2014理数调研卷 (三)(已审)
2014届高三数学3月质量调研试题 理(含解析)

北京市东城区2014届高三数学3月质量调研试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分.)1.设集合A ={x |1621x <<},B ={x |x 2-2x -3≤0},则A ∩(C R B )= A .(1,4) B .(3,4) C .(1,3) D .(1,2)2.已知i 是虚数单位, 若),i 1(z i 3-=+则z=( )A . 1-2iB .2-iC .2+iD .1+2i【结束】3.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件考点 充分必要条件 两条直线的位置关系【结束】4.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( )A. 34πB. 2πC. 4π D.4π- 【结束】5.设a ,b 是两个非零向量.则下列命题为真命题的是( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【结束】6.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为( )A. 22B. 23C. 4D. 25【结束】7. 已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )3323 D 43【结束】8.设a >0,b >0.( )A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a ba b -=-,则a >bD .若2223a b a b -=-,则a <b【结束】二、填空题(每小题5分,共20分.)9.记等差数列{}na的前n项和为n S,已知2446,10a a S+==.则_______a10=.考点等差数列【结束】【结束】【结束】12.已知圆的方程为08622=--+y x y x ,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_______________.【结束】13.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2 ≤ n ≤ 7,则n =______. 【结束】14.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【结束】。
2014级高三三诊数学参考答案及评分标准(理)_看图王

������������������������5 分 2 ( ) ( ) 显然 h 1 > h e . 2 ]上存在极值 , 结合函数图象可知 , 若 g( x )在 [ 1, e )ȡ0 )>0 h( 1 h( e ������������������������7 分 则 或 . 2 )<0 h( 1 h( e )<0 )>0 h( e e ( , 当 即 1< a < 时, ⅰ) )<0 2 h( 1 2 2 ], 则必定 ∃x1 , 使得 h( 且 1< x1 <e< x2 <e x2 ɪ [ 1, e x1) x2) . =h( =0, ( ) , ( ) , ( ) : 当 x 变化时 , 的变化情况如下表 hx g ᶄx g x
{
������������������������9 分
������������������������1 2分
年龄不低于 3 5岁 5
合计 4 0 1 0 5 0 ������������������������2 分
根据 2ˑ2 列联表中的数据 , 得到 K 的观测值为
k=
( )的 5 个受访人中 , 由题意 , 年龄在 [ 有 4 人支持发展共享单车 ; 年龄在 Ⅱ) 1 5, 2 0 [ )的 6 个受访人中 , 有 5 人支持发展共享单车 . 2 0, 2 5 ������������������������7 分 随机变量 的所有可能取值为 ʑ X 2, 3, 4.
高三数学 ( 理科 ) 三诊测试参考答案第 ㊀ 共 5页) 2 页(
新疆乌鲁木齐地区2014届高三第三次诊断性测验数学(理)试题 扫描版含答案

乌鲁木齐地区2014年高三年级第三次诊断性测验试卷理科数学试题参考答案及评分标准1.选B .【解析】∵{}0,1,2,3,4,5,6A =,{}0,3B x x x =<>∴{}4,5,6A B =2.选B .【解析】∵()()()11111122i i i z i i i i +===-+--+,对应的点为11,22⎛⎫- ⎪⎝⎭在第二象限 3.选C .【解析】由()1f x >知0211x x -≤⎧⎨->⎩或1201x x >⎧⎪⎨⎪>⎩,分别解之,得1x <-或1x >.4.选A .【解析】∵3,4παπ⎛⎫∈⎪⎝⎭,∴cos 0,sin 0αα<>,且cos sinαα>, 又()21sincos 1sin 225ααα+=+=,∴1s i n c o s 5αα+=-,∴34sin ,cos 55αα==-5.选C .【解析】∵2345111113102222232S =+++++=,此时5n =,为使输出的3132S =,必须有n p ≥,所以5p =6.选B .【解析】由题意及正弦定理得sin cos 3sin cos B A A B =,∴tan 3tan B A =, ∴0,2A B π<<,又cos C =,故sin C =tan 2C =,而A B C π++=, ∴()tan tan 2A B C +=-=-,即tan tan 21tan tan A BA B+=--,将tan 3tan B A =代入,得24tan 213tan A A =--,∴tan 1A =,或1tan 3A =-,而0,2A B π<<,故45A =︒ 7.选B.【解析】此几何体的直观图如图所示, ∴()11401444323V =⨯+⨯⨯=8.选D .【解析】依题意,有3sin 4cos 5a a -=±,即()sin 1a ϕ-=±,其中4tan 3ϕ=且02πϕ<<,∴2a k πϕπ-=+,即2a k ππϕ=++,k ∈Z ,由4ta n 3ϕ=且02πϕ<<,得42ππϕ<<,∴34k a k ππππ+<<+,k ∈Z ,故,选D (此时0k =).9.选D .【解析】令()(1)F x f x =+,∵其图象关于()1,0对称,∴()()2F x F x =--, 即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴令()(3)G x f x =+,∵其图象关于直线1=x 对称,∴()()2G x G x +=-, 即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--= ∴()()f x f x -=;∴A 对;由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=, 由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错. 10.选C .【解析】∵()0a f b '=-,()10f b=-,∴()f x 的图象在0x =处的切线方程为 10ax by ++=,它与圆221x y +=相切,1=,即221a b +=,∵0,0a b >>时有2221222a b a b++⎛⎫≤= ⎪⎝⎭,∴a b +≤∴a b +此时2a b ==.11.选C .【解析】设ABC ∆的外接圆的圆心为O ',由2AB BC ==,AC =90ABC ∠=︒,∴点O '为AC 的中点,∴OO ABC '⊥平面,设直线OO '交球O 于1D 和2D ,不妨设点O 在线段1O D '内,∴1O D '为四面体D ABC -高的最大值,∴1112323D ABC V AB BC h h -⎛⎫=⨯⋅= ⎪⎝⎭,依题意知,2433h ≤,即2h ≤,当且仅当点D 与1D 重合时,D ABC V -取最大值,此时2h =,由()222h R R -+=,得222h R h+=,∴32R =,∴249S R ππ==.12.选B .【解析】不妨设22221x y a b -=的两条渐近线,OA OB 的方程分别为0bx ay -=和0bx ay +=则右焦点(),0F c 到直线OA的距离d b ==,又由FA OA ⊥,得O A a =,∵2OA OB AB +=,∴2OB AB a =- …①∵90AOB ∠=︒,∴222OA AB OB += …②,①②联立,解得43AB a =在Rt OAB ∆中,4tan 3AB AOB OA∠==,而2AOB AOF ∠=∠且tan b AOF a ∠=∴22tan tan 1tan AOF AOB AOF ∠∠=-∠,即22431b a b a ⎛⎫⎪⎝⎭=⎛⎫- ⎪⎝⎭,解得12b a =,或2b a =-(舍)∴2214b a =,即2254c a =,∴离心率2c e a == 二、填空题 :共4小题,每小题5分,共20分. 13.填112.【解析】∵()843182r rrr T C x-+=-,令8403r-=,即2r =, ∴常数项为()22382112T C =-=14.填1±.【解析】设点()()1122,,,A x y B x y ,由2OB OA =,得21212,2x x y y ==,又∵点B 在椭圆2C 上,∴22221164y x +=,∴2211144y x += …①, ∵点A 在椭圆1C 上,∴221114x y +=…②,由①②可得111yx =±.∴射线OA 的斜率为1±. 15.填12.【解析】依题意,有()2log f x x a -=,a 是常数. ∴()1f a =,即2l o g 1a a =-,易知1a =,∴()21log f x x =+,令()0f x =,解得12x =16.填21y x =+.【解析】依题意,设直线l 的方程为y kx m =+,它与抛物线2y x =交于点()()1122,,,A x y B x y ,线段AB 的中点P 的坐标为(),x y ,则122x x x +=, 122y y y +=…⑴由方程组2y kx m y x=+⎧⎨=⎩,得到以12,x x 为根的一元二次方程20x kx m --=,则240k m ∆=+>且12x x k +=,12x x m =-…⑵不妨设12x x <,依题意知()21243x x kx m x dx +-=⎰, 即()()22112221124233x x x x k x x x x m ⎡⎤++-++-=⎢⎥⎣⎦…⑶,将⑵代入⑶,化简得()3218x x -=,即()2214x x -=,∴()2121244x x x x +-=…⑷ 又∵221122,y x y x ==,∴2212121212422222y y x x x x y x x +++====+,故122x x y =-,而122x x x +=,得122x x x +=,代入⑷,化简得21y x =+ 三、解答题17.(本小题满分12分)(Ⅰ)∵1233,2,S S S 成等差数列,∴21343S S S =+,∴()()12112343a a a a a a +=+++,即323a a =,∴公比3q =∴113n n n a a q -== …6分 (Ⅱ)由(Ⅰ)知,33log log 3n n n b a n ===,∵()()2122212122214n n n n b b b b n n n n n -+-=--+=- ∴()()()12233445212221n n n n n T bb b b b b b b b b b b -+=-+-++-()()214124222n n n n n +=-+++=-⨯=-- …12分18.(本小题满分12分)取AC 的中点O ,连接,OF OB ,则有1A A ∥FO ,故FO ⊥平面ABC ,在正三角形ABC 中,O 是AC 的中点,故OB AC ⊥,1,OA OC OB ===如图,以O 为原点,分别以,,OA OB OF 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()(0,0,0,1,0,0,,1,0,0,,O A B C E F ⎛- ⎝⎭(FB =,AE ⎛=- ⎝⎭,()2,0,0AC =-,(AF =-(Ⅰ)∵(02FB AE ⎛⋅=⋅-= ⎝⎭, ∴FB AE ⊥,即FB AE ⊥又∵(()2,0,00FB AC ⋅=⋅-=, ∴FB AC ⊥,即FB AC ⊥而AEAC A =,∴FB ⊥平面AEC ; …6分(Ⅱ)设平面AEF 的法向量为(),,a b c =n ,则有0AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n,即00a a ⎧-+=⎪⎨⎪-+=⎩,令c =6,a b =即(=n ,由(Ⅰ)知平面AEC 的一个法向量为FB 设二面角F AE C --的平面角为θ,易知02πθ<≤,∴cos FB FB θ⋅==n n…12分 19.(本小题满分12分)设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B , “通过复审”为事件C .(Ⅰ)设“某应聘人员被录用”为事件D ,则D A BC =+∵()111224P A =⨯=,()11121222P B ⎛⎫=⨯⨯-= ⎪⎝⎭,()310P C = ∴()()()()()25P D P A BC P A P B P C =+=+= …6分 (Ⅱ)根据题意,0,1,2,3,4X =i A 表示“应聘的4人中恰有i人被录用”()0,1,2,3,4i =.∵()04004238155625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()31142321655625P A C ⎛⎫=⨯⨯=⎪⎝⎭, ()222242321655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()3334239655625P A C ⎛⎫=⨯⨯=⎪⎝⎭, ()4444231655625P A C ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭ ∴X 的分布列为∵X ~()4,0.4B ,∴ 1.6EX np == …12分 20.(本小题满分12分)(Ⅰ)分别过,A B 作准线的垂线,垂足分别是11,A B则11,AF AA BF BB ==∴11AA AF HABF BB HB==, ∴AF HA BF HB =,∴AF BFHA HB=…① AHF ∆中,sin sin AF AHFHA AFH ∠=∠…②,BHF ∆中,sin sin BF AHFHB BFH∠=∠…③将②③代入①,得sin sin sin sin AHF AHFAFH BFH∠∠=∠∠,∴sin sin AFH BFH ∠=∠∴180AFH BFH BFx ∠=︒-∠=∠∴0AF BF k k +=,∴2BF AF k k =-=-.…6分(Ⅱ)依题意可知,抛物线为24y x =,直线l 的斜率k 存在且0k ≠,l 的方程为()1y k x =+,设交点()11,A x y ,()22,B x y ,满足()214y k x y x⎧=+⎪⎨=⎪⎩, 即12,x x 满足()2222240k x k x k +-+=,∴()2242440k k ∆=-->,∴21k <,且21212242,1k x x x x k -+==设()00,M x y ,由FA FB tFM +=,其中0t ≠, X 0 1 2 3 4P81625 216625 216625 96625 16625得()()()1122001,1,1,x y x y t x y -+-=-,∴12012021x x x ty y y t +-⎧=+⎪⎪⎨+⎪=⎪⎩,而()121242y y k x x k+=++=代入2004y x =,得222422441k k kt t ⎛⎫-- ⎪⎛⎫=+⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,化为:222444k t k t t -+= 得,22444t k t t-=-,而21k <且0k ≠, ∴2t <-,或01t <<,或12t <<,或4t >. …12分 21.(本小题满分12分)(Ⅰ)令()()()()1ln 1h x f x x x x =--=-+,则()1xh x x '=+, 当10x -<≤ 时,()0h x '≤,函数()h x 递减当0x >时,()0h x '>,函数()h x 递增,故()h x 在0x =处取得最小值()00h = 即,对1x >-,有()()00h x h ≥=,故()1f x x ≥- 令()()()1ln 111x I x f x x x x =-=-+++,则()()21x I x x '=-+, 当10x -<≤ 时,()0I x '≥,函数()I x 递增当0x >时,()0I x '<,函数()I x 递减,故()I x 在0x =处取得最大值()00I = 即,对1x >-,有()()00I x I ≤=,故()11f x x≤+ ∴()111x f x x-≤≤+ …6分 (Ⅱ)令()()()()2ln 1F x g x f x x ax x =-=++-,则()()22211ax a xF x x +-'=+⑴当0a ≤时,210a -<,∴当0x ≥,∴10x +>,2210ax a +-≤∴()0F x '≤,∴函数()[],0,1y F x x =∈为减函数,∴当01x ≤≤时,()()00F x F ≤=, 即0a ≤时,()()f x g x ≥成立⑵当104a <≤时,1212aa-≥ 则对[]0,1x ∀∈,12102ax x a--≤-≤,∴10x +>,2210ax a +-≤ ∴()0F x '≤,∴函数()[],0,1y F x x =∈为减函数,∴当01x ≤≤时,()()00F x F ≤=,即104a <≤时,()()f x g x ≥成立 ⑶当11ln 24a <≤-时,由11ln 22-<,知12012aa-<< ∴当1202ax a-≤≤时,∴10x +>,2210ax a +-≤,∴()0F x '≤当1212ax a-<≤时,∴10x +>,2210ax a +-≥,()0F x '≥, ∴函数()[],0,1y F x x =∈的减区间为120,2a a -⎡⎤⎢⎥⎣⎦,增区间为12,12a a -⎡⎤⎢⎥⎣⎦又∵()()00,1ln 210F F a ==-+≤∴对[]0,1x ∀∈,()()(){}max 0,10F x F F ≤≤ 故,当01x ≤≤时,()()f x g x ≥成立⑷当1ln 2a >-时,有ln 210a +->,∴()1ln 210F a =+-> 即()()11g f >,与题意矛盾综合⑴⑵⑶⑷,(],1ln2a ∈-∞-,对01x ≤≤,有()()f x g x ≥. …12分 22.(本小题满分10分)(Ⅰ)如图,由题意可知,ACD AEC CAD EAC ∠=∠∠=∠∴ADC ∆∽ACE ∆,∴CD ACCE AE=, 同理,BD ABBE AE =,又∵AB AC =, ∴CD BDCE BE=,∴B E C D B D C E ⋅=⋅ …5分(Ⅱ)如图,由切割线定理,得2FB FD FC =⋅,∵CE ∥AB ∴FAD AEC ∠=∠,又∵AB 切圆于B ,∴ACD AEC ∠=∠,∴FAD FCA ∠=∠, ∴AFD ∆∽CFA ∆,∴AF FD CF AF=,即2AF FD FC =⋅∴22FB AF =,即FB FA =,∴F 为线段AB 的中点. …10分23.(本小题满分10分)(Ⅰ)设曲线C 上任意点M 的坐标为()cos ,sin ϕϕ(02ϕπ≤<)依题意,直线l 的普通方程为40x y +-=点M 到l的距离为d ==∵02ϕπ≤<,∴9444πππϕ≤+<,3444242πππϕ⎛⎫-≤+-≤- ⎪⎝⎭即4444πϕ⎛⎫≤+-≤ ⎪⎝⎭,当342ππϕ+=,即54πϕ=时,max 1d === …5分 (Ⅱ)设射线OP 的极坐标方程为()θαα=∈R ,依题意可知,动点Q 的极坐标为(),ρα,()()1,,,P R P αρα,由2OP OQ OR ⋅=,得1P ρρ⋅=…⑴点(),P P ρα在直线l 上,∴()cos sin 4P ραα+=…⑵,cos sin 0αα+≠,∴4cos sin P ραα=+…⑶,将其代入⑴得41cos sin ραα=+,即4cos sin ραα=+由cos ,sin x y ραρα==,∴()224x y x y +=+,其中0xy ≠24.(本小题满分10分)(Ⅰ)∵()()()3332223a b c a b c a b c ++-++++()()()()3332222222a b c a b c b a c c a b =++-+-+-+∵()()332222a b a b ab aa b b b a +--=-+-()()2a b a b =-+∵,a b +∈R ,∴()()20a b a b -+≥,∴3322a b a b ab +≥+,同理,3322b c b c bc +≥+,3322c a c a ca +≥+∴()3332222222a b c a b ab b c bc c a ca ++≥+++++∴()()()()33322222220a b c a b c b a c c a b ++-+-+-+≥∴()()()2223333a b c a b c a b c ++++≤++ …5分(Ⅱ)∵,,a b c +∈R ,∴0,0,0a b b c c a +>+>+>,由柯西不等式得()()()111a b b c c a a b b c c a ⎛⎫+++++++⎡⎤ ⎪⎣⎦+++⎝⎭29≥=即()11129a b c a b b c c a ⎛⎫++++≥ ⎪+++⎝⎭,∴23ca b a b b c c a ⎛⎫++≥ ⎪+++⎝⎭故,32a b c b c c a a b ++≥+++,当且仅当a b c ==时不等式取等号 …10分以上各题的其他解法,限于篇幅从略,请相应评分.。
陕西省宝鸡市2014年4月高三质检(三)理科数学试题

陕西省宝鸡市2014年4月高三质检(三)理科数学试题 一、选择题:本大题共10小题,每小题5分,共50分 1. 在复平面内,复数)32(i i +对应点位于( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. 若曲线ax x y +=3在坐标原点处的切线方程是02=-y x ,则实数=a ( )A. 1B. 1-C. 2D.2-3. 已知,x c x b a x lg ,,)21(2===,当2>x 时,c b a ,,的大小关系为( )A . c b a << B. b c a << C. a b c << D.b a c <<4. 已知),,0(,2sin cos πααα∈-=-则=αtan ( )A.1-B. 22-C. 22 D.1 5. 阅读右边的程序框图,运行相应的程序,则输出的S 值为( )A.15B. 14C. 7D.66. 已知函数)3sin()(x x f -=π,若要得到函数)('x f y =的图像,只需将函数)(x f y =图像上所有的点( )A.向左平移2π个单位长度 B.向右平移2π个单位长度C. 向左平移32π个单位长度D.向右平移32π个单位长度7. 如图,设区域{}10,10),(≤≤≤≤=y x y x D ,向区域D 内随机投一点,且投入到区域内任一点都是等可能的,则点落入到阴影区域{}30,10),(x y x y x M ≤≤≤≤=的概率为 ( )41 B. 31 C. 52 D.728. 已知平面向量→→b a ,的夹角为120,且1.-=→→b a ,则→→-b a 的最小值为( )6 B. 3 C. 2 D.19. 某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( )A.8B. 16C. 2410. 已知R x ∈,符号][x 表示不超过x 的最大整数,若函数)0(][)(>-=x a xx x f 有且仅有3个零点,则a 的取值范围是 ( )]32,21( B. ]32,21[ C. ]54,43( D.]54,43[ 第Ⅱ卷 (非选择题共100分) 二、填空题:本大题共5小题,每小题5分,满分25分,把答案填在答题卡中对应题号后的横线上(必做题11—14题,选做题15题)11.观察下边方框内等式,照此规律,第4个等式可为..........6765636142927253972444+++=++=+=12. 某三棱锥的三视图如图所示,则三棱锥的体积为13. 甲,乙两位同学近期参加了某学科的四次测试,右图为依据他们的四次测试成绩绘制的折线图,由此可以判断:在甲,乙两位同学中,成绩较稳定的是 同学(填“甲”或“乙”)14. .已知双曲线14222=-by x 的右焦点F 与抛物线x y 122=的焦点重合,过双曲线的右焦点F 作其渐近线垂线,垂足为M 。
广东省惠州市2014届高三第三次调研考试数学理试卷Word版含答案

惠州市2014届高三第三次调研考试数 学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+如果事件A B 、相互独立,那么()()()P AB P A P B =一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .1-2.已知集合{|2}xS y y ==,集合{|ln(1)0}T x x =-<,则S T ⋂=( ) A .φ B .(0,2)C .(0,1)D . (1,2)3.设等比数列{}n a 的公比2q =,前n 项和为n S ,则=24a S(A .2B .4C .152D .1724. 执行右边的程序框图,若0.8p =,则输出的n =( )A .3B .4C .5D .65. 设椭圆22221(0,0)x y m n m n+=>>的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211612x y +=B .2211216x y +=C .2214864x y +=D .2216448x y +=6.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( )A . 6万元B .8万元C .10万元D .12万元7. 右图是一个几何体的三视图,根据图中数据可得该几何体的表面积是( )A .9πB .10πC .11πD .12π8.已知函数3()),f x x x =-则对于任意实数,(0)a b a b +≠, 则()()f a f b a b++的值为( )A .恒正 B.恒等于0 C .恒负 D. 不确定二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.设随机变量ξ服从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a 的值为 .10. 已知向量(0,1,1)a =-,(4,1,0)b =,||29a b λ+=且0λ>,则λ= .11. 某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 .(用数字作答)12. 若0,0a b ≥≥,且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 .13. 对于*n N ∈,将n 表示为1101102222k k k k n a a a a --=⨯+⨯+⋅⋅⋅+⨯+⨯,当i k =时,1i a =;当01i k ≤≤-时,i a 为0或1. 定义n b 如下:在n 的上述表示中,当012,,,,ka a a a ⋅⋅⋅中等于1的个数为奇数时,1nb =;否则0n b =.则3456b b b b +++= .俯视图正(主)视图 侧(左)视图FADBC(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
广州市2014届高三调研测试数学理科试题参考答案及评分标准

广州市2014届高三年级调研测试 数学(理科)试题参考答案及评分标准说明:1.参考答案及评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分) 解:(1)在△ABC中,A B π++=.………………………………………………………………1分 所以co22A CBπ+-= …………………………………………………………………………2分sin2B ==.………………………………………………………………………3分所以2co 2BB =-……………………………………………………………………………5分题号 1 2 3 4 5 6 7 8 答案 D C A D A B C A 题号 9 10 111213 14 15答案3413[)01,-361,33⎡-⎢⎣⎦13=.………………………………………………………………………………………7分(2)因为3a =,b =1cos 3B =, 由余弦定理2222cos b a c ac B =+-,………………………………………………………………9分得2210c c -+=.……………………………………………………………………………………11分 解得1c =. (12)分17.(本小题满分12分) 解:(1)由茎叶图可知,甲城市在2013年9月份随机抽取的15天中的空气质量类别为优或良的天数为5天.…………………………………………………………………………………………………1分所以可估计甲城市在2013年9月份30天的空气质量类别为优或良的天数为10天.…………2分 (2)X的取值为0,1,2,………………………………………………………………………………3分因为()02510215C C 30C 7P X ===,………………………………………………………………………5分()11510215C C 101C 21P X ===,……………………………………………………………………………7分()20510215C C 22C 21P X ===.…………………………………………………………………………9分所以X 的分布列为:所以数学期望32212221101730=⨯+⨯+⨯=EX .…………………………………………………12分18.(本小题满分14分)(1)证明1:因为BC AB 2=,60ABC ︒∠=,在△ABC中,由余弦定理可得BC AC 3=.……………………………………………………2分所以222AC BC AB +=.所以BC AC ⊥.………………………………………………………………………………………3分因为AC FB ⊥,BF BC B = ,BF 、BC ⊂平面FBC , 所以⊥AC 平面FBC .………………………………………………………………………………4分证明2:因为60ABC ︒∠=,设BAC α∠=()0120α<<,则120ACB α∠=-.在△ABC中,由正弦定理,得()sin sin 120BC ABαα=-.…………………………………………1分 因为BC AB 2=,所以()sin 1202sin αα-=.整理得t n α=,所以30α= .…………………………………………………………………2分所以BC AC ⊥.………………………………………………………………………………………3分因为AC FB ⊥,BF BC B = ,BF 、BC ⊂平面FBC , 所以⊥AC 平面FBC .………………………………………………………………………………4分(2)解法1:由(1)知,⊥AC 平面FBC ,FC ⊂平面FBC ,所以FC AC ⊥.因为平面CDEF 为正方形,所以FC CD ⊥.……………………10分因为A C =,所以⊥FC 平面AB.……………………………………………………6分 取AB 的中点M ,连结MD ,ME ,因为ABCD 是等腰梯形,且BC AB 2=,60DAM ∠=, 所以MDM A A ==.所以△M A D是等边三角形,且ME BF .…………………………7分取AD 的中点N ,连结MN ,NE ,则MN AD ⊥.………8分 因为MN ⊂平面ABCD ,ED FC ,所以ED MN ⊥. 因为AD ED D = ,所以MN ⊥平面ADE . ……………9分 所以MEN ∠为直线BF 与平面ADE 所成角. ……………10分因为NE ⊂平面ADE ,所以MN ⊥NE .…………………11分 因为M N A=,ME ==,…………………………………………12分在Rt△MNE中,s i n 4MN MEN ME ∠==.……………………………………………………13分所以直线BF 与平面ADE所成角的正弦值为4.……………………………14分 解法2:由(1)知,⊥AC 平面FBC ,FC ⊂平面FBC ,所以FC AC ⊥.因为平面CDEF 为正方形,所以FC CD ⊥. 因为A C =,所以⊥FC 平面AB.……………………………………………………6分 所以CA ,CB ,CF 两两互相垂直,建立如图的空间直角坐标系xyz C -.………………………7分 因为ABCD 是等腰梯形,且BC AB 2=,60ABC ︒∠= 所以CB CD CF ==.不妨设1BC =,则()0,1,0B ,()0,0,1F,)A,1,,022D ⎛⎫- ⎪ ⎪⎝⎭,1,122E ⎛⎫- ⎪ ⎪⎝⎭,所以()0,1,1BF =-,1,02DA ⎫=⎪⎪⎝⎭,()0,0,1DE =.………………………………………9分设平面ADE 的法向量为=()x,y,z n ,则有0,0.DA DE ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,220.y x z +=⎨⎪=⎩ 取1x =,得=n ()13,0是平面A D E的一个法向量.………………………………………11分设直线BF 与平面ADE 所成的角为θ, 则sin cos ,BF BF BF ⋅θ=〈〉===n n n.……………………………13分所以直线BF与平面ADE所成角的正弦值为4.………………………………………………14分 19.(本小题满分14分) 解:(1)因为1321nn n a a a +=+,所以111233n n a a +=+.…………………………………………………1分 所以111113n n a a +⎛⎫-=- ⎪⎝⎭.…………………………………………………………………………3分因为135a =,则11213a -=.…………………………………………………………………………4分 所以数列11n a ⎧⎫-⎨⎬⎩⎭是首项为32,公比为31的等比数列.…………………………………………5分(2)由(1)知,112121333n n n a -⎛⎫-=⨯= ⎪⎝⎭,所以332nn n a =+.……………………………………7分假设存在互不相等的正整数m ,s ,t 满足条件, 则有()()()22,111.s m t m t s a a a +=⎧⎪⎨-=--⎪⎩……………………………………………………………………9分由332n n n a =+与()()()2111s m t a a a -=--,得2333111323232s m t s m t ⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭.……………………………………………………10分即232323343m t m t s s ++⨯+⨯=+⨯.……………………………………………………………11分因为2m ts+=,所以3323m t s +=⨯.……………………………………………………………12分因为3323mts +≥=⨯,当且仅当m t =时等号成立,这与m ,s,t 互不相等矛盾.……………………………………………………………………13分所以不存在互不相等的正整数m ,s ,t 满足条件.……………………………………………14分 20.(本小题满分14分) 解:(1)因为()313f x x ax =-,()221g x bx b =+-, 所以()2f x x a'=-,()2g x bx '=.…………………………………………………………………1分因为曲线()x f y =与()x g y =在它们的交点()c ,1处有相同切线, 所以()()11g f =,且()()11g f '='。
2014届高三第三次调研考试理科数学含答案

2014届高三第三次调研考试数 学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+如果事件A B 、相互独立,那么()()()P AB P A P B =一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .1-2.已知集合{|2}xS y y ==,集合{|ln(1)0}T x x =-<,则S T ⋂=( ) A .φ B .(0,2)C .(0,1)D . (1,2)3.设等比数列{}n a 的公比2q =,前n 项和为n S ,则=24a S(A .2B .4C .152D .1724. 执行右边的程序框图,若0.8p =,则输出的n =( )A .3B .4C .5D .65. 设椭圆22221(0,0)x y m n m n+=>>的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211612x y += B .2211216x y += C .2214864x y += D .2216448x y +=6.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( )A . 6万元B .8万元C .10万元D .12万元7. 右图是一个几何体的三视图,根据图中数据可得该几何体的表面积是( )A .9πB .10πC .11πD .12π8.已知函数3()),f x x x =-则对于任意实数,(0)a b a b +≠, 则()()f a f b a b++的值为( )A .恒正 B.恒等于0 C .恒负 D. 不确定二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答.9.设随机变量ξ服从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a 的值为 .10. 已知向量(0,1,1)a =- ,(4,1,0)b =,||a b λ+=0λ>,则λ= .11. 某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 .(用数字作答)12. 若0,0a b ≥≥,且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩,,时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 .13. 对于*n N ∈,将n 表示为1101102222kk k k n a a a a --=⨯+⨯+⋅⋅⋅+⨯+⨯,当i k =时,1i a =;当01i k ≤≤-时,i a 为0或1. 定义n b 如下:在n 的上述表示中,当012,,,,ka a a a ⋅⋅⋅中等于1的个数为奇数时,1nb =;否则0n b =.则3456b b b b +++= .俯视图正(主)视图 侧(左)视图FADBC(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的,只计前一题的得分。
河北省衡水中学2014届高三上学期三调考试数学理科试题

河北省衡水中学2014届高三上学期三调考试数学理科试卷本试卷分第I 卷和第Ⅱ卷两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合M={x|x 2≤4),N={x|log 2 x≥1},则M∩N 等于( ) A . [﹣2,2]B . {2}C . [2,+∞)D . [﹣2,+∞)2.若0>x 、0>y ,则1>+y x 是122>+y x 的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件3.平面直角坐标系xOy 中,已知A(1,0),B (0,1),点C 在第二象限内,56AOC π∠=,且|OC|=2,若OC OA OB λμ=+,则λ,μ的值是( )A .3,1B . 1,3C .-1,3D .3-,1 4.设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 的值为( )A.1B.2C.3D.45.如图,圆O 的两条弦AB 和CD 交于点E ,EF//CB,EF 交AD 的 延长线于点F ,FG 切圆O 于点G ,EF=2,则FG 的长为( ) A.12 B.13C.1D. 2 6. 某四棱锥的三视图如图所示,则最长的一条侧棱的长度是( ) A.25 B.29 C.42 D.137.已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若,//m αβα⊥,则m β⊥;②若,m n αβ⊥⊥,且,m n ⊥则αβ⊥; ③若,m β⊥//m α,则αβ⊥;④若//m α,//n β,且//m n ,则//αβ. 其中正确命题的个数是( ) A .1B .2C .3D .48.已知,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ) A .a b c >> B .b c a >> C .b a c >> D .a c b >>9.已知各项均为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得1144,m n a a a m n=+则的最小值为 ( ) A .32 B .53C .94D .910.已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数, 则所有符合条件的a 值之和是( ) A.13B.18C.21D.2611.若函数32()(0)f x ax bx cx d a =+++≠,22['()]['()]0,()()0f f f f αβαβ+=+= (其中,R αβ∈且αβ≠),则下列选项中一定是方程()0f x =的根的是( ) A .3ba-B .2b a-C .3c aD .2c a12. 设定义域为R 的函数|1|251,0,()44,0,x x f x x x x -⎧-≥⎪=⎨++<⎪⎩若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m = ( )A .2B .4或6C .2或6D .6第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年浙江省高考调研模拟卷三(理数)改稿学校:镇海中学本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
满分150分, 考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.设复数31()1i z i+=-,i 是虚数单位,则ln ||z = ( ) A. i - B. 1-C. 0D. 12.某程序框图如图所示,则输出的结果是( )A .10B .20C .50D .1403.已知等比数列{}n a ,则“24a a >”是“68a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.点(,)P xy 的坐标x,y 满足2x y 40x y 20x 0,y 0+-≤⎧⎪-+≥⎨⎪≥≥⎩,则点(,)P x y 到直线430ax y a --+=的距离最大值是( )A .B .C . 5D .5.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA 3=,AB=AC=1,异面直线AC 与11A B 成3π角,则异面直线1B C 和AB 所成角的余弦值为 ( ) A .B .C .D6.在三角形ABC 中,动点P 满足:222CA CB AB CP =-∙,则P 的轨迹点一定通过△ABC 的( ) A .外心 B . 内心 C . 重心 D . 垂心7.把6张座位编号为1,2,3,4,5,6的听课证分发给4个班级,每班至少1张,且得到两张及以上听课证的要求编号是连续的,那么不同的分法种数是 ( )A. 720B.240C.144D.96 8. 已知102310012310x a a (x 1)a (x 1)a (x 1)a (x 1)=+++++++++,则i a (i 0,1,,10)=中最大的是 ( )A . 5aB . 4a ,或5aC . 4a ,或6aD . 5a ,或6a9.给定两点A (-3,-8),B (10,4)和两条平行直线12:34100,:34150l x y l x y ++=+-=,点P 、Q 分别在12,l l 上,且1PQ l ⊥,则当折线段APQB 的长最短时,直线PQ 的方程是( )A. 43280x y --=B. 43120x y -+=C. 43200x y --=D. 43280x y -+=10.已知函数32x 1,x (,1]x 12f (x )111x ,x [0,]362⎧∈⎪⎪+=⎨⎪-+∈⎪⎩函数g (x )a sin(x)2a 2(a 0)6π=-+>.若存在12x ,x [0,1]∈,使得12f (x )g(x )=成立,则实数a 的取值范围是( )A.14[,]23B.1(0,]2C. 24[,]33D. 1[,1]2第Ⅱ卷(非选择题 共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分。
11.曲线2y x x=+在点(2,3)处的切线方程是 . 12.如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是 . 13.四边形ABCD 满足:(1,1)AB DC ==,3||||||AB BC ACAB BC AC +=,则四边形ABCD 的面积是 .14.已知双曲线2222x y 1(a 0,b 0)a b-=>>的离心率是,则双曲线的渐近线方程式 .15.掷两枚类似于骰子的质地均匀的正方体玩具,它的各面分别刻有1、2、2、3、3、3。
设ξ是掷得的点数差的绝对值,则ξ的期望是 .16.已知定义域为R 的偶函数f(x),当x 0≥时,2f (x)x 2x =-+,满足1f (f (a))2=的实数a 的个数为________.17.设A 是圆221:(1)1C x y -+=上任意一点,12,B B 是圆222:1C x y +=上的不同两点,且关于圆1C 和圆2C 的连心线对称,则2212AB AB +的取值范围是_______.三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)函数f (x)a cos x bsin x(0)=ω+ωω>的最小正周期为2π,当x 6π= 时,有最大值4. (1)求a,b,ω的值; (2)若0x 4π<<,且4f (x)3=,求f (x )8π-的值。
(第12题图)主视图 侧视图19.(本题满分14分)已知数列{}{}*11,6,n n n n n n n a b b a a b b n N ++=--=∈满足,, (I )11n 试用a ,b 和n 表示a ;(II )设{}11n a b a a a =-=6,且是数列中的最小项,求实数a 的取值范围。
20.(本题满分15分)如图,在侧棱与底面垂直的三棱柱ABC —A 1B 1C 1中,∠ACB=90°,BC= AC=a ,CC 1(I )求直线AB 与平面AB 1C 所成角的余弦值; (II )求二面角A 1—AB 1—C 的余弦值;21.(本题满分152213xy-=的左右焦点。
(1)求椭圆的方程;(2)设斜率为k的直线l过点(0,2)A,椭圆的焦点在x轴上,且在椭圆上恰好存在3个不同的点P,使P到直线l的距离等于1,求k的值.22.(本题满分14分)设函数2()ln f x x a x =- (1)讨论函数()f x 的单调性;(2)若()f x 在(1,2)上为增函数,()g x x =-0,1)上为减函数 ①求证:方程()()2f x g x -=在(0,)+∞内有唯一解。
②若21()2f x bx x ≥-在(0,)b 内恒成立,求正实数b 的取值范围.2014年浙江省高三数学(理)调研模拟卷(三)1、C 提示:||1Z=2、D 提示:当x=50时,y=140,程序继续.3、C 提示:40q >。
.4、C 提示:直线过定点(4,3)5、D 提示:BAC 3π∠=,或23π6、A 提示:222()CA CB AB CP AB BP AP =-∙=⋅+。
7、B 提示:两个班连号144种,一个班连号96种 8、C 提示:1010x[(x 1)1]=+-9、C 提示:作线段AE 1l ⊥,使AE=PQ,连接EB 交2l 于Q ,作QP 2l ⊥。
E(0,4),Q(5,0) 10、A 提示:f(x)的值域是[0,1],g(x)的值域是[-2a+2,2-32a]11、1y x 22=+ 提示:22y 1x'=-12、18+ 2 提示:该几何体是棱长为2的正方体截去一个角。
133π的菱形 14、y =15、79提示:离散型随机变量ξ的分布列为 16、8提示:f (a)122=-±-17、[2,18) 提示:设111211(,),(,),(,)A x y B x y B x y -,则2212124(1)AB AB x x +=+-,且1012x <-<,02x ≤≤,10(1)4x x ∴≤-<18、解:(1)由条件得:4ω=,且1a 42-=,解得a 2,b =-= ……6分 (2)2f (x)4cos(4x )3π=-,21cos(4x )33π∴-= ……9分 又2f (x )4cos(4x )832πππ-=--=24sin(4x )3π- ……11分 0x 4π<<,224x 333πππ∴-<-<,而21cos(4x )33π-=,2sin(4x )3π∴-=,即f (x )8π-= ……14分19.(I )111(1)6,(1)6,n n n b b n a a b n +=+-⋅∴-=+-⋅…………………….4分21113(9)6n a n b n a b =+-+-+ …………………….8分(II ){}n a 6a 是数列中最小项,67652430a a a a a ≤⎧∴∴≤≤⎨≤⎩,……………………………14分20、解法1:(I )过点B 作BE 垂直B 1C 于E ,连接AE ,因为AC ⊥平面B 1BCC 1,所以平面AB 1C ⊥平面BB 1C , ∴BE ⊥平面AB 1C ,∴∠BAE 为AB 与平面AB 1C 所成的角。
在∆B 1CB中,BC=a,BB 1=,∴,∴sin ∠故cos ∠即直线AB 与平面AB 1C……7分 (II )过E 作EF ⊥AB 1于F ,连接FB ,因为,BE ⊥平面AB 1C ,∵AB 1⊥BF , ∴∠EFB 是二面角B —A B 1—C 的平面角。
在∆BEF 中,,sin ∠∴二面角A 1—AB 1—C 的余弦值为-4…………15分解法二:以C 为原点,射线CC 1为非负Z 轴,建立空间直角坐标系O —xyz (如图),则C(0,0,0),1A (a,0,0),B 1(0,a,),B(0,a,0),C(0,0,)。
(I)11(,,3),(0,,),B A a a a BC a =--=-设平面AB 1C 的法向量为,,),n x y z =( 0,3,1)0ax ay n ax ay ⎧-=⎪=-⎨++=⎪⎩则,取(0, 6(,,0),cos ,AB a aAB n =-∴<>=-,即直线AB 与平面AB 1C ………………………..7分 (II ):同(I )求得平面AB 1C 的法向量为,3,1)n=-(0,同样可求平面A 1AB 1的法向量m =(0.5,0.5,0),所以,cos ,n m <>=-,所以二面角A 1—AC —B 1的余弦值为分 21、(1)双曲线2213x y -=的左右焦点为(2,0)±,即椭圆的顶点坐标分别为(2,0),(2,0)- 若椭圆焦点在x 轴上,设椭圆的标准方程为22221(0)x y a b ab+=>>,则2a =,且c e a ==所以c =从而2221b a c =-= 所以椭圆的标准方程为22141x y += .……….4分 同样,可求得焦点在y 轴上时的椭圆标准方程221416x y += .……….6分 (2)设与直线l 平行的直线方程为y kx t =+由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-= 2216(41)k t ∴∆=-+.……….8分令0∆=,得4122-=t k又直线l 与直线y kx t =+间的距离为11= (*)消去k ,得到2316130t t -+=,131,3t t ∴==.……….11分 当1t =时,0k =,此时代入(*)得1t =或3t =。