤+≤∈Z ,解得()71212k x k k ππππ-+≤≤-+∈Z , 故函数的单调递增区间为()7,1212k k k ππππ⎡⎤-+-+∈⎢⎥⎣⎦Z .令()26x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,所以()f x 的对称轴为()122k x k ππ=-+∈Z .(2)∵,63x ππ⎡⎤∈-⎢⎥⎣⎦,则52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,∴当206x π+=时,()max 2f x =.当5266x ππ+=时,()min f x =所以,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()max 2f x =,()min f x =【点睛】本题考查三角函数的性质,考查余弦函数的单调性和最值,考查对称中心的求法,属于中档题.22.(1)514⎡⎤-⎢⎥⎣⎦,(2)3【分析】(1)1a =时,可得到2()sin sin 1f x x x =-++,可令t =sin x ,并得到二次函数y =﹣t 2+t +1,配方即可求出该函数的最大、最小值,即得出f (x )的值域;(2)化简f (x )并配方得到22()sin 124a a f x x ⎛⎫=--++ ⎪⎝⎭,讨论:2a ≥,02a <<,分别求出对应的f (x )的最大值,根据f (x )的最大值为3,即可求出实数a 的值. 【详解】解:(1)当1a =时,2()sin sin 1f x x x =-++, 令t =sin x , 1-≤t ≤1;则2215124y t t t ⎛⎫=-++=--+ ⎪⎝⎭,当12t =时,函数()f x 的最大值是54, 当1t =-时,函数()f x 的最小值是1-, ∴函数()f x 的值域514⎡⎤-⎢⎥⎣⎦,,(2)当0a >时,222()sin sin 1sin 124a a f x x a x x ⎛⎫=-++=--++ ⎪⎝⎭当1,22aa ≥≥时,当且仅当sin 1x = 时,max ()f x a =,又函数()f x 的最大值是3,∴3a =;当当01,022a a <<<<时,当且仅当sin 2a x = 时,2max ()14a f x =+,又函数()f x 的最大值是3,∴2134a+=,∴a =02a <<,不适合题意; 综上:实数a 的值为3 【点睛】本题考查正弦型二次函数的最值与值域,考查换元法与分类讨论思想,属于中档题.。

北师大版高中数学必修2第一章立体几何初步单元测试(带答案)

北师大版高中数学必修2第一章立体几何初步单元测试(带答案)
∴EH∥面 BCD 又 EH 面 ABD,面 BCD 面 ABD BD ,
∴EH∥BD.
16、【证明】
(1)连结 A1C1 ,设 A1C1 B1D1 O1 连结 AO1 , ABCD A1B1C1D1 是正方体 A1ACC1 是平行四边形 ∴A1C1∥AC A1C1 AC
又 O1, O 分别是 A1C1, AC 的中点,∴O1C1∥AO 且 O1C1 AO AOC1O1 是平行四边形 C1O AO1, AO1 面 AB1D1 , C1O 面 AB1D1 ∴C1O∥面 AB1D1 (2) CC1 面 A1B1C1D1 CC1 B1D! 又 A1C1 B1D1 , B1D1 面A1C1C
2、已知某几何体的俯视图是如右上图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰 三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( ) (A)48 (B)64 (C)96 (D)192
3、长方体的一个顶点上三条棱长分别是 3, 4,5 ,且它的 8 个顶点都在同一球面上,则球的表面积是( )
(A) 1 (B) 2 (C) 3 (D) 4
7、已知两个平面垂直,下列命题
①一个平面内的已知直线必垂直于另一个平面的任意一条直线;
②一个平面内的已知直线必垂直于另一个平面的无数条直线;
③一个平面内的任一条直线必垂直于另一个平面;
④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.
其中正确的个数是( )
A、
V 2
B、
V 3
C、
V 4
Байду номын сангаас
D、
V 5
A'
C'
P
B'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试一
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.
第Ⅰ卷(选择题共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在下列各题的四个选项中,只有一个选项是符合题目要求的.
1.下列几何体中,不存在母线的是()
A.圆锥B.圆台
C.球D.圆柱
答案:C
解析:圆锥、圆台、圆柱都存在母线,球不存在母线.
2.将下列选项中的三角形分别绕直线l旋转一周,可以得到如图所示的几何体的是()
答案:B
解析:题图中的几何体是由两个简单几何体组成的,因此B符合题意.
3.水平放置的△ABC,有一边在水平线上,它的斜二测直观图是正三角形A′B′C′,则△ABC是() A.锐角三角形B.直角三角形
C.钝角三角形D.任意三角形
答案:C
解析:该题考查了斜二测画法中的平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段这个知识点.
4.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边长为2的直角三角形,则该三棱锥的主视图为()
答案:C
解析:
由题设条件,知该三棱锥的直观图如图所示,其底面ABC为正三角形,侧棱PC垂直于底面,其主视图
为腰长为2的等腰直角三角形,P A 的投影是虚线.故选C.
5.用一个半径为2 cm 的半圆围成一个圆锥,则圆锥底面圆的半径为( )
A .1 cm
B .2 cm
C.12 cm
D.32
cm 答案:A
解析:设圆锥底面半径为r ,母线为l ,则πrl =12πl 2,∴r =12
l =1 cm ,故选A. 6.用一个平面去截正方体,所得的截面不可能是( )
A .六边形
B .菱形
C .梯形
D .直角三角形
答案:D
7.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为( )
答案:B
解析:该几何体的左视图中,AD 1的投影是一条从左上角到右下角的实对角线,B 1C 的投影是一条从右上角到左下角的虚对角线,故选B.
8.圆台轴截面的两条对角线互相垂直,且上、下底面半径比为
,又其高为14 2,则母线长为( )
A .10 3
B .25
C .10 2
D .20
答案:D
圆台的轴截面及所设未知量如图所示,由已知得:
r R =34=O 1O OO 2
① 又O 1O 2=14 2,
∴O 1O =6 2,OO 2=8 2,
∵OB ⊥OC ,Rt △BOC 中,OB 2+OC 2=l 2⇒r 2+(6 2)2+R 2+(8 2)2=l 2 ②
又∵l 2=(2R -2r )2+O 1O 22 ③
由①②③式得l =20,即圆台的母线长为20.
9.甲乙两足球队决赛互罚点球时,罚球点离球门约10米,乙队守门员违例向前冲出3米,因而扑住了点球,不光彩地赢得了胜利.事实上乙队守门员违例向前冲出了3米时,其要封堵的区域面积变小了.则此时乙队守门员需封堵区域面积是原来球门面积的( )
A.310
B.710
C.9100
D.49100。

相关文档
最新文档