贺州市中考数学模拟试卷
初中数学广西贺州市中考模拟数学考试卷及答案word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:在﹣1、0、1、2这四个数中,最小的数是()A. 0 B.﹣1 C. 1 D. 1试题2:分式有意义,则x的取值范围是()A. x≠1 B. x=1 C. x≠﹣1 D. x=﹣1试题3:如图,OA⊥OB,若∠1=55°,则∠2的度数是()A. 35°B. 40°C. 45°D. 60°试题4:未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A. 0.845×104亿元B. 8.45×103亿元C. 8.45×104亿元D. 84.5×102亿元评卷人得分试题5:A、B、C、D 四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A 抽到1号跑道的概率是()A. 1B.C.D.试题6:下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形试题7:不等式的解集在数轴上表示正确的是()A.B.C.D.试题8:如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.试题9:如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C. 12 D. 15试题10:已知二次函数y=ax2+bx+c(a,b,c 是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.试题11:如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.试题12:张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x>0)的最小值是2.模仿张华的推导,你求得式子(x>0)的最小值是()A. 2 B. 1 C. 6 D. 10试题13:分解因式:a3﹣4a=试题14:已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).试题15:近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=试题16:已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是试题17:如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.试题18:网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .试题19:计算:(﹣2)0+(﹣1)2014+﹣sin45°;试题20:先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.试题21:已知关于x、y的方程组的解为,求m、n的值.试题22:如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.试题23:学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?试题24:马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.试题25:如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)试题26:如图,AB,BC,CD分别与⊙O相切于E,F,G.且AB∥CD.BO=6cm,CO=8cm.(1)求证:BO⊥CO;(2)求BE和CG的长.试题27:二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.试题1答案:B试题2答案:A试题3答案:A试题4答案:B试题5答案:D试题6答案:C试题7答案:A试题8答案:C试题9答案:D试题10答案:B试题11答案:B试题12答案:C试题13答案:a(a+2)(a﹣2).试题14答案:<试题15答案:22 .试题16答案:0 .试题17答案:50°试题18答案:/2试题19答案:原式=1+1+﹣=2;试题20答案:原式=ab(a+1)•=ab,当a=+1,b=﹣1时,原式=3﹣1=2.试题21答案:解:将x=2,y=3代入方程组得:,②﹣①得: n=,即n=1,将n=1代入②得:m=1,则m=1,n=1.试题22答案:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.试题23答案:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%试题24答案:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得 x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.试题25答案:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.试题26答案:(1)证明:∵AB∥CD∴∠ABC+∠BCD=180°∵AB、BC、CD分别与⊙O相切于E、F、G,∴BO平分∠ABC,CO平分∠DCB,∴∠OBC=,∠OCB=,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=90°,∴BO⊥CO.(2)解:连接OF,则OF⊥BC,∴RT△BOF∽RT△BCO,∴=,∵在RT△BOF中,BO=6cm,CO=8cm,∴BC==10cm,∴=,∴BF=3.6cm,∵AB、BC、CD分别与⊙O相切,∴BE=BF=3.6cm,CG=CF,∵CF=BC﹣BF=10﹣3.6=6.4cm.∴CG=CF=6.4cm.试题27答案:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x, x2),过点P作PB⊥y轴于点B,则BF=x2﹣1,PB=x,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).。
贺州市数学中考模拟试卷(一)

贺州市数学中考模拟试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 6的相反数是()A .B .C .D .2. (2分)(2014·温州) 如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A .B .C .D .3. (2分)人体血液中每个成熟红细胞的平均直径为0.0000077米,用科学记数法表示为()A . 7.7×10﹣5米B . 77×10﹣6米C . 77×10﹣5米D . 7.7×10﹣6米4. (2分)(2017·濮阳模拟) 下列计算正确的是()A . (a2)3=a6B . a2+a2=a4C . (3a)•(2a)2=6aD . 3a﹣a=35. (2分)关于x的方程x2+2kx+k-1=0的根的情况描述正确的是()A . k为任何实数,方程都没有实数根B . k为任何实数,方程都有两个不相等的实数根C . k为任何实数,方程都有两个相等的实数根D . 根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6. (2分)(2019·台州模拟) 下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A . 0个B . 1个C . 2个D . 4个7. (2分) (2019九下·佛山模拟) 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A .B .C .D .8. (2分)如图,正六边形ABCDEF,点P在直线AB上移动,若点P与正六边形六个顶点中的至少两个顶点距离相等,则直线AB上满足条件的点P共有()A . 6个B . 5个C . 4个D . 3个9. (2分)(2016·毕节) 到三角形三个顶点的距离都相等的点是这个三角形的()A . 三条高的交点B . 三条角平分线的交点C . 三条中线的交点D . 三条边的垂直平分线的交点10. (2分)(2017·红桥模拟) 如图,点E(x1 , y1),F(x2 , y2)在抛物线y=ax2+bx+c上,且在该抛物线对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b 于点A、C.设S为四边形ABDC的面积.则下列关系正确的是()A . S=y2+y1B . S=y2+2y1C . S=y2﹣y1D . S=y2﹣2y1二、填空题 (共6题;共7分)11. (1分) (2019八下·温江期中) 分解因式: ________.12. (1分) (2019九上·钦州港期末) 已知反比例函数y=,x>0时,y________0,这部分图象在第________象限,y随着x值的增大而________.13. (1分)不等式组的解集为________14. (2分)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________ .15. (1分) (2019八下·嘉兴开学考) 把足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式,经________秒后足球回到地面.16. (1分)(2017·阜宁模拟) 如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为________.三、解答题 (共9题;共75分)17. (5分)(1)计算:,(2)求不等式组的整数解.18. (2分) (2017八下·庆云期末) 如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.19. (11分)(2020·封开模拟) 某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了________名学生;若该校共有1500名学生,估计全校爱好运动的学生共有________名;(2)补全条形统计图,并计算阅读部分圆心角是多少度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?20. (10分)(2015·宁波) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21. (10分)(2012·锦州) 某部队要进行一次急行军训练,路程为32km.大部队先行,出发1小时后,由特种兵组成的突击小队才出发,结果比大部队提前20分钟到达目的地.已知突击小队的行进速度是大部队的1.5倍.(1)求大部队的行进速度.(列方程解应用题)22. (10分) (2020七上·银川期末) 如图,点O是直线CD上一点,OA, OB分别平分∠COE,∠DOE.(1)写出以O为顶点的2个角(除∠COE,∠DOE外)(2)求∠AOB的度数(3)如果: =1:3,求∠AOC和∠BOD的度数。
贺州市数学中考模拟考试试卷

贺州市数学中考模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c=()A . 1B . 0C . 1或0D . 2或02. (2分)(2017·龙华模拟) 下列运算正确的是()A . a2+a2=a4B . (ab)2=ab2C . a6÷a2=a3D . (2a2)3=8a63. (2分) (2020七下·新乡期中) 若关于x的一元一次不等式组的解集是,则a的取值范围是()A .B .C .D .4. (2分)平行四边形、矩形、菱形、正方形中是轴对称图形的有()个.A . 1B . 2C . 3D . 45. (2分)如图所示,该几何体的俯视图是()A .B .C .D .6. (2分)如图,设k=(a>b>0),则有()A . k>2B . 1<k<2C .D .7. (2分)某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A . y=25x+15B . y=2.5x+1.5C . y=2.5x+15D . y=25x+1.58. (2分)(2017·琼山模拟) 在﹣2、﹣1、0、1、2、3这六个数中,任取两个数,恰好互为相反数的概率为()A .B .C .D .9. (2分)一种细菌的半径是0.000045米,该数字用科学记数法表示正确的是()A . 4.5×B . 45×C . 4.5×D . 4.5×10. (2分) 2015年3月份,苏州市某周的日最高气温统计如下表:则这七天中日最高气温的众数和中位数分别是()日期20212223242526最高气温/℃2453467A . 4,4B . 5,4C . 4,3D . 4,4.511. (2分) (2019七下·秀洲月考) 如图,将边长为5个单位的等边△ABC沿边BC向右平移4个单位得到△A’B’C’,则四边形AA’C’B的周长为()A . 22cmB . 23cmC . 24cmD . 25cm12. (2分)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V (m3)的反比例函数,其图象如图所示.当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V 应该是()A . 小于0.64m3B . 大于0.64m3C . 不小于0.64m3D . 不大于0.64m313. (2分)一个扇形的弧长是20πcm,面积是240πcm2 ,则扇形的半径是()A . 12cmB . 24cmC . 12πcmD . 150cm14. (2分)(2019·宝鸡模拟) 如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD =35°,∠CDA=40°,则∠E的度数是()A . 20°B . 25°C . 30°D . 35°15. (2分) (2019八上·涡阳月考) 若直线经过一、二、三象限,则直线不经过的象限是()A . 一B . 二C . 三D . 四16. (2分)如图,点O为小亮家的位置,他家门前有一条东西走向的公路,水塔A位于他家北偏东60°的500米处,那么水塔所在的位置到公路的距离是()A . 250米B . 250C . 150D . 25017. (2分)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A 等于()A . 25B . 30C . 45D . 6018. (2分)在4ⅹ4的正方形的网格中画出了如图所示的格点△ABC,则tan∠ABC的值为()A .B .C .D .19. (2分)(2020·杭州模拟) 已知函数y1=ax+a和y2=-ax2+2x+2(a是常数,且a≠0),函数y1和y2的图象可能是()A .B .C .D .20. (2分)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
广西贺州市中考数学模拟试卷

广西贺州市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共38分)1. (4分) (2019七上·义乌月考) 校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A . 在家B . 在学校C . 在书店D . 不在上述地方2. (4分) (2019九上·郑州期末) 下列运算正确的是()A . a2•a4=a8B . 2a2+a2=3a4C . a6÷a2=a3D . (ab2)3=a3b63. (2分)下列几何体中,主视图和左视图不同的是A .B .C .D .4. (4分)据2005年6月9日中央电视台东方时空栏目报道:由于人类对自然资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约每45分钟就有一个物种灭绝.照此速度,请你预测:再过10年(每年以365天计算)将有大约()个物种灭绝.A . 5.256×106B . 5.256×105C . 1.168×105D . 5.256×1046. (4分)如图,以Rt△ABC的直角边AB为直径作半圆⊙O与边BC交于点D,过D作半圆的切线与边AC交于点E,过E作EF∥AB,与BC交于点F.若AB=20,OF=7.5,则CD的长为()A . 7B . 8C . 9D . 107. (4分)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的众数为()A . 37B . 32C . 35D . 33.88. (4分)安定区某企业2014年的产值是360万元,要使2016年的产值达到490万元,设该企业这两年的平均增长率为x,根据题意列方程,则下列方程正确的是()A . 360x2=490B . 360(1﹣x)2=490C . 490(1+x)2=360D . 360(1+x)2=4909. (4分)(2019·长沙模拟) 如图,在中,,,的垂直平分线交于,连接,若,则的长是().A .B .C .D .10. (4分)如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A . ac<0B . 2a+b=0C . 4a+2b+c>0D . 对于任意x均有ax2+bx≥a+b二、填空题 (共4题;共16分)11. (4分) (2017八下·鞍山期末) 已知x+y=﹣2,xy=3,则代数式 + 的值是________.12. (4分)因式分解:=________.13. (4分)(2012·鞍山) 如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA= ,则∠D 的度数是________.14. (4分)(2019·双牌模拟) 如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A (﹣1,0)与点C(x2 , 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中符合题意结论的序号为________.三、 (本大题共2小题,每小题8分,满分16分) (共4题;共32分)15. (8分)(2017七下·海安期中) 计算题(1)计算;(2)解方程组.16. (8分) (2016七上·老河口期中) 记a1=﹣3,a2=(﹣3)×(﹣3),a3=(﹣3)×(﹣3)×(﹣3),…,an= .(1)填空:a4=________,a25是一个________数(填“正”或“负”);(2)计算:a5+a6;(3)请直接写出2016an+672an+1的值.17. (8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△ABC 的顶点坐标为点A(﹣6,1),点B(﹣3,1),点C(﹣3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1 ,试在图上画出图形Rt△A1B1C1 ,并写出点A1的坐标;(2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2 ,试在图上画出图形Rt△A2B2C2.并写出顶点A从开始到A2经过的路径长18. (8分)某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?四、 (本大题共2小题,每小题10分,满分20分) (共2题;共20分)19. (10分)如图,将矩形沿EF折叠,使B1点落在边上的B点处;再将矩形沿BG折叠,使D1点落在D点处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)当是多少度时,四边形BEFG为菱形?试说明理由.20. (10分)(2016·南岗模拟) 如图,在5×8的网格中,每个小正方形的边长均为1,线段AB的顶点均在小正方形的顶点上.(1)画出等腰直角△ABC,点C在格点上;(2)画出有一个锐角的正切值是2的直角△ABD,点D在格点上;(3)在(1)(2)的条件下,连接CD,请直接写出△BCD的面积.五、 (本题满分12分) (共2题;共24分)21. (12分)(2020·金牛模拟) 某校教务处为了解九年级学生“居家学习”的学习能力,随机抽取该年级部分学生,对他们的学习能力进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图(其中学习能力指数级别“1”级,代表学习能力很强;“2”级,代表学习能力较强;“3”级,代表学习能力一般;“4“级,代表学习能力较弱)请结合图中相关数据回答问题.(1)本次抽查的学生人数________人,并将条形统计图补充完整;(2)本次抽查学生“居家学习”能力指数级别的众数为________级,中位数为________级.(3)已知学习能力很强的学生中只有1名女生,现从中随机抽取两人写有关“居家学习”的报告,请用列表或画树状图的方法求所抽查的两位学生中恰好是一男一女的概率.22. (12分) (2020八下·江阴期中) 今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用2500元购进一批车厘子,很快售完;老板又用4400元购进第二批车厘子,所购数量是第一批的2倍,由于进货量增加,进价比第一批每干克少了3元.”(1)第一批车厘子每千克进价多少元?.(2)该老板在销售第二批车厘子时,售价在第二批进价的基础上增加了,售出后,为了尽快售完,决定将剩余车厘子在第二批进价的基础上每千克降价元进行促销,结果第二批车厘子的销售利润为1520元,求的值。
初中数学广西贺州市中考模拟数学考试卷及答案解析(word版)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的相反数是()A.﹣B.C.﹣2 D.2试题2:如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70° B.100° C.110° D.120°试题3:下列实数中,属于有理数的是()A.B.C.π D.试题4:一个几何体的三视图如图所示,则这个几何体是()评卷人得分A.三棱锥 B.三棱柱 C.圆柱 D.长方体试题5:从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.试题6:下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3•b3=2b3试题7:一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20试题8:若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4试题9:如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.试题11:已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.8试题12:n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数试题13:要使代数式有意义,则x的取值范围是.试题14:.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.试题16:如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.试题17:将m3(x﹣2)+m(2﹣x)分解因式的结果是.试题18:在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)试题19:计算:﹣(π﹣2016)0+|﹣2|+2sin60°.试题20:解方程:.试题21:为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比 a 20% b 10% 5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.试题22:如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)试题23:如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)试题24:某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)试题25:如图,在△ABC中,E是AC边上的一点,且AE=A B,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.试题26:如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.试题1答案:A【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:的相反数是﹣.故选A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.试题2答案:D【考点】平行线的性质.【分析】先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=60°,∴∠2=180°﹣60°=120°.∵CD∥BE,∴∠2=∠B=120°.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.试题3答案:D【考点】实数.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、﹣是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.试题4答案:B【考点】由三视图判断几何体.【分析】根据三视图的知识,正视图为两个矩形,左视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱【解答】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.试题5答案:D【考点】概率公式;绝对值.【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:.故选D.【点评】此题考查了概率公式的应用.注意找到绝对值不小于2的个数是关键.试题6答案:A【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、幂的乘方底数不变指数相乘,故A正确;B、同底数幂的除法底数不变指数相减,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.试题7答案:C【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.试题8答案:C【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出a的范围即可.【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.试题9答案:B【考点】坐标与图形变化-旋转.【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.试题10答案:B【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.试题11答案:D【考点】圆锥的计算.【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【解答】解:设圆锥的底面半径为r.圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是120°,∴弧长==8π,即圆锥底面的周长是8π,∴8π=2πr,解得,r=4,∴底面圆的直径为8.故选D.【点评】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.试题12答案:C【考点】因式分解的应用.【专题】探究型.【分析】根据题意,可以利用分类讨论的数学思想探索式子[1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.【解答】解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)=[1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,利用分类讨论的数学思想解答问题.x≥﹣1且x≠0 .【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.试题14答案:6 .【考点】中位数;算术平均数.【分析】根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.【解答】解:∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,故答案为:6.【点评】本题考查了中位数和算术平均数的知识,解答本题的关键是排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.4×106人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:940万人用科学记数法表示为 9.4×106人,故答案为:9.4×106.【点评】本题考查了科学记数法表示大数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题16答案:120°.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.故答案为120°【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.试题17答案:m(x﹣2)(m﹣1)(m+1).【考点】提公因式法与公式法的综合运用.【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.试题18答案:.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:【点评】本题主要考查了矩形、相似三角形以及等腰三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:有两个角对应相等的两个三角形相似.试题19答案:【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和零指数幂的性质分别化简求出答案.【解答】解:原式=2﹣1+2﹣+2×=3﹣+=3.【点评】此题主要考查了绝对值的性质以及特殊角的三角函数值和零指数幂的性质等知识,正确化简各数是解题关键.试题20答案:【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣3(30﹣x)=60,去括号得:2x﹣90+3x=60,移项合并得:5x=150,解得:x=30.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.试题21答案:【考点】条形统计图;用样本估计总体.【分析】(1)用书法的人数除以其所占的百分比即可求出抽样调查的学生总人数,用文学鉴赏、音乐舞蹈的人数除以总人数即可求出a、b的值;(2)用总人数乘以国际象棋的人数所占的百分比求出国际象棋的人数,再把条形统计图补充即可;(3)用该校总人数乘以全校选择“音乐舞蹈”社团的学生所占的百分比即可.【解答】解:(1)本次抽样调查的学生总人数是:20÷10%=200,a=×100%=30%,b=×100%=35%,(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.试题22答案:【考点】解直角三角形的应用-坡度坡角问题.【分析】根据正切的定义分别求出AB、DB的长,结合图形求出DH,比较即可.【解答】解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.试题23答案:【考点】矩形的性质;菱形的判定.【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD 是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.试题24答案:【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2900(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用(1)中求得的增长率来求2018年该地区将投入教育经费.【解答】解:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).4245.89<4250,答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.试题25答案:【考点】切线的判定.【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论;(2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.【点评】此题考查了切线的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及勾股定理.注意准确作出辅助线,证得△ABD∽△ACB是解此题的关键.试题26答案:【考点】二次函数综合题.【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.本题考查知识点虽然较多,但题目属于基础性的题目,难度不大.。
贺州市中考数学模拟考试试卷

贺州市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列运算结果是a6的式子是()A . a2•a3B . (﹣a)6C . (a3)3D . a12﹣a62. (2分) (2020八下·铁东期中) 下列二次根式,化简后能与合并的是()A .B .C .D .3. (2分) (2018九上·江干期末) 如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A . 70°B . 110°C . 120°D . 140°4. (2分)下列因式分解正确的是()A . x2﹣y2=(x﹣y)2B . a2+a+1=(a+1)2C . xy﹣x=x(y﹣1)D . 2x+y=2(x+y)5. (2分)(2020·济宁模拟) 若=x﹣5,则x的取值范围是()A . x<5B . x≤5C . x≥5D . x>56. (2分) (2015八下·龙岗期中) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A . 25°B . 30°C . 50°D . 55°7. (2分) (2017八下·汶上期末) 某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A . 平均数B . 中位数C . 众数D . 方差8. (2分)(2020·济宁模拟) 如图,⊙O的直径AB=8,∠CBD=30°,则CD等于()A . 1B . 2C . 3D . 49. (2分)(2020·济宁模拟) 如图是某几何体的三视图及相关数据,则该几何体的表面积是()A .B .C .D .10. (2分)(2020·济宁模拟) 赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018七上·江汉期中) 若a-b=2019,c+d=2018,则(b+c)-(a-d)的值是________12. (1分) (2019八下·黄石期中) 如图长方形内两相邻正方形的面积分别是8和3,则长方形内阴影部分的面积是________.13. (1分)(2020·济宁模拟) 如图,O为正方形ABCD对角线的交点,E是线段OC的中点,DE的延长线交BC边于点F ,连接并延长FO交AD于点G .若AB=2,则GF=________.14. (1分)(2020·济宁模拟) 如图所示,点A是反比例函数y=(x<0)的图象上一点,过点A作AB⊥y 轴于点B ,点P在x轴上,若△ABP的面积是2,则k=________.15. (1分)(2017·常州模拟) 一次函数y=﹣x+1与反比例函数,x与y的对应值如下表:x﹣3﹣2﹣1123y=﹣x+14320﹣1﹣212﹣2﹣1﹣不等式﹣x+1>﹣的解为________.三、计算 (共1题;共10分)16. (10分) (2019七下·诸暨期末) 先化简,再求值:,其中 .四、综合题 (共6题;共55分)17. (7分) (2020八上·西安期末) 为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)本次调查学生参加户外活动时间的众数是________,中位数是________;(3)本次调查学生参加户外活动的平均时间是否符合要求?18. (2分) (2019八下·邢台期中) 育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是________度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?19. (15分)(2020·济宁模拟) 为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?20. (10分)(2020·济宁模拟) 已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.21. (11分)(2020·济宁模拟) 阅读下列材料,解答下列问题:定义:如果一个数的平方等于−1,记为i2=−1,这个数i叫做虚数单位,把形如a+bi(a , b为实数)的数叫做复数,其中a叫这个复数的实部, b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2−i)+(5+3i)=(2+5)+(−1+3)i=7+2i;(1+i)×(2−i)=1×2−i+2×i−i2=2+(−1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(2+3i)×(3-4i);(3)计算:i+i2+i3+…+i2019 .22. (10分)(2020·济宁模拟) 如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣ x2+bx+c(b ,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C .(1)求该抛物线的解析式;(2) P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D ,求的最大值;②如图3,若点P在x轴的上方,连接PC ,以PC为边作正方形CPEF ,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、计算 (共1题;共10分)16-1、四、综合题 (共6题;共55分)17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、。
贺州市中考数学模拟试卷1

贺州市中考数学模拟试卷1姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出 (共10题;共40分)1. (4分)(2017·枝江模拟) 下列计算正确的是()A . 2a•3a=6aB . (﹣a3)2=a6C . 6a÷2a=3aD . (﹣2a)3=﹣6a32. (4分)某课外活动小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人.求课外活动小组的人数x和应分成的组数y,依题意得方程组为()A .B .C .D .3. (4分)若分式的值为0,则x的值为()A . ﹣2B . 0C . 2D . ±24. (4分)某校九年级三班的团员在爱心助残捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、11、12、9、13、10,关于这组数据表述错误的是()A . 众数是10元B . 中位数是10元C . 平均数是11元D . 极差是7元5. (4分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A .B .C .D .6. (4分) (2019七下·芜湖期末) △ABC所在平面内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(2,3)经过此次平移后对应点A1(5,﹣1),则a+b﹣c﹣d的值为()A . ﹣5B . 5C . ﹣1D . 17. (4分) (2018八上·南关期中) 在实数﹣,0,,π,中,无理数有()A . 1个B . 2个C . 3个D . 4个8. (4分)(2020·宁夏) 现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A .B .C .D .9. (4分)下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为;②直角三角形的最大边长为,最短边长为1,则另一边长为;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC 为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是()A . 只有①②③B . 只有①②④C . 只有③④D . 只有②③④10. (4分) (2018九上·丹江口期末) 如图,直线y= x与双曲线y= (x>0)交于点A,将直线y=x向右平移3个单位后,与双曲线y= (x>0)交于点B,与x轴交于点C,若 =2,则k=()A .B . 4C . 6D .二、填空题(本大题共6小题,每小题5分,共30分) (共6题;共30分)11. (5分) (2019七下·迁西期末) 如果a-b=3,ab=7,那么a2b-ab2=________.12. (5分)(2016·平房模拟) 不等式组的正整数解是________.13. (5分) (2019八下·温州期中) 某射击运动员射击10次的成绩统计如下:成绩(环)5678910次数(次)232111则这10次成绩的中位数为________环.14. (5分)若O为△ABC的外心,且∠BOC=60°,则∠BAC=________.15. (5分) (2018七上·南昌期中) 有一列数:0,1,3,4,12,13,39,40,120,a,b,c,这串数是由小明按照一定的规则写下米的,他第1次写下0,1,第2次接着写“3,4”,第3次接着写“12,13”,第4次接着写“39,40”,就这样一直接着往下写,则这列数中的a=________,b=________,c=________.16. (5分)(2019·新乐模拟) 如图,正五边形和正六边形有一条公共边AB ,并且正五边形在正六边形内部,连接AC并延长,交正六边形于点D ,则∠ADE=________°.三、解答题(本大题共8小题,共8分) (共8题;共72分)17. (8分) (2019九上·苏州开学考) 计算:(﹣)2+ ﹣()0+|1﹣2|18. (8分) (2019八下·新乡期中) 某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.(1)汽车行驶________h后加油,加油量为________L;(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?19. (8分) (2019九上·慈溪期中) 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)将△ABC绕点A顺时针旋转90°,画出相应的△AB1C1;(2)将△AB1C1沿射线AA1平移到△A1B2C2处,画出△A1B2C2;(3)点C在两次变换过程中所经过的路径长为________.20. (10分)(2018·天津) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为(为正整数).(1)根据题意,填写下表:游泳次数101520…方式一的总费用(元)150175________…________方式二的总费用(元)90135________…________(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当时,小明选择哪种付费方式更合算?并说明理由.21. (2分)如图,在△ABC中,∠C=90°,D为AB的中点,CD=BC=2,求点D到AC的距离.22. (10分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y= 的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2 , n的值;(2)请直接写出不等式k1x+b< 的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.23. (12分) (2017九上·宜昌期中) 如图(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC 的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1 ,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,求CE1的长;(3)连接PA,△PAB面积的最大值为________.(直接填写结果)24. (14分)(2020·常州模拟) 如图,中,点E与点B在的同侧,且 .(1) 如图1,点E 不与点A 重合,连结 交于点P.设求y 关于x 的函数解析式,写出自变量x 的取值范围;(2) 是否存在点E ,使 与相似,若存在,求AE 的长;若不存在,请说明理由;(3) 如图2,过点 作 垂足为 .将以点 为圆心, 为半径的圆记为.若点 到上点的距离的最小值为 ,求的半径.参考答案一、选择题(本大题共10小题,每小题4分,共40分。
初中数学广西贺州市中考模拟数学考试题(含解析)

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣2的绝对值是()A.﹣2 B.2 C. D.﹣试题2:如图,已知直线a∥b,∠1=60°,则∠2的度数是()A.45° B.55° C.60° D.120°试题3:一组数据2,3,4,x,6的平均数是4,则x是()A.2 B.3 C.4 D.5 试题4:如图是某几何体的三视图,则该几何体是()评卷人得分A.长方体 B.正方体 C.三棱柱 D.圆柱试题5:某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.985×103 B.98.5×104 C.9.85×105 D.0.985×106试题6:下列图形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.平行四边形 C.正五边形 D.圆试题7:如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于()A.5 B.6 C.7 D.8 试题8:把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1) B.(2a+1)(2a﹣1)C.(2a﹣1)2 D.(2a+1)2试题9:已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.4试题10:已知ab<0,一次函数y=ax﹣b与反比例函数y=在同一直角坐标系中的图象可能()A. B.C. D.试题11:如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2 B.2 C.3 D.4试题12:计算++++…+的结果是()A. B. C. D.试题13:要使分式有意义,则x的取值范围是.试题14:计算a3•a的结果是.试题15:调查我市一批药品的质量是否符合国家标准.采用方式更合适.(填“全面调查”或“抽样调查”)试题16:已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.试题17:已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是(填写序号).试题18:如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.试题19:计算:(﹣1)2019+(π﹣3.14)0﹣+2sin30°.试题20:解不等式组:试题21:箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.试题22:如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).试题23:2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?试题24:如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.试题25:如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.试题26:如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.试题1答案:B解:|﹣2|=2,故选:B.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.试题2答案:C【解答】解:∵直线a∥b,∠1=60°,∴∠2=60°.试题3答案:D【解答】解:∵数据2,3,4,x,6的平均数是4,∴=4,解得:x=5,试题4答案:B【解答】解:由已知三视图得到几何体是以正方体;试题5答案:C【解答】解:985000=9.85×105,试题6答案:D【解答】解:A.正三角形是轴对称图形,但不是中心对称图形;B.平行四边形是中心对称图形,但不是轴对称图形;C.正五边形是轴对称图形,但不是中心对称图形;D.圆既是轴对称图形,又是中心对称图形;试题7答案:B【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得:BC=6,试题8答案:B【解答】解:4a2﹣1=(2a+1)(2a﹣1),试题9答案:C【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.试题10答案:A【解答】解:若反比例函数y=经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.试题11答案:A【解答】解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;试题12答案:B【解答】解:原式===.故选:B.【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.试题13答案:x≠﹣1 .【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1试题14答案:a4.【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加【解答】解:a3•a=a4,故答案为a4.【点评】本题考查了幂的运算,熟练掌握同底数幂乘法的运算是解题的关键.试题15答案:抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适,故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.试题16答案:90 度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.试题17答案:①③④【分析】首先根据二次函数图象开口方向可得a<0,根据图象与y轴交点可得c>0,再根据二次函数的对称轴x=﹣=1,结合a的取值可判定出b>0,根据a、b、c的正负即可判断出①的正误;把x=﹣1代入函数关系式y=ax2+bx+c中得y=a﹣b+c,再根据对称性判断出②的正误;把b=﹣2a代入a﹣b+c中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:a<0,c>0,对称轴:x=﹣=1,∴b=﹣2a,∵a<0,∴b>0,∴abc<0,故①正确;把x=﹣1代入函数关系式y=ax2+bx+c中得:y=a﹣b+c,由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=﹣1时,y=0,∴a﹣b+c=0,故②错误;∵b=﹣2a,∴a﹣(﹣2a)+c=0,即:3a+c=0,故③正确;由图形可以直接看出④正确.故答案为:①③④.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).试题18答案:6﹣2.【分析】作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,利用勾股定理计算出AE═2,再根据旋转的性质得到AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,于是可判断点G在CB的延长线上,接着证明FA平分∠GAD得到FN=FM=4,然后利用面积法计算出GF,从而计算CG﹣GF就可得到CF的长.【解答】解:作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE==2,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵AB•GF=FN•AG,∴GF==2,∴CF=CG﹣GF=4+2﹣2=6﹣2.故答案为6﹣2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.试题19答案:解:原式=﹣1+1﹣4+2×=﹣4+1=﹣3.试题20答案:解:解①得x>2,解②得x>﹣3,所以不等式组的解集为﹣3<x<2.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.试题21答案:【解答】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为=.【点评】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.试题22答案:【解答】解:过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,如图所示.在Rt△BCD中,sin∠BCD=,cos∠BCD=,∴BD=BC•sin∠BCD=20×3×≈42,CD=BC•cos∠BCD=20×3×≈42;在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=42×≈72.2.∴AB=AD+BD=72.2+42=114.2.∴A,B间的距离约为114.2海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形,求出BD,AD的长是解题的关键.试题23答案:【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元),4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.试题24答案:【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.试题25答案:【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵BD是⊙O的直径,∴∠BAD=90°,∵∠BAC=120°,∴∠DAC=30°,∴∠DBC=∠DAC=30°,∵∠F=30°,∴∠F=∠DBC,∴AF∥BC,∴OA⊥BC,∴∠BOA=90°﹣30°=60°,∴∠ADB=∠AOB=30°;(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.试题26答案:【解答】解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贺州市中考数学模拟试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) (2020八上·淮安期末) 如图,数轴上的点表示的数可能是()
A .
B .
C .
D .
2. (2分)下列各题中合并同类项,结果正确的是()
A . 2a2+3a2=5a2
B . 2a2+3a2=6a2
C . 4xy﹣3xy=1
D . 2x3+3x3=5x6
3. (2分)(2020·澄海模拟) 如图,直线∥ ,AB=BC,CD⊥AB于点D,若∠DCA=25°,则∠1的度数为()
A . 70°
B . 65°
C . 60°
D . 55°
4. (2分)纳米是一种长度单位,1纳米= 米。
已知某种植物的花粉的直径约为45000纳米,那么用科学记数法表示该种花粉的直径为()米
A .
B .
C .
D .
5. (2分)下列汽车图案中,是中心对称图形的是()
A .
B .
C .
D .
6. (2分)如图是武夷山市华榕超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价格看不清楚,请根据给出的信息,帮忙算一算,该洗发水的原价是()
A . 24元
B . 26元
C . 22元
D . 15.36元
7. (2分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.下列事件的概率:抽取2名,恰好是1名男生和1名女生()。
A .
B .
C .
D .
8. (2分)在菱形中,,,则此菱形的面积是()
A . 48
B . 96
C . 60
D . 120
9. (2分)函数y=(x+1)2-2的最小值是()
A . 1
B . -1
C . 2
D . -2
10. (2分)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()
A . 70°
B . 35°
C . 20°
D . 40°
二、填空题. (共6题;共7分)
11. (1分) (2019七下·南浔期末) 如图,已知在矩形ABCD内,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中末被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1 ,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为________ .
12. (1分)函数y=的自变量x的取值范围是________
13. (1分)(2017·浙江模拟) 已知,则 =________.
14. (1分)(2017·港南模拟) 如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B=________.
15. (1分) (2019八上·宝鸡月考) 已知:如图,四边形ABCD中,AB=BC=1,CD= ,AD=1,且∠B=90°.则四边形ABCD的面积为________.(结果保留根号)
16. (2分) (2019八下·武安期末) 如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为________,点的坐标为________.
三、解答题 (共8题;共83分)
17. (5分) (2018七下·龙湖期末) 计算:(﹣2)3× +(﹣1)2018+ .
18. (10分) (2018九上·宁波期中) 一个口袋中有标号为1、2、3、4四个完全相同的小球,随机摸出两个小球,求下列事件的概率.并画出树状图。
(1)两球的标号都为偶数;
(2)两球的标号之和不小于4。
19. (5分)(2017·松北模拟) 如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A 的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
20. (10分) (2019八下·东台月考) 如图,在平面直角坐标系中,一次函数y= x+4的图像与x轴、y轴分别相交于点C、D,四边形ABCD是正方形,反比例函数y=的图像在第一象限经过点A.
(1)求点A的坐标以及k的值:
(2)点P是反比例函数y= (x>0)的图像上一点,且△PAO的面积为21,求点P的坐标.
21. (15分) (2016八上·麻城开学考) 为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
22. (15分) (2017九下·宜宾期中) 如图,在⊙O中,直径AB⊥C D,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.
(1)求证:CF是⊙O的切线;
(2)求证:△ACM∽△DCN;
(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC= ,求BN的长.
23. (15分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
24. (8分)在平面直角坐标系xOy中,定义直线y=ax+b为抛物线y=ax2+bx的特征直线,C(a,b)为其特征点.设抛物线y=ax2+bx与其特征直线交于A、B两点(点A在点B的左侧).
(1)当点A的坐标为(0,0),点B的坐标为(1,3)时,特征点C的坐标为________.
(2)若抛物线y=ax2+bx如图所示,请在所给图中标出点A、点B的位置;
(3)设抛物线y=ax2+bx的对称轴与x轴交于点D,其特征直线交y轴于点E,点F的坐标为(1,0),DE∥CF.
①若特征点C为直线y=﹣4x上一点,求点D及点C的坐标________ ;
②若<tan∠ODE<2,则b的取值范围是________.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题. (共6题;共7分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共8题;共83分)
17-1、
18-1、18-2、
19-1、
20-1、
20-2、
21-1、21-2、
21-3、22-1、22-2、
22-3、23-1、
23-2、
23-3、24-1、
24-2、24-3、。