2011届高考物理第一轮单元复习检测试题33
2011高考物理第一轮总复习满分练兵测试题43

2011届高考第一轮总复习满分练兵场第六章综合测试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.如图所示的四个电场的电场线,其中A和C图中小圆圈表示一个点电荷,A图中虚线是一个圆,B图中几条直线间距相等互相平行,则在图中M、N处电场强度相同的是() [答案] B[解析]电场强度相同指场强大小、方向都相同,故B对.2.A、B是一条电场线上的两个点,一带负电的粒子仅在电场力作用下以一定的初速度从A点沿电场线运动到B点,其速度v和时间t的关系图象如图甲所示.则此电场的电场线分布可能是图乙中的() [答案] A[解析]由图象可知,粒子的速度随时间逐渐减小,粒子的加速度逐渐变大,则电场强度逐渐变大,从A到B电场线逐渐变密.综合分析知,带负电的粒子是顺电场线方向运动.由电场线疏处到达密处.故A对.3.一个带正电的点电荷以一定的初速度v0(v0≠0),沿着垂直于匀强电场的方向射入电场,则其可能的运动轨迹应该是下图中的() [答案] B[解析]点电荷垂直于电场方向进入电场时,电场力垂直于其初速度方向,电荷做类平抛运动,选B.4.如图所示,在匀强电场中有一平行四边形ABCD,已知A、B、C三点的电势分别为φA=10V、φB=8V、φC=2V,则D点的电势为()A.8V B.6VC.4V D.1V[答案] C[解析]由于电场是匀强电场,则U AB=U DC,φA-φB=φD-φC,φD=4V,C选项正确.5.示波管的结构中有两对互相垂直的偏转电极XX′和YY′,若在XX′上加上如图甲所示的扫描电压,在YY′上加如图乙所示的信号电压,则在示波管荧光屏上看到的图形是图丙中的()[答案] C[解析]由于在XX′所加的扫描电压和YY′所加的信号电压的周期相同,所以荧光屏上就会显示随信号而变化的波形,C图正确.6.如图所示,水平放置的平行板电容器,上板带负电,下板带正电,带电小球以速度v0水平射入电场,且沿下板边缘飞出.若下板不动,将上板上移一小段距离,小球仍以相同的速度v0从原处飞入,则带电小球() A.将打在下板中央B.仍沿原轨迹由下板边缘飞出C.不发生偏转,沿直线运动D .若上板不动,将下板上移一段距离,小球可能打在下板的中央[答案] BD[解析] 将电容器上板或下板移动一小段距离,电容器带电荷量不变,由公式E =U d =Q Cd=4k πQ εr S可知,电容器产生的场强不变,以相同速度入射的小球仍将沿原轨迹运动.下板不动时,小球沿原轨迹由下板边缘飞出;当下板向上移动时,小球可能打在下板的中央.7.光滑绝缘细杆与水平面成θ角固定,杆上套有一带正电的小球,质量为m ,带电荷量为q .为使小球静止在杆上,可加一匀强电场.所加电场的场强满足什么条件时,小球可在杆上保持静止 ( )A .垂直于杆斜向上,场强大小为mg cos θqB .竖直向上,场强大小为mg qC .垂直于杆斜向下,场强大小为mg sin θqD .水平向右,场强大小为mg cot θq[答案] B[解析] 小球受竖直向下的重力,若电场垂直于杆的方向,则小球受垂直于杆方向的电场力,支持力方向亦垂直于杆的方向,小球所受合力不可能为零,A 、C 项错;若电场竖直向上,所受电场力Eq =mg ,小球所受合力为零,B 项正确;若电场水平向右,则小球受重力、支持力和电场力作用,根据平行四边形定则,可知E =mg tan θ/q ,D 项错.8.(2009·海门模拟)一个质量为m ,电荷量为+q 的小球以初速度v 0水平抛出,在小球经过的竖直平面内,存在着若干个如图所示的无电场区和有理想上下边界的匀强电场区,两区域相互间隔,竖直高度相等,电场区水平方向无限长.已知每一电场区的场强大小相等,方向竖直向上,不计空气阻力,下列说法正确的是 ( )A .小球在水平方向一直做匀速直线运动B .若场强大小等于mg q,则小球经过每一电场区的时间均相同C .若场强大小等于2mg q,则小球经过每一无电场区的时间均相同 D .无论场强大小如何,小球通过所有无电场区的时间均相同[答案] AC[解析] 小球在水平方向不受力作用,因此,在水平方向一直做匀速直线运动,A 正确;当E =mg q时,小球通过第一、二电场区时在竖直方向均做匀速直线运动,但竖直速度不同,故B 错误;当E =2mg q时,小球通过第一、二无电场区时在竖直方向的初速度是相同的,均为零,故经过无电场区的时间也相同,C 正确;如取E =mg q,则小球通过无电场区的速度越来越大,对应的时间也越来越短,故D 错误.9.(2010·潍坊)如图所示,Q 1、Q 2为两个固定点电荷,其中Q 1带正电,它们连线的延长线上有a 、b 两点.一正试探电荷以一定的初速度沿直线从b 点开始经a 点向远处运动,其速度图象如图所示.则( ) A .Q 2带正电B .Q 2带负电C .试探电荷从b 到a 的过程中电势能增大D .试探电荷从b 到a 的过程中电势能减小[答案] BC [解析] 由图象知正电荷自b 点到a 点,速度减小,所以Q 2对试探电荷为吸引力,则Q 2带负电,A 错,B 对.试探电荷从b 到a 动能减小,所以电势能一定增大,C 对,D 错,正确答案BC.10.如图所示,质子、氘核和α粒子都沿平行板电容器两板中线OO ′方向垂直于电场线射入板间的匀强电场,且都能射出电场,射出后都打在同一个荧光屏上,使荧光屏上出现亮点.若微粒打到荧光屏的先后不能分辨,则下列说法中正确的是 ( )A .若它们射入电场时的速度相等,在荧光屏上将出现3个亮点B .若它们射入电场时的质量与速度乘积相等,在荧光屏上将出现2个亮点C .若它们射入电场时的动能相等,在荧光屏上将只出现1个亮点D .若它们是由同一个电场从静止加速后射入偏转电场的,在荧光屏上将只出现1个亮点[答案] D[解析] 粒子打在荧光屏上的位置取决于它的侧移量,侧移量相同,打在荧光屏上的位置相同,而侧移量y =ql 2U 2m v 20d,所以粒子速度相同时,屏上将出现2个亮点,粒子质量与速度乘积相同时,屏上将出现3个亮点;动能相同时,屏上将出现2个亮点;而经过同一电场从静止加速后,再进入偏转电场,出电场时所有粒子侧移量相同,屏上将出现1个亮点,故选D.第Ⅱ卷(非选择题 共60分)二、填空题(共3小题,每小题6分,共18分.把答案直接填在横线上)11.(6分)如图所示是一个平行板电容器,其电容为C ,带电荷量为Q ,上极板带正电,两极板间距为d .现将一个检验电荷+q 由两极板间的A 点移动到B 点,A 、B 两点间的距离为s ,连线AB 与平行极板方向的夹角为30°,则电场力对检验电荷+q 所做的功等于________.[答案] qQs 2Cd[解析] 电容器两板间电势差U =Q C ,场强E =U d =Q Cd. 而A 、B 两点间电势差U AB =E ·s ·sin30°=Qs 2Cd, 电场力对+q 所做功为W =qU AB =qQs 2Cd. 12.(6分)一电子以4×106m/s 的速度沿与电场垂直的方向从A 点水平垂直于场强方向飞入,并从B 点沿与场强方向成150°的方向飞出该电场,如图所示,则A 、B 两点的电势差为________V .(电子的质量为9.1×10-31kg ,电荷量为-1.6×10-19C)[答案] -136.5[解析] 设电子射入电场时的速度为v A ,射出电场时的速度为v B ,从图可知v B =v A sin30°=2v A ,根据动能定理,有W =eU AB ①W =12m v 2B -12m v 2A ② 由式①②得eU AB =12m v 2B -12m v 2A =32m v 2A 所以U AB =3m v 2A 2e =3×9.1×10-31×(4×106)2-1.6×10-19×2V =-136.5V13.(6分)如图所示,匀强电场场强为E ,与竖直方向成α角,一质量为m 、电荷量为q 的带负电小球用细线系在竖直墙上,恰好静止在水平位置,则场强E 的大小为________.若保持场强方向和小球电荷量不变,将线拉至与场强垂直时,小球能静止,此时场强大小为________.[答案] mg q cos α mg cos αq[解析] 对两种情况下小球的受力分析如图中(a)、(b)所示,对(a)有:Eq cos α=mg ,所以E =mg q cos α对(b)有:Eq =mg cos α,所以E =mg cos αq. 三、论述计算题(共4小题,共42分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)14.(10分)如图所示,相距为0.2m 的平行金属板A 、B 上加电压U=40V , 在两板正中沿水平方向射入一带负电荷小球,经0.2s 小球到达B板,若要小球始终沿水平方向运动而不发生偏转,A 、B 两板间的距离应调节为多少?(g 取10m/s 2)[答案] 0.1m[解析] 小球在电场中做匀变速曲线运动,在竖直方向由牛顿第二定律得mg -Uq /d =ma d /2=at 2/2解得:a =5m/s 2,m =40q要使小球沿水平方向运动,应有mg =E ′q E ′=U /d ′ d ′=qU /mg =0.1m15. (10分)(2009·蚌埠一模)两个正点电荷Q 1=Q 和Q 2=4Q 分别置于固定在光滑绝缘水平面上的A 、B 两点正好位于水平放置的光滑绝缘半圆细管两个端点的出口处,已知AB =L ,如图所示.(1)现将另一正点电荷置于A 、B 连线上靠近A 处静止释放,求它在AB 连线上运动过程中达到最大速度时的位置离A 点的距离.(2)若把该点电荷放于绝缘管内靠近A 点处由静止释放,已知它在管内运动过程中速度为最大时的位置在P 处.试求出图中P A 和AB 连线的夹角θ.[答案] (1)L 3(2)arctan 34 [解析] (1)正点电荷在A 、B 连线上速度最大处对应该电荷所受合力为零(加速度最小),设此时距离A 点为x ,即k Q 1q x 2=k Q 2q (L -x )2∴x =L 3. (2)点电荷在P 点处若其所受库仑力的合力沿OP 方向,则它在P 点处速度最大,即此时满足tan θ=F 2F 1=k 4Qq (2R sin θ)2k Qq (2R cos θ)2=4cos 2θsin 2θ,即得:θ=arctan 34. 16.(11分)(2010·上海华师大附中摸底测试)如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在xOy 平面的ABCD 区域内,存在两个大小均为E 的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L 的正方形(不计粒子所受重力).(1)在该区域AB 边的中点处由静止释放电子,求电子离开ABCD 区域的位置;(2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD 区域左下角D 处离开,求所有释放点的位置;(3)若将左侧电场Ⅱ整体水平向右移动L /4,仍使电子从ABCD 区域左下角D 处离开(D 不随电场移动),在电场Ⅰ区域内由静止释放电子的所有位置.[答案] (1)⎝⎛⎭⎫-2L ,14L (2)满足y 1=L 24x 1方程的点即为所有释放点的位置 (3)在电场Ⅰ区域内满足方程y 2=3L 28x 2的所有位置 [解析] (1)由动能定理有:eEL =12m v 2 由类平抛运动知识有:L =v t ,y =12at 2=eE 2m ×L 2v 2=14L 所以电子离开ABCD 区域的位置坐标为⎝⎛⎭⎫-2L ,14L (2)设释放点位置坐标为(x 1,y 1),由动能定理有:eEx 1=12m v 21由类平抛运动知识有:L =v 1t 1,y 1=12at 21=eE 2m ×L 2v 21=L 24x 1 所以满足y 1=L 24x 1方程的点即为所有释放点的位置 (3)设电子从(x 2,y 2)点释放,在电场Ⅰ中被加速到v 2进入电场Ⅱ后做类平抛运动;在高度为y ′处离开电场Ⅱ,然后做匀速直线运动并经过D 处,则有eEx 2=12m v 22 在电场Ⅱ中下降高度Δy =y 2-y ′=12at 22=12 eE m ·⎝⎛⎭⎫L v 2 2 v y =a ·L v 2=eEL m v 2,y ′=v y ·L 4v 2 解得:y 2=3L 28x 2,即在电场Ⅰ区域内满足方程的点即为所求位置. 17.(11分)(2009·福建质检)如图(甲)所示,水平放置的平行金属板A 、B ,两板的中央各有一小孔O 1、O 2,板间距离为d ,开关S 接1.当t =0时,在a 、b 两端加上如图(乙)所示的电压,同时在c 、d 两端加上如图(丙)所示的电压.此时,一质量为m 的带负电微粒P 恰好静止于两孔连线的中点处(P 、O 1、O 2在同一竖直线上).重力加速度为g ,不计空气阻力.(1)若在t =T 4时刻将开关S 从1扳到2,当u cd =2U 0时,求微粒P 的加速度大小和方向; (2)若要使微粒P 以最大的动能从A 板中的O 1小孔射出,问在t =T 2到t =T 之间的哪个时刻,把开关S 从1扳到2,u cd 的周期T 至少为多少?[答案] (1)g 方向竖直向上 (2)见解析[解析] (1)当A 、B 间加电压U 0,微粒P 处于平衡状态,根据平衡条件,有q U 0d=mg ①当A 、B 间电压为2U 0时,根据牛顿第二定律,有q 2U 0d-mg =ma ② 由①②得a =g ,加速度的方向竖直向上(2)依题意,为使微粒P 以最大的动能从小孔O 1射出,应让微粒P 能从O 2处无初速向上一直做匀加速运动.为此,微粒P 应先自由下落一段时间,然后加上电压2U 0,使微粒P 接着以大小为g 的加速度向下减速到O 2处再向上加速到O 1孔射出.设向下加速和向下减速的时间分别为t 1和t 2,则gt 1=gt 2d 2=12gt 21+12gt 22,解得:t 1=t 2=d 2g故应在t =T -d 2g时刻把开关S 从1扳到2. 设电压u cd 的最小周期为T 0,向上加速过程,有 d =12g ⎝⎛⎭⎫T 02-t 22,解得:T 0=6d 2g.。
2011届高三物理上册第一次阶段考试试题

2010-2011届高三一轮复习第一次阶段考试(广东省专用)理科综合 物理部分注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卡的密封线内。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷和答题卡一并收回。
5. 考试范围:必修1第1—3章一、选择题(本题包括4小题,每小题4分,共16分。
每小题只有一个选项符合题意) 1、在2008北京奥运会上,牙买加选手博尔特是公认的世界飞人,在男子100 m 决赛和男子200 m 决赛中分别以9.69 s 和19.30 s 的成绩打破两项世界纪录,获得两枚金牌。
关于他在这两次决赛中的运动情况,下列说法正确的是( )A. 200 m 决赛的位移是100 m 决赛的两倍B. 200 m 决赛的平均速度约为10.36 m/sC. 100 m 决赛的平均速度约为10.32 m/sD. 100 m 决赛的最大速度约为20.64 m/s 2、下列关于运动和力的叙述中,正确的是A .做曲线运动的物体,其加速度方向一定是变化的B .物体做圆周运动,所受的合力一定指向圆心C .物体所受合力方向与运动方向相反,该物体一定做直线运动D .物体运动的速率在增加,所受合力方向一定与运动方向相同 3、在力的合成与分解中,下列说法正确的是A .放在斜面上的物体所受的重力可以分解为沿斜面下滑的力和物体对斜面的压力B .合力必大于其中一个分力C .用细绳把物体吊起来,如果说作用力是物体的重力,那反作用力就是物体拉绳的力D .已知一个力F 的大小和方向,则一定可以把它分解为大小都和F 相等的两个分力 4、质点在合力F 的作用下,由静止开始做直线运动,其合力随时间变化的图象如图所示,则有关该质点的运动,以下说法正确的是A .质点在前2秒内合力的功率恒定,后2秒内合力的功率减小B .质点在后2秒内的加速度和速度越来越小C .质点在后2秒内的加速度越来越小,速度越来越大D .设2秒末和4秒末的速度分别是 v 2 和 v 4,则质点在后2秒内的平均速度等于242v v二、双项选择题(本题包括5小题,每小题6分,共30分。
2011高考物理第一轮总复习满分练兵测试题531

2011届高考第一轮总复习满分练兵场第八章综合测试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.在赤道上某处有一个避雷针.当带有负电的乌云经过避雷针上方时,避雷针开始放电,则地磁场对避雷针的作用力的方向为()A.正东B.正西C.正南D.正北[答案] B[解析]赤道上方地磁场磁感线的方向由南向北,通过避雷针的电流方向向上,由左手定则知,安培力的方向向正西.2.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN,电流I方向从M 到N,绳子的拉力均为F,为使F=0,可能达到要求的方法是()A.加水平向右的磁场B.加水平向左的磁场C.加垂直纸面向里的磁场D.加垂直纸面向外的磁场[答案] C[解析]要使绳子的拉力变为零,加上磁场后,应使导线所受安培力等于导线的重力,由左手定则可判断,所加磁场方向应垂直纸面向里,导线所受安培力向上.3.(2009·广州测试三)如果用E表示电场区域的电场强度大小,用B表示磁场区域的磁感应强度大小.现将一点电荷放入电场区域,发现点电荷受电场力为零;将一小段通电直导线放入磁场区域,发现通电直导线受安培力为零,则以下判断可能正确的是()A.E=0 B.E≠0C.B=0 D.B≠0[答案]ACD[解析]点电荷在电场中必受电场力,除非E=0,选项A正确,B错误.一小段通电直导线放入磁场中,若I与B平行,也不会受安培力,选项CD都可以.4.如图所示,直导线AB、螺线管C、电磁铁D三者相距较远,其磁场互不影响,当开关S闭合后,则小磁针北极N(黑色的一端)指示磁场方向正确的是() A.a B.bC.c D.d[答案]BD[解析]开关S闭合后,通电导线AB周围的磁感线是以导线AB上各点为圆心的同心圆,用右手定则判断知,其方向俯视为逆时针,所以a的指向错误;螺线管C的磁感线与条形磁铁的相似,电磁铁D的磁感线与蹄形磁铁的相似,均由右手定则判断其磁感线方向知,b和d的指向都正确;而c的指向错误.5.科考队进入某一磁矿区域后,发现指南针突然失灵,原来指向正北的N极逆时针转过30°(如图所示),设该位置地磁场磁感应强度水平分量为B,则磁矿所产生的磁感应强度水平分量的最小值为()A .B B .2BC.B 2D.3B 2[答案] C[解析] 指南针N 极的指向表示该位置的磁感应强度的方向,由题干分析得合磁场方向与原来磁场方向的夹角为30°,根据矢量合成法则分析(如图所示),磁矿的磁感应强度水平分量的最小值为地磁场磁感应强度水平分量的一半.6.在地面附近,存在着一有界电场,边界MN 将某空间分成上下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有竖直向上的匀强电场,在区域Ⅰ中离边界某一高度由静止释放一质量为m 的带电小球A ,如图甲所示,小球运动的v -t 图象如图乙所示,已知重力加速度为g ,不计空气阻力,则( )A .在t =2.5s 时,小球经过边界MNB .小球受到的重力与电场力之比为3 5C .在小球向下运动的整个过程中,重力做的功与电场力做的功大小相等D .在小球运动的整个过程中,小球的机械能与电势能总和先变大再变小 [答案] BC[解析] 由速度图象可知,带电小球在区域Ⅰ与区域Ⅱ中的加速度之比为3 2,由牛顿第二定律可知:mg F -mg =32,所以小球所受的重力与电场力之比为3 5,B 正确.小球在t =2.5s 时速度为零,此时下落到最低点,由动能定理可知,重力与电场力的总功为零,故C 正确.因小球只受重力与电场力作用,所以小球的机械能与电势能总和保持不变,D 错.7.(2009·苏北四市联考二)如图所示,匀强电场水平向右,虚线右边空间存在着方向水平、垂直纸面向里的匀强磁场,虚线左边有一固定的光滑水平杆,杆右端恰好与虚线重合.有一电荷量为q 、质量为m 的小球套在杆上并从杆左端由静止释放,带电小球离开杆的右端进入正交电、磁场后,开始一小段时间内,小球( )A .可能做匀速直线运动B .一定做变加速曲线运动C .重力势能可能减小D .电势能可能增加[答案] BC[解析] 在光滑水平杆上小球由静止释放向右运动,说明小球带正电,在复合场中小球受三个力作用,重力、电场力、洛伦兹力,因电场力做正功,速度在变化,重力与洛伦兹力不可能始终相等,小球不可能做匀速直线运动,A 错;若重力与洛伦兹力的合力向上,此时重力做负功,重力势能可能增加;若重力与洛伦兹力合力向下,则重力做正功,重力势能可能减小,C 对;重力、电场力、洛伦兹力三力的合力与小球运动的速度方向不在一条直线上,小球一定做变加速曲线运动,B 对;电场力始终做正功,电势能一定减小,D 错,本题选BC.8.如图所示,空间存在相互垂直的匀强电场和匀强磁场,电场的方向竖直向下,磁场方向水平(图中垂直纸面向里),一带电油滴P 恰好处于静止状态,则下列说法正确的是( )A .若仅撤去电场,P 可能做匀加速直线运动B .若仅撤去磁场,P 可能做匀加速直线运动C .若给P 一初速度,P 不可能做匀速直线运动D .若给P 一初速度,P 可能做匀速圆周运动[答案] D[解析] 因为带电油滴原来处于静止状态,故应考虑带电油滴所受的重力.当仅撤去电场时,带电油滴在重力作用下开始加速,但由于受变化的磁场力作用,带电油滴不可能做匀加速直线运动,A 错;若仅撤去磁场,带电油滴仍处于静止,B 错;若给P 的初速度方向平行于磁感线,因所受的磁场力为零,所以P 可以做匀速直线运动,C 错;当P 的初速度方向平行于纸面时,带电油滴在磁场力作用下可能做顺时针方向的匀速圆周运动.9.(2009·淄博一模)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E 和匀强磁场B ,有一个带正电的小球(电荷量为+q ,质量为m )从电磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过的电磁复合场是( )[答案] CD[解析] 在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若这三个力的合力正好为0,则小球将沿直线通过复合场,C 选项正确;D 图中小球只受到向下的重力和向上的电场力,都在竖直方向上,小球可能沿直线通过复合场,D 选项正确.10.(2010·潍坊)如图所示,质量为m ,带电荷量为+q 的P 环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中,磁感应强度大小为B .现给环一向右的初速度v 0⎝⎛⎭⎫v 0>mg qB ,则 ( )A .环将向右减速,最后匀速B .环将向右减速,最后停止运动C .从环开始运动到最后达到稳定状态,损失的机械能是12m v 20D .从环开始运动到最后达到稳定状态,损失的机械能是12m v 20-12m ⎝⎛⎭⎫mg qB 2 [答案] AD[解析] 环在向右运动过程中受重力mg ,洛伦兹力F ,杆对环的支持力、摩擦力作用,由于v 0>mg qB,∴q v 0B >mg ,在竖直方向有q v B =mg +F N ,在水平方向存在向左的摩擦力作用,所以环的速度越来越小,当F N =0时,F f =0,环将作速度v 1=mg qB的匀速直线运动,A 对B 错,从环开始运动到最后达到稳定状态,损失的机械能为动能的减少,即12m v 20-12m ⎝⎛⎭⎫mg qB 2,故D 对C 错,正确答案为AD.第Ⅱ卷(非选择题 共60分)二、填空题(共3小题,每小题6分,共18分.把答案直接填在横线上)11.(6分)如图 (甲)所示,一带电粒子以水平速度v 0⎝⎛⎭⎫v 0<E B 先后进入方向互相垂直的匀强电场和匀强磁场区域,已知电场方向竖直向下,两个区域的宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的功为W 1;若把电场和磁场正交重叠,如图(乙)所示,粒子仍以初速度v 0穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为W 2,比较W 1和W 2,则W 1________W 2(填“>”、“<”或“等于”).[答案] >[解析] 由题意可知,带电粒子穿过叠加场的过程中,洛伦兹力小于电场力,二力方向相反,所以沿电场方向偏移的距离比第一次仅受电场力时偏移的距离小,且洛伦兹力不做功,故W 1>W 2.12.(6分)在磁感应强度为B 的匀强磁场中,垂直于磁场放入一段通电导线.若任意时刻该导线中有N 个以速度v 做定向移动的电荷,每个电荷的电量为q .则每个电荷所受的洛伦兹力F 洛=________,该段导线所受的安培力为F =________.[答案] q v B Nq v B[解析] 垂直于磁场方向运动的带电粒子所受洛伦兹力的表达式为F 洛=q v B ,导体在磁场中所受到的安培力实质是导体中带电粒子所受洛伦兹力的宏观体现,即安培力F =NF 洛=Nq v B .13.(6分)如图中MN 表示真空中垂直于纸面的平板,板上一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B .一带电粒子从平板上的狭缝O 处以垂直于平板的初速度v 射入磁场区域,最后到达平板上的P 点.已知B 、v 以及P 到O 的距离l ,不计重力,则此粒子的比荷为________.[答案] 2v Bl[解析] 粒子初速度v 垂直于磁场,粒子在磁场中受洛伦兹力而做匀速圆周运动,设其半径为R ,由洛伦兹力公式和牛顿第二定律,有q v B =m v 2R因粒子经O 点时的速度垂直于OP ,故OP 为直径,l =2R ,由此得q m =2v Bl. 三、论述计算题(共4小题,共42分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)14.(10分)如图所示,MN 是匀强磁场的左边界(右边范围很大),磁场方向垂直纸面向里,在磁场中有一粒子源P ,它可以不断地沿垂直于磁场方向发射出速度为v 、电荷为+q 、质量为m 的粒子(不计粒子重力).已知匀强磁场的磁感应强度为B ,P 到MN 的垂直距离恰好等于粒子在磁场中运动的轨道半径.求在边界MN 上可以有粒子射出的范围.[答案] (1+3)R[解析] 在图中画出两个过P 且半径等于R 的圆,其中的实线部分代表粒子在磁场中的运动轨迹,下面的圆的圆心O 1在p 点正下方,它与MN 的切点f 就是下边界,上面的圆的圆心为O 2,过p 点的直径的另一端恰在MN 上(如图中g 点),则g 点为粒子射出的上边界点.由几何关系可知:cf =R ,cg =(2R )2-R 2=3R即可以有粒子从MN 射出的范围为c 点上方3R 至c 点下方R ,fg =(1+3)R .15.(10分)如图所示,在竖直平面内有范围足够大、场强方向水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感应强度大小为B .一绝缘“⊂”形杆由两段直杆和一半径为R 为半圆环组成,固定在纸面所在的竖直平面内.PQ 、MN 与水平面平行且足够长,半圆环MAP 在磁场边界左侧,P 、M 点在磁场界线上,NMAP 段是光滑的,现有一质量为m 、带电量为+q 的小环套在MN 杆上,它所受到的电场力为重力的12倍.现在M 右侧D 点由静止释放小环,小环刚好能到达P 点,求:(1)D 、M 间的距离x 0;(2)上述过程中小环第一次通过与O 等高的A 点时弯杆对小环作用力的大小;(3)若小环与PQ 杆的动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等).现将小环移至M 点右侧5R 处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功.[答案] (1)4R (2)72mg +qB 3gR (3)12mgR [解析] (1)由动能定理得:qEx 0-2mgR =0qE =12mg ∴x 0=4R .(2)设小环在A 点速度为v A由动能定理得:qE (x 0+R )-mgR =12m v 2Av A =3gR由向心力公式得:N -q v A B -qE =m v 2A RN =72mg +qB 3gR . (3)若μmg ≥qE 即μ≥12,则小环运动到P 点右侧s 1处静止qE (5R -s 1)-mg ·2R -μmgs 1=0∴s 1=R 1+2μ∴小环克服摩擦力所做的功W 1=μmgs 1=μmgR 1+2μ若μmg <qE 即μ<12,则小环经过往复运动,最后只能在P 、D 之间运动,设小环克服摩擦力所做的功为W 2,则qE 5R -mg 2R -W 2=0∴W 2=12mgR . 16.(11分)(2009·北京模拟)在坐标系xOy 中,有三个靠在一起的等大的圆形区域,分别存在着方向如图所示的匀强磁场,磁感应强度大小都为B =0.10T ,磁场区域半径r =233m ,三个圆心A 、B 、C 构成一个等边三角形,B 、C 点都在x 轴上,且y 轴与圆形区域C 相切,圆形区域A 内磁场垂直纸面向里,圆形区域B 、C 内磁场垂直纸面向外.在直角坐标系的第Ⅰ、Ⅳ象限内分布着场强E =1.0×105N/C 的竖直方向的匀强电场,现有质量m =3.2×10-26kg ,带电荷量q =-1.6×10-19C 的某种负离子,从圆形磁场区域A 的左侧边缘以水平速度v =106m/s 沿正对圆心A 的方向垂直磁场射入,求:(1)该离子通过磁场区域所用的时间.(2)离子离开磁场区域的出射点偏离最初入射方向的侧移为多大?(侧移指垂直初速度方向上移动的距离)(3)若在匀强电场区域内竖直放置一挡板MN ,欲使离子打到挡板MN 上的偏离最初入射方向的侧移为零,则挡板MN 应放在何处?匀强电场的方向如何?[答案] (1)4.19×10-6s (2)2m(3)MN 应放在距y 轴22m 的位置上 竖直向下[解析] (1)离子在磁场中做匀速圆周运动,在A 、C 两区域的运动轨迹是对称的,如图所示,设离子做圆周运动的半径为R ,圆周运动的周期为T ,由牛顿第二定律得:q v B =m v 2R又T =2πR v解得:R =m v qB ,T =2πm qB将已知量代入得:R =2m设θ为离子在区域A 中的运动轨迹所对应圆心角的一半,由几何关系可知离子在区域A 中运动轨迹的圆心恰好在B 点,则:tan θ=r R =33θ=30°则离子通过磁场区域所用的时间为:t =T 3=4.19×10-6s (2)由对称性可知:离了从原点O 处水平射出磁场区域,由图可知侧移为d =2r sin2θ=2m(3)欲使离子打到挡板MN 上时偏离最初入射方向的侧移为零,则离子在电场中运动时受到的电场力方向应向上,所以匀强电场的方向向下离子在电场中做类平抛运动,加速度大小为:a =Eq /m =5.0×1011m/s 2沿y 方向的位移为:y =12at 2=d 沿x 方向的位移为:x =v t解得:x =22m所以MN 应放在距y 轴22m 的位置.17.(11分)(2009·安徽省六校联考)如图所示,为某种新型设备内部电、磁场分布情况图.自上而下分为Ⅰ、Ⅱ、Ⅲ三个区域.区域Ⅰ宽度为d 1,分布有沿纸面向下的匀强电场E 1;区域Ⅱ宽度为d 2,分布有垂直纸面向里的匀强磁场B 1;宽度可调的区域Ⅲ中分布有沿纸面向下的匀强电场E 2和垂直纸面向里的匀强磁场B 2.现在有一群质量和带电荷量均不同的带正电粒子从区域Ⅰ上边缘的注入孔A 点被注入,从静止开始运动,然后相继进入Ⅱ、Ⅲ两个区域,满足一定条件的粒子将回到区域Ⅰ,其他粒子则从区域Ⅲ飞出.三区域都足够长,粒子的重力不计.已知能飞回区域Ⅰ的带电粒子的质量为m =6.4×10-27kg ,带电荷量为q =3.2×10-19C ,且d 1=10cm ,d 2=52cm ,d 3>10cm ,E 1=E 2=40V/m ,B 1=4×10-3T ,B 2=22×10-3T.试求:(1)该带电粒子离开区域Ⅰ时的速度.(2)该带电粒子离开区域Ⅱ时的速度.(3)该带电粒子第一次回到区域Ⅰ的上边缘时离开A 点的距离.[答案] (1)2×104m/s 方向竖直向下(2)2×104m/s 方向与x 轴正向成45°角(3)57.26cm[解析] (1)qE 1d 1=12m v 2 得:v =2×104m/s ,方向竖直向下.(2)速度大小仍为v =2×104m/s ,如图所示.qB 1v =m v 2R 1方向:sin θ=d 2R 1可得:θ=45°所以带电粒子离开区域Ⅱ时的速度方向与x 轴正向成45°角.(3)设该带电粒子离开区域Ⅱ也即进入区域Ⅲ时的速度分解为v x 、v y ,则:v x =v y =v sin45°=2×104m/s所以:qB 2v x =qB 2v y =1.28×10-17N.qE 2=1.28×10-17NqE 2=qB 2v x所以带电粒子在区域Ⅲ中运动可视为沿x 轴正向的速率为v x 的匀速直线运动和以速率为v y ,以及对应洛伦兹力qB 2v y 作为向心力的匀速圆周运动的叠加,轨道如图所示:R 2=m v y qB 2=10cm T =2πm qB 2=2π×10-5s 根据运动的对称性可知,带电粒子回到区域Ⅰ的上边缘的B 点,距A 点的距离为:d =2⎣⎡⎦⎤(1-cos θ)R 1+R 2+v x T 4 代入数据可得:d ≈57.26cm。
2011年高考物理一轮复习单元测试题(17套)

单元测试(一):直线运动时量:60分钟 满分:100分一、本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得6分,选不全的得3分,有选错或不选的得0分.1.下列关于平均速度和瞬时速度的说法中正确的是( )A .做变速运动的物体在相同时间间隔里的平均速度是相同的B .瞬时速度就是运动的物体在一段较短的时间内的平均速度C .平均速度就是初、末时刻瞬时速度的平均值D .某物体在某段时间内的瞬时速度都为零,则该物体在这段时间内静止2.如图1-1所示的是两个从同一地点出发沿同一方向运动的物体A 和B 的速度图象,由图可知( )A .A 物体先做匀速直线运动,t 1后处于静止状态B .B 物体做的是初速度为零的匀加速直线运动C .t 2时,A 、B 两物体相遇D .t 2时,A 、B 速度相等,A 在B 前面,仍未被B 追上,但此后总要被追上的3.沿直线做匀加速运动的质点在第一个0.5s 内的平均速度比它在第一个1.5s 内的平均速度大2.45m/s ,以质点的运动方向为正方向,则质点的加速度为( )A. 2.45m/s 2B. -2.45m/s 2C. 4.90m/s 2D. -4.90m/s 24.汽车进行刹车试验,若速度从8 m/s 匀减速到零所用的时间为1s ,按规定速率为8 m/s 的汽车刹车后位移不得超过5.9 m,那么上述刹车试验是否符合规定( )A.位移为8m ,符合规定B.位移为8m ,不符合规定C.位移为4 m ,符合规定D.位移为4m ,不符合规定5.做匀加速直线运动的物体,依次通过A 、B 、C 三点,位移x AB =x BC ,已知物体在AB 段的平均速度大小为3m/s ,在BC 段的平均速度大小为6m/s ,那么,物体在B 点的瞬时速度的大小为( )A. 4 m/sB. 4.5 m/sC. 5 m/sD. 5.5 m/s6.一只气球以10m/s 的速度匀速上升,某时刻在气球正下方距气球6m 处有一小石子以20m/s 的初速度竖直上抛,若g 取10 m/s 2,不计空气阻力,则以下说法正确的是 ( )A.石子一定能追上气球B.石子一定追不上气球C.若气球上升速度等于9m/s ,其余条件不变,则石子在抛出后1s 末追上气球D.若气球上升速度等于7m/s;其余条件不变,则右子在到达最高点时追上气球图1-1图1-37.一列车队从同一地点先后开出n 辆汽车在平直的公路上排成直线行驶,各车均由静止出发先做加速度为a 的匀加速直线运动,达到同一速度v 后改做匀速直线运动,欲使n 辆车都匀速行驶时彼此距离均为x ,则各辆车依次启动的时间间隔为(不计汽车的大小) ( )A .2υaB .υ2aC .x 2υD .x υ8. 做初速度为零的匀加速直线运动的物体,由静止开始,通过连续三段位移所用的时间分别为1s 、2s 、3s ,这三段位移长度之比和三段位移的平均速度之比是( )A .1: 2 : 3 , 1: 1: 1B .1: 4 : 9 , 1: 2 : 3C .1: 3 : 5 , 1: 2 : 3D .1: 8 : 27 , 1: 4 : 9二.本题共2小题,共16分.把答案填在相应的横线上或按题目要求做答.9.某同学在研究小车运动实验中,获得一条点迹清晰的纸带.每隔0.02s 打一个点,该同学选择A 、B 、C 、D 四个计数点,测量数据如图1-2所示,单位是cm .(1)小车在B 点的速度是__rn/s;(2)小车的加速度是___m/s 2.10.一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,用下面的方法测量它匀速转动时的角速度.实验器材:电磁打点计时器,米尺,纸带,复写纸.实验步骤:A .如图1-3所示,将电磁打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔后,固定在待测圆盘的侧面上,使得圆盘转动时,纸带可以卷在圆盘侧面上.B .启动控制装置使圆盘转动,同时接通电源,打点计时器开始打点.C .经过一段时间,停止转动和打点,取了纸带,进行测量.(1)由已知量和测得量表示的角速度的表达式为ω=______,式中各量的意义是:____________________.(2)某次实验测得圆盘半径r =5.50×10-2m ,得到的纸带的一段如图1-4所示,求得角速度为___.三.本题共3个小题,每小题12分,共36分.解答应写出必要的文字说明、方程式和重要演算步骤.只写最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.11.天空有近似等高的浓云层。
2011级高三物理一轮复习必修一测试题

肥城一中高三物理一轮必修一测试题(考试时间90分钟)一、(本大题共有15小题,每小题3分,共45分。
每小题的四个选项中,有一个或几个是正确的,全选对得3分,选不全得2分,有错选或不答的得0分。
)1.在物理学史上,正确认识运动和力的关系且推翻“力是维持运动的原因”的物理学家及建立惯性定律的物理学家分别是( )A . 亚里士多德、伽利略B . 亚里士多德、牛顿C . 伽利略、牛顿D . 伽利略、爱因斯坦 2.火箭在下列哪种状态下会发生超重现象? ( )A .匀速上升B .加速上升C .减速上升D .匀速下降3.将物体竖直向上抛出,假设运动过程中空气阻力不变,其v -t 图象如图,则物体所受的重力和空气阻力之比为( )A .1∶10B .10∶1C .9∶1D .8∶ 1t /sOv /m · -1s 1 211-94.如图所示,在粗糙水平面上放一质量为M 的斜面,质量为m 的木块在竖直向上力 F 作用下,沿斜面匀速下滑,此过程中斜面保持静止,则地面对斜面( ) A .无摩擦力 B .有水平向左的摩擦力 C .支持力为(M+m )g D .支持力小于(M+m )g5.如图所示,物体A 在与水平方向成α角斜向下的推力作用下,沿水平地面向右匀速运动,若推力变小而方向不变,则物体A 将( )A .向右加速运动B .仍向右匀速运动C .向右减速运动D .向左加速运动6.为了研究超重与失重现象,某同学把一体重计放在电梯的地板上,并将一物体放在体重计上随电梯运动并观察体重计示数的变化情况.下表记录了几个特定时刻体重计的示数(表内时间不表示先后顺序)时间 t 0 t 1 t 2 t 3 体重计示数(kg )45.050.040.045.0若已知t 0时刻电梯静止,则 ( ) A .t 1和t 2时刻电梯的加速度方向一定相反B .t 1和t 2时刻物体的质量并没有发生变化,但所受重力发生了变化C .t 1和t 2时刻电梯运动的加速度大小相等,运动方向一定相反D .t 3时刻电梯可能向上运动7.如图所示,在光滑水平面上有甲、乙两木块,质量分别为m 1和m 2,中间用一原长为L 、劲度系数为k 的轻质弹簧连接起来,现用一水平力F 向左推木块乙,当两木块一起匀加速运动时,两木块之间的距离是A .km m Fm L )(212++B .k m m Fm L )(211+-C .k m Fm L 21-D .km Fm L 12+8.历史上有些科学家曾把在相等位移内速度变化相等的单向直线运动称为“匀变速直线运动”(现称“另类匀变速直线运动”),“另类加速度”定义为sv v A s 0-=,其中0v 和s v 分别表示某段位移s 内的初速和末速.0>A 表示物体做加速运动,0<A 表示物体做减速运动。
2011高三物理第一次模拟调研检测试题及答案

2011高三物理第一次模拟调研检测试题及答案赣州一中2011届高三物理时间:100分钟,分值:120分一、选择题(每小题5分,共50分) 1、关于物体的惯性,下列说法中错误的是() A.骑自行车的人,上坡前要紧蹬几下,是为了增大惯性冲上坡 B.子弹从枪膛中射出后,在空中飞行速度逐渐减小,因此惯性也减小 C.物体惯性的大小,由物体质量大小决定 D.物体由静止开始运动的瞬间,它的惯性最大 2、关于运动和力的关系,下列说法中正确的是() A.不受外力作用的物体可能做直线运动 B.受恒定外力作用的物体可能做曲线运动 C.物体在恒力作用下可能做匀速圆周运动 D.物体在变力作用下速度大小一定发生变化3、马水平方向拉车,车匀速前进时,下列说法中正确的有 ( ) A.马拉车的力与车拉马的力是一对平衡力 B.马拉车的力与车拉马的力是一对同性质的力 C.马拉车的力与地面对车的阻力是一对平衡力 D、马拉车的力与地面对车的阻力是一对作用力与反作用力4、原子核与氘核反应生成一个α粒子和一个质子。
由此可知() A.A=2,Z=1 B. A=2,Z=2 C. A=3,Z=3 D. A=3,Z=2 5、如图1,质量为M的楔形物A静置在水平地面上,其斜面的倾角为.斜面上有一质量为m的小物块B,B与斜面之间存在摩擦.用恒力F沿斜面向上拉B,使之匀速上滑.在B运动的过程中,楔形物块A始终保持静止.关于相互间作用力的描述正确的有() A.B给A的作用力大小为 B.B给A摩擦力大小为C.地面受到的摩擦力大小为 D.地面受到的压力大小为6、如图2所示,ad、bd、 cd是竖直面内的三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周上最高点,d点为圆周上最低点。
每根杆上都套有一个小圆环,三个圆环分别从a、b、c处由静止释放,用t1 、t2 、t3依次表示各环到达d点所用的时间,则() A.t 1<t2< t3 B.t 1>t2> t3 C.t 3>t1> t2 D.t 1=t2 =t37、如图3所示,用细绳连接用同种材料制成的a和b两个物体。
2011届高三物理第一次月考试题.doc

2011届高三第一次月考物理试题时量:90分钟 分值:110分第Ⅰ卷(选择题 共11小题 共44分)一、选择题(本题包括11个小题,每小题4分,共44分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4分,选不全的得2分,有选项错或不答的得0分)1.如图所示,光滑水平面上放置质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为 ( )A .μmgB .2μmgC .3μmgD .4μmg2.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法错误的是( )A .双星相互间的万有引力减小B .双星做圆周运动的角速度增大C .双星做圆周运动的周期增大D .双星做圆周运动的半径增大3.用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L.现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为L.斜面倾角为30°,如图2所示.则物体所受摩擦力 ( )A.等于零B.大小为12mg ,方向沿斜面向下 图2 C.大小为32mg ,方向沿斜面向上 D.大小为mg ,方向沿斜面向上4.以35 m/s 的初速度竖直向上抛出一个小球.不计空气阻力,g 取10m/s 2.以下判断正确的是 ( )A .小球到达最大高度时的速度为0B .小球到达最大高度时的加速度为0C .小球上升的最大高度为61.25 mD .小球上升阶段所用的时间为3.5 s5.历史上有些科学家曾把在相等位移内速度变化相等的单向直线运动称为“匀变速直线运动”(现称“另类匀变速直线运动”),“另类加速度”定义为A =SV V t 0- ,其中V 0和V t 分别表示某段位移S 内的初速度和末速度。
2011届高考物理第一轮单元验收复习试题2

2010—2011学年度上学期高三一轮复习物理单元验收试题(8)【新人教】命题范围:磁场本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。
考试时间90分钟。
第Ⅰ卷(选择题共40分)一、选择题(本题共10小题;每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选不全的得2分,有选错或不答的得0分。
)1.关于磁场、磁感应强度和磁感线的描述,下列叙述正确的是()A.磁感线可以形象地描述磁场的强弱和方向,其每一点的切线方向表示的就是该点的磁场方向B.磁极间的相互作用是通过磁场发生的C.磁感线总是从磁体的N极指向S极D.通电导体若受到磁场力,说明它在磁场中;不受磁场力,则一定不在磁场中2.根据安培的思想,认为磁场是由于运动电荷产生的,这种思想如果对地磁场也适用,而目前在地球上并没有发现相对地球定向移动的电荷,那么由此可断定地球应该()A.带负电B.带正电C.不带电D.无法确定3.安培的分子环形电流假说不可以用来解释()A.磁体在高温时失去磁性;B.磁铁经过敲击后磁性会减弱;C.铁磁类物质放入磁场后具有磁性;D.通电导线周围存在磁场。
4.用两个一样的弹簧吊着一根铜棒,铜棒所在虚线范围内有垂直于纸面的匀强磁场,棒中通以自左向右的电流(如图所示), 当棒静止时,弹簧秤的读数为F 1;若将棒中的电流方向反向, 当棒静止时,弹簧秤的示数为F 2,且F 2>F 1,根据这两个数据, 可以确定 ( ) A .磁场的方向 B .磁感强度的大小 C .安培力的大小D .铜棒的重力5.地面附近空间中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带电油滴能沿一条与竖直方向成 角的 直线MN 运动(MN 在垂直于磁场方向的平面内),如图所示. 则以下判断中正确的是 ( ) A .如果油滴带正电,它是从M 点运动到N 点 B .如果油滴带正电,它是从N 点运动到M 点C .如果电场方向水平向左,油滴是从M 点运动到N 点D .如果电场方向水平向右,油滴是从M 点运动的N 点 6.某空间存在着如图所示的垂直纸面向里的匀强磁场,磁感应强度B=1T ,图中竖直虚线是磁场的左边界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动的合成和分解平抛物体的运动1.(2010·福州模拟)对质点运动来讲,以下说法中正确的是() A.加速度恒定的运动可能是曲线运动B.运动轨迹对任何观察者来说都是不变的C.当质点的加速度逐渐减小时,其速度不一定逐渐减小D.作用在质点上的所有力消失后,质点运动的速度将不断减小解析:加速度恒定的运动可能是曲线运动,如平抛运动,A正确;运动轨迹对不同的观察者来说可能不同,如匀速水平飞行的飞机上落下的物体,相对地面做平抛运动,相对飞机上的观察者做自由落体运动,B错误;当质点的速度方向与加速度方向同向时,即使加速度减小,速度仍增加,C正确;作用于质点上的所有力消失后,质点的速度将不变,D错误.答案:AC2.一小船在河中xOy平面内运动的轨迹如图1所示,下列判断正确的是()A.若小船在x方向上始终匀速,则在y方向上先加速后减速B.若小船在x方向上始终匀速,则在y方向上先减速后加速C.若小船在y方向上始终匀速,则在x方向上先减速后加速图1D.若小船在y方向上始终匀速,则在x方向上先加速后减速解析:小船运动轨迹上各点的切线方向为小船的合速度方向,若小船在x方向上始终匀速,由合速度方向的变化可知,小船在y方向上的速度先减小再增加,故A错误,B正确;若小船在y方向上始终匀速,由合速度方向的变化可知,小船在x方向上的速度先增加后减小,故C错误,D正确.答案:BD3.如图2所示,A、B为两个挨得很近的小球,并列放于光滑斜面上,斜面足够长,在释放B球的同时,将A球以某一速度v0水平抛出,当A球落于斜面上的P点时,B球的位置位于()A.P点以下B.P点以上图2C.P点D.由于v0未知,故无法确定解析:设A球落到P点的时间为t A,AP的竖直位移为y;B球滑到P点的时间为t B,BP的竖直位移也为y,则:t A=2yg,t B=2yg sin2θ=1sinθ2yg>t A(θ为斜面倾角).故B项正确.答案:B4.(2010·厦门模拟)一快艇要从岸边某处到达河中离岸100 m远的浮标处,已知快艇在静水中的速度图象如图3甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则()图3A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只可能是曲线C .最快达到浮标处通过的位移为100 mD .最快达到浮标处所用时间为20 s解析:快艇的实际速度为快艇在静水中的速度与水速的合速度.由图知快艇在静水中的速度为匀加速直线运动,水速为匀速,又不能在一条直线上,故快艇必做曲线运动,B 正确,A 错;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 项错误;最快的时间由100=12at 2,其中a =0.5 m/s 2,可以求出最短时间为20 s ,D 项正确.答案:BD5.如图4所示,在一次救灾工作中,一架沿水平直线飞行的直升飞机A ,用悬索(重力可忽略不计)救护困在湖水中的伤员B .在直升飞机 A 和伤员B 以相同的水平速度匀速运动的同时,悬索将伤员提起,在 某一段时间内,A 、B 之间的距离以l =H -t 2(式中H 为直升飞机A 离水面的高度,各物理量的单位均为国际单位制单位)规律变化,则在这段时间内,下面判断中正确的是(不计空气作用力) ( ) 图4 A .悬索的拉力小于伤员的重力 B .悬索成倾斜直线C .伤员做速度减小的曲线运动D .伤员做加速度大小、方向均不变的曲线运动解析:伤员B 参与了两个方向上的运动:在水平方向上,伤员B 和飞机A 以相同的速度做匀速运动;在竖直方向上,由于A 、B 之间的距离以l =H -t 2规律变化,所以伤员与水面之间的竖直距离关系式为h =t 2=12at 2,所以伤员在竖直方向上以2 m/s 2的加速度做匀加速直线运动,则伤员做加速度大小、方向均不变的曲线运动,且速度一直增加.A 选项中,由于伤员在竖直方向上做匀加速直线运动,根据牛顿第二定律可知,悬索的拉力应大于伤员的重力,故A 错误.B 选项中,由于伤员在水平方向上做匀速运动,水平方向上没有加速度,悬索应成竖直状态,故B 错误.C 选项中,伤员在竖直方向上以2 m/s 2的加速度做匀加速直线运动,速度不断地增加,故C 错误.由 上面的分析可知,伤员做加速度大小、方向均不变的曲线运动,D 正确.答案:D6.(2010·北京师大附中月考)A、B、C、D四个完全相同的小球自下而上等间距地分布在一条竖直线上,相邻两球的距离等于A球到地面的距离.现让四球以相同的水平速度同时向同一方向抛出,不考虑空气阻力的影响,下列说法正确的是()A.A球落地前,四球分布在一条竖直线上,落地时间间隔相等B.A球落地前,四球分布在一条竖直线上,A、B落点间距小于C、D落点间距C.A球落地前,四球分布在一条竖直线上,A、B落地时间差大于C、D落地时间差D.A球落地前,四球分布在一条抛物线上,A、B落地时间差大于C、D落地时间差解析:A球落地前,四个球在水平方向均做初速度为v0的匀速运动,在同一时刻一定在同一竖直线上,D错,设A球开始离地的距离为h,则有:t A=2hg,t B=4hg,t C=6hg,t D=8hg,可见t D-t C<t B-t A,A错误、C正确,由Δs=v0Δt可知,Δs AB>Δs CD,B错误.答案:C7.(2009·江苏高考)在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力.如图5所示的描绘下落速度的水平分量大小v x、竖直分量大小v y与时间t的图象中,可能正确的是()图5解析:跳伞运动员在空中受到重力,其大小不变,方向竖直向下,还受到空气阻力,其始终与速度反向,大小随速度的增大而增大,反之则减小.在水平方向上,运动员受到的合力是空气阻力在水平方向上的分力,故可知运动员在水平方向上做加速度逐渐减小的减速运动.在竖直方向上运动员在重力与空气阻力的共同作用下先做加速度减小的加速运动,后做匀速运动.由以上分析结合v-t图象的性质可知只有B选项正确.答案:B8.如图6所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高H=3 m的吊环.他在车上和车一起以v车=2 m/s的速度向吊环运动,小朋友抛球时手离地面h=1.2 m,当他在离吊环的水平距离为s=2 m时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出的速度v0是(g取10 m/s2)() 图6A.1.8 m/s B.3.2 m/s C.6.8 m/s D.3.6 m/s解析:球相对于人竖直上抛后,在水平方向以速度v 车做匀速运动,球到吊环的时间t =sv 车=1s .要使球在t =1 s 时刚好进入吊环,竖直方向必有:H -h =v 0t -12gt 2,解得:v 0=6.8 m/s ,故C 正确. 答案:C9.(2010·青岛三中月考)如图7所示,一架在2 000 m 高空以200 m/s 的速度水平匀速飞行的轰炸机,要想用两枚炸弹分别炸山 脚和山顶的目标A 、B .已知山高720 m ,山脚与山顶的水平距 离为1 000 m ,若不计空气阻力,g 取10 m/s 2,则投弹的时间间隔应为 ( ) 图7 A .4 s B .5 s C .9 s D .16 s解析:设投下第一枚炸弹后经t 1落到A 点,投下第二枚炸弹后,经t 2落到B 点,由竖直方向为自由落体运动可得: 2 000 m =12 gt 12.2 000 m -720 m =12 gt 22.第一枚炸弹的水平位移s 1=v 0t 1.设投弹的时间间隔为Δt ,水平方向上有: v 0(Δt +t 2)=s 1+1 000 m.以上各式联立可得:Δt =9 s ,故C 正确. 答案:C10.(2010·泰安模拟)如图8所示,水平台AB 距地面CD 高h =0.8 m .有一滑块从A 点以6.0 m/s 的初速度在平台上做匀变速 图8 直线运动,并从平台边缘的B 点水平飞出,最后落在地面上的D 点.已知AB =2.20 m ,落地点到平台的水平距离为2.00 m .(不计空气阻力,g 取10 m/s 2)求滑块从A 到D 所用的时间和滑块与平台间的动摩擦因数.解析:设滑块从A 到B 所用时间为t 1,位移为s 1,加速度为a ,从B 点飞出时的速度为v B ,从B 点到落地点的水平位移为s 2,飞行时间为t 2. 滑块在AB 间做匀减速直线运动 v B =v 0-at 1 ① v B 2=v 02-2as 1②根据牛顿第二定律列出:μmg =ma③滑块在BD 间做平抛运动,h =12gt 22④s 2=v B t 2⑤ 从A 到D 所用的时间t =t 1+t 2⑥根据①②③④⑤⑥各式求得:t =0.8 s ,μ=0.25. 答案:0.8 s 0.2511.(2010·泰州联考)如图9所示,质量m =2.0 kg 的物体在水平外 力的作用下在水平面上运动,已知物体运动过程中的坐标与时间的关系为⎩⎪⎨⎪⎧x =3.0t (m )y =0.2t 2(m ),g =10 m/s 2.根据以上条件,求: 图9 (1)t =10 s 时刻物体的位置坐标;(2)t =10 s 时刻物体的速度和加速度的大小与方向;解析:(1)由于物体运动过程中的坐标与时间的关系为⎩⎪⎨⎪⎧x =3.0t (m )y =0.2t 2(m ),代入时间t =10 s ,可得: x =3.0t =3.0×10 m =30 m y =0.2t 2=0.2×102 m =20 m.即t =10 s 时刻物体的位置坐标为(30,20).(2)由物体运动过程中的坐标与时间的关系式⎩⎪⎨⎪⎧x =3.0t (m )y =0.2t 2(m ),比较物体在两个方向的运动学公式⎩⎪⎨⎪⎧x =v 0t y =12at2,可求得:v 0=3.0 m/s ,a =0.4 m/s 2 当t =10 s 时,v y =at =0.4×10 m/s =4.0 m/sv =v 02+v y 2= 3.02+4.02 m/s =5.0 m/s. tan α=v y v x =43即速度方向与x 轴正方向夹角为53°.物体在x 轴方向做匀速运动,在y 轴方向做匀加速运动, a =0.4 m/s 2,沿y 轴正方向. 答案:(1)(30,20) (2)5.0 m/s ,与x 轴正方向夹角为53° 0.4 m/s 2,沿y 轴正方向12.(2010·合肥一中月考)如图10所示,在竖直平面的xOy 坐标系中,Oy 竖直向上,Ox 水平.设平面内存在沿x 轴正方向的恒定风力.一物体从坐标原点沿Oy 方向竖直向上抛出,初速度为v 0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示,(坐标格为正方形,g =10 m/s 2)求:图10(1)小球在M 点的速度v 1.(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N . (3)小球到达N 点的速度v 2的大小. 解析:(1)设正方形的边长为s 0.竖直方向做竖直上抛运动,v 0=gt 1,2s 0=v 02 t 1水平方向做匀加速直线运动,3s 0=v 12 t 1.解得v 1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t 1回到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v 0=4 m/s , 水平分速度v x =a 水t N =2v 1=12 m/s , 故v 2=v 02+v x 2=410 m/s. 答案:(1)6m/s(2)见解析(3)410m/s。