河南省2020年中考数学模拟试卷一(含答案)

合集下载

2020年河南省安阳市中考数学(3月份)模拟测试试卷解析版

2020年河南省安阳市中考数学(3月份)模拟测试试卷解析版

2020年中考数学(3月份)模拟测试试卷一、选择题1.计算2﹣3的结果是()A.﹣B.C.﹣8D.82.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m 3.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%4.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.5.二次函数y=﹣x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2B.x>2C.x<﹣2D.x>﹣26.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是()A.(4,2)B.(1,)C.(1,)或(﹣1,﹣)D.(4,2)或(﹣4,﹣2)7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣89.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.60πB.65πC.120πD.130π10.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)二、填空题11.的算术平方根是.12.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和3班比赛的概率是.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为.14.如图,在边长为2的正方形ABCD中,分别以点A,B为圆心,AB的长为半径作与,两弧交于点E,则阴影部分的面积为.15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D 是直角三角形时,DE的长为.三、解答题(共8个小题)16.先化简,再求值:÷(x﹣2﹣),其中x2+2x﹣1=0.17.持续大面积雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在学生中做了一次抽样调査,跟进调查统计结果,绘制了不完整的三种统计图表.对雾霾天气了解程度统计表了解程度百分比A.非常了解5%B.比较了解mC.一般了解45%D.不太了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有人,m=,n=;(2)扇形统计图中D部分所对应的圆心角是度;(3)请补全条形统计图;(4)学校计划从对雾霾天气知识“非常了解”的同学中随机选择5名同学,到某社区开展防雾霾天气知识宣传,本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是多少?18.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=;②连接BM,当∠AMB的度数为时,四边形AMBC是菱形.19.某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍,已知A型车每辆进价为1100元,B型车每辆进价为1400元,B型车售价为每辆2000元,应如何进货才能使这批车获利最多?21.小美对函数y=的图象进行了探究,下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)表是y与x的几组对应值,表中m的值是;x﹣2﹣﹣1﹣123…y0﹣﹣1﹣m…(3)如图,小美根据上表在平面直角坐标系xOy中描出了该函数的图象,请结合函数的图象,写出该函数的一条性质;(4)试讨论一次函数y=kx+2(k>0)的图象与函数y=的图象的交点个数.22.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE 斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.23.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B 两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B 向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案一、选择题(每小题3分,共30分)1.计算2﹣3的结果是()A.﹣B.C.﹣8D.8解:2﹣3==.故选:B.2.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.3.某厂通过改进工艺降低了某种产品的成本,两个月内从每件产品250元降低到每件160元,则平均每月降低的百分率为()A.10%B.5%C.15%D.20%解:如果设平均每月降低率为x,根据题意可得250(1﹣x)2=160,∴x1=20%,x2=180%(不合题意,舍去).故选:D.4.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选:C.5.二次函数y=﹣x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2B.x>2C.x<﹣2D.x>﹣2解:∵二次函数y=﹣x2+4x+1=﹣(x﹣2)2+5,∴当x>2时,y随x的增大而减小,当x<2时,y随x的增大而增大,∴若y随x的增大而减小,则x的取值范围是x>2,故选:B.6.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是()A.(4,2)B.(1,)C.(1,)或(﹣1,﹣)D.(4,2)或(﹣4,﹣2)解:由图可知,点B的坐标为(2,1),∵以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,∴点B的对应点B1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2),故选:D.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C 为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A.4B.﹣4C.8D.﹣8解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故选:D.9.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.60πB.65πC.120πD.130π解:根据图形可知圆锥的高为12,底面直径为10,则母线长为:=13,圆锥侧面积公式=底面周长×母线长×=×10π×13=65π,故选:B.10.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)解:∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OD=2,DE=2,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.二、填空题(每小题3分,共15分)11.的算术平方根是3.解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.12.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和3班比赛的概率是.解:画树状图为:∵共有12种等可能的结果数,其中恰好抽到1班和3班的结果数为2,∴恰好抽到1班和3班的概率为=,故答案为:.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH 的长为 4.8cm.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.14.如图,在边长为2的正方形ABCD中,分别以点A,B为圆心,AB的长为半径作与,两弧交于点E,则阴影部分的面积为4+﹣π.解:连接AE、BE,∵AE=BE=AB=2,∴△ABE是等边三角形.∴∠EBA=∠BAE=60°,∴阴影部分的面积=S正方形ABCD﹣S扇形ABE﹣S扇形BAE+S△AEB=2×2﹣×2+2×=4+﹣π,故答案为:4+﹣π.15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D 是直角三角形时,DE的长为3或.解:如图所示;点E与点C′重合时.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10﹣6=4.设DC=ED=x,则BD=8﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8﹣x)2.解得x=3,如图所示:∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC﹣DC=8﹣6=2.∵DE∥AC,∴△BDE∽△BCA.=,即,解得DE=,点D在CB上运动,∠DBC′<90°,(假设∠DBC′≥90°,则AC′≥BD,这个显然不可能,故∠DBC′<90°),故∠DBC′不可能为直角.故答案为3或.三、解答题(共8个小题,满分75分)16.先化简,再求值:÷(x﹣2﹣),其中x2+2x﹣1=0.解:∵x2+2x﹣1=0,∴x2+2x=1,∴原式=÷=•===17.持续大面积雾霾天气让环保和健康问题成为焦点,某校为了调查学生对雾霾天气知识的了解程度,在学生中做了一次抽样调査,跟进调查统计结果,绘制了不完整的三种统计图表.对雾霾天气了解程度统计表了解程度百分比A.非常了解5%B.比较了解mC.一般了解45%D.不太了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)扇形统计图中D部分所对应的圆心角是126度;(3)请补全条形统计图;(4)学校计划从对雾霾天气知识“非常了解”的同学中随机选择5名同学,到某社区开展防雾霾天气知识宣传,本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是多少?解:(1)本次参与调查的学生共有180÷45%=400(人),m=×100%=15%,则n=1﹣(5%+15%+45%)=35%,故答案为:400、15%,35%;(2)扇形统计图中D部分所对应的圆心角是360°×35%=126°,故答案为:126;(3)D等级人数为400×35%=140(人),补全图形如下:(4)本次调查中对雾霾天气知识“非常了解”的小明被选中的概率是=.18.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=3;②连接BM,当∠AMB的度数为60°时,四边形AMBC是菱形.【解答】(1)证明:连接OA,如图1:∵AM是⊙O的切线,∴∠OAM=90°,∵∠B=60°,∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;(2)解:①作AG⊥CM于G,如图2:∵∠OCA=30°,AC=3,∴AG=AC=,∴CG=AG=,则MC=2CG=3;故答案为:3.②当∠AMB的度数为60°时,四边形AMBC是菱形;理由如下:如图3:由(1)得:AM=AC,∠MAC=180°﹣∠M﹣∠OCA=120°,∵∠AMB=60°,∴∠MAC+∠AMB=180°,∴AC∥BM,∴∠MAB=∠ABC=60°,∴△ABM是等边三角形,∠BAC=∠MAC﹣∠MAB=60°=∠ABC,∴AM=BM,△ABC是等边三角形,∴BC=AC,∴AM=AC=BC=BM,∴四边形AMBC是菱形;故答案为:60°.19.某处山坡上有一棵与水平面垂直的大树,狂风过后,大树被刮的倾斜后折断,倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠DAC的度数;(2)这棵大树折断前高约多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)解:(1)延长BA交EF于点G,在RT△AGE中,∠E=23°,∴∠GAE=67°,又∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AH⊥CD,垂足为H,在△ADH中,∠ADC=60°,AD=4,cos∠ADC=,∴DH=2,sin∠ADC=,∴AH=2.在RT△ACH中,∠C=180°﹣75°﹣60°=45°,∴AC=2,CH=AH=2.∴AB=AC+CD=2+2+2≈10(米).答:这棵大树折断前高约10米.20.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍,已知A型车每辆进价为1100元,B型车每辆进价为1400元,B型车售价为每辆2000元,应如何进货才能使这批车获利最多?解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得,解得:x=1600,经检验,x=1600是原方程的根;答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.21.小美对函数y=的图象进行了探究,下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是x≥﹣2且x≠0;(2)表是y与x的几组对应值,表中m的值是2;x﹣2﹣﹣1﹣123…y0﹣﹣1﹣m…(3)如图,小美根据上表在平面直角坐标系xOy中描出了该函数的图象,请结合函数的图象,写出该函数的一条性质;(4)试讨论一次函数y=kx+2(k>0)的图象与函数y=的图象的交点个数.解:(1)由题意得,,解得,x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0;(2)把x=2代入y=中,得y=2,∴m=2,故答案为:2;(3)根据题意得,当x>0时,y随x的增大而减小.(4)当x=﹣2时,若y=kx+2=﹣2k+2≤0,即k≥1时,如图1,一次函数y=kx+2(k >0)的图象与函数y=的图象有两个交点.若y=kx+2=﹣2k+2>0,即k<1时,如图1,一次函数y=kx+2(k>0)的图象与函数y =的图象有一个交点.综上,当0<k<1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有一个交点;当k≥1时,一次函数y=kx+2(k>0)的图象与函数y=的图象有两个交点.22.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为EF=CF;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE 斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系EF=CF;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF的数量关系是什么?写出你的猜想,并给予证明.解:(1)EF=CF,理由:∵DE⊥AB,∴∠ACB=∠DEB=90°,∵F是BD的中点,∴EF=CF=BD;故答案为:EF=CF;(2)EF=CF,理由:∵∠AED=∠ACB=90°,CM和EN是△ABC和△ADE斜边上的中线,∴CM=BM=AM=AB,AN=EN=DN=AD,∵点F是BD的中点,∴BF=FD,∴AN+BF=DN+DF=FN=AB,∴FN=CM=AM,∵FM=FN﹣MN,AN=AM﹣MN,∴FM=AN,∴FM=EN,∵△ADE绕着点A旋转,当点D落在AB上,∴∠EAD=∠CAB,∵∠EAN=∠AEN,∠MAC=∠ACM,∴∠ENF=∠EAN+∠AEN=2∠EAN,∠CMF=∠CAM+∠ACM=2∠CAM,∴∠ENF=∠CMF,在△EFN与△FCM中,,∴△EFN≌△FCM(SAS),∴EF=CF;故答案为:EF=CF;(3)猜想,EF=CF,理由:如图3中,取AB的中点M,AD的中点N,连接MC,MF,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,∵AM=FN,AM=CM,∴CM=NF,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC.23.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B 两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B 向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.(2)设M(x,y),令y=x2﹣x﹣4=0,解得:x=﹣3或x=4,∴C(﹣3,0).①当BM⊥BC时,如答图2﹣1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x﹣4,∴∴(舍去),∴点M1的坐标(,﹣)②当BM与BC关于y轴对称时,如答图2﹣2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x﹣4,∴∴(舍去),∴点M2的坐标(5,),综上所述:点M的横坐标为:或5;(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.∴CE=CQ=(5﹣t).在Rt△PCE中,cosθ===,解得t=.②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.在Rt△CEQ中,cosθ===,解得t=.综上所述,当t=或或时,以C,D,P,Q为顶点的四边形为菱形.。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟考试试卷(经典一) (解析版)

2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

2023年河南省郑州市桐柏一中中考数学模拟试卷+答案解析

2023年河南省郑州市桐柏一中中考数学模拟试卷+答案解析

2023年河南省郑州市桐柏一中中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列为负数的是()A. B. C.0 D.2.下列四个几何体的主视图是三角形的是()A. B. C. D.3.下列计算,正确的是()A. B. C. D.4.2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A. B. C. D.5.如图,,,DA平分,则的度数为()A.B.C.D.6.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为B.前3次测得的体温在下降C.这组数据的众数是D.这组数据的中位数是8.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x天,则可列出正确的方程为()A. B.C. D.9.如图1,点P从的顶点B出发,沿匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则的面积是()A.12B.24C.36D.4810.四盏灯笼的位置如图.已知A,B,C,D的坐标分别是,,,,平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移个单位B.将C向左平移4个单位C.将D向左平移个单位D.将C向左平移个单位二、填空题:本题共5小题,每小题3分,共15分。

11.写出一个比大且比小的整数是__________.12.不等式组的解集是______.13.不透明的袋子中有四个完全相同的小球,上面分别写着数字1,2,3,随机摸出一个小球,记录其数字,放回并摇匀,再随机摸出一个小球,记录其数字,则两次记录的数字不相同的概率是______.14.如图,AB是的切线,B为切点,OA与交于点C,以点A为圆心、以OC的长为半径作,分别交AB,AC于点E,若,,则图中阴影部分的面积为__________.15.如图,在矩形ABCD中,,,有一动点P以的速度沿着的方向移动,连接AP,沿AP翻折,得到,则经过______s点落在边CD所在直线上.三、解答题:本题共8小题,共64分。

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷(含解析)

2023年河南省信阳市罗山县青山一中、二中中考数学模拟试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若|a|=3,则a的值是( )A. −3B. 3C. 13D. ±32. 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A. 1.05×105B. 0.105×10−4C. 1.05×10−5D. 105×10−73.如图所示的几何体的俯视图为( )A.B.C.D.4. 计算2aa+1÷aa+1的结果是( )A. 2B. 2a+2C. 1D. 4aa+15.如图,将一副三角尺按图中所示位置摆放,点F在AC上,AB//DE,则∠EFC的度数是( )A. 65°B. 60°C. 70°D. 75°6. 防晒衣的主要作用是阻隔太阳紫外线的直接照射,如图为某品牌防晒衣某分店2022年1~8月的销量(单位:件)情况.这8个月销量(单位:件)的中位数是( )A. 1952B. 2387C. 2822D. 29847.如图,E是四边形ABCD的边BC延长线上的一点,且AB//CD,则下列条件中不能判定四边形ABCD是平行四边形的是( )A. ∠D=∠5B. ∠3=∠4C. ∠1=∠2D. ∠B=∠D8. 若关于x的一元二次方程x2+6x−a=0有实数根,则a的取值范围是( )A. a≤−9B. a>−9C. a≥−9D. a≥99.如图,等边△ABC的边长为1,D是AC和BC边上的一点,过D作AB边的垂线,交AB于G,设线段AG的长度为x,Rt△AGD的面积为y,则y与关于x的函数图象正确的是( )A. B.C. D.10. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,都是斜边在x轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2 (1,−1),A3(0,0),则依图中所示规律,A2022的坐标为( )A. (2,1010)B. (2,1011)C. (1,−1010)D. (1,−1011)二、填空题(本大题共5小题,共15.0分)11. 一个二次三项式分解因式后,其中一个因式为x+1,请写出一个满足条件的二次三项式:______.12. 如图,在△ABC中,AC=BC,以点A为圆心,任意长为半径画弧,分别交AB、AC于点M、N,再分别以点M、N为圆心,MN的长为半径画弧,两弧交于点P,连接AP并延长交BC大于12于点D,若∠C=36°,则∠ADB的度数是______.13. 2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是______.14.正方形ABCD的边长为4.E为AD的中点,连接CE,过点B作BF⊥CE交CD于点F,垂足为G,则EG=______.15. 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形AB CD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.三、解答题(本大题共8小题,共75.0分。

2022——2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月4月)含答案

2022——2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月4月)含答案

第1页/总64页2022-2023学年河南省洛阳市中考数学专项提升仿真模拟试题(3月)第I 卷(选一选)请点击修正第I 卷的文字阐明评卷人得分一、单选题1.﹣3的值是()A .﹣3B .3C .-13D .132.2022年1月13日,国家电网召开了年度工作会议,计划2022年电网金额为5012亿元.此次电网额打破5000亿元,创历史新高.数据“5012亿”用科学记数法表示为()A .11501210⨯.B .10501210⨯.C .120501210⨯.D .8501210⨯.3.如图是一个由8个相反的小正方体搭成的几何体,则其左视图是()A .B .C .D .4.下列计算正确的是()A .2323m m m +=B .2422xy xy xy ÷=C .()()2224n n n -+--=-D .()2222m n m mn n --=-+5.已知点(),A a m ,()(),10B b m m -<<分别在函数1y x =-和函数21y x =-的图象上,则a 与b 的大小关系是()试卷第2页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※A .a b >B .a b =C .a b <D .无法确定6.若一元二次方程()2110m x mx -++=有两个不相等的实数根,则正整数m 的值可以是()A .1B .2C .D .37.如图,现有4张外形大小质地均相反的卡片,正面分别印有短道速滑、花样滑冰、冰球、冰壶四种不同的卡通图案,背面完全相反,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取两张,则这两张卡片正面图案恰好是冰球图案和冰壶图案的概率是()A .12B .14C .16D .188.定义一种新运算:2a b ab a =+ ,则不等式组(2)2152x x -<⎧⎪⎨≤⎪⎩的负整数解有()A.1个B .2个C .3个D .4个9.如图,在ABC 中,2AB AC ==,45A ∠=︒.以点C 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点B ,D 为圆心,大于12BD 的长为半径画弧,两弧在线段AB 的左侧交于点F ,作射线CF ,交AB 于点E ,则BEC △的面积为()A 1B 1+C .2D .210.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标是()0,4,顶点B 的坐标是()2,0,第3页/总64页对角线AC ,BD 的交点为M .将正方形ABCD 绕着原点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点M 的坐标为()A .()3,3B .()3,3-C .()3,3--D .()3,3-第II 卷(非选一选)请点击修正第II 卷的文字阐明二、填空题=______.12.如图,一副直角三角板按如图所示的方式叠放在一同,其中30B ∠=︒,45D ∠=︒,DE 交AC 于点M .若DF AB ∥,则∠AME =______.13.“每天锻炼一小时,健康生活一辈子”.为了解先生每天的锻炼情况,某班体有委员随机调查了若干名先生的每天锻炼时长,统计如下表:每天锻炼时长(分钟)30406080先生人数3421则下列说法:①随机调查了10名先生;②平均每天锻炼时长是45分钟;③锻炼时长为40分钟试卷第4页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※的人数最多;④中位数是40分钟.其中一切正确说法的序号是______.14.如图,在扇形OBA 中,120AOB ∠=︒,2OA =,点C ,D 分别是线段OB 和AB 的中点,连接CD ,交AB 于点E ,则图中暗影部分的面积为______.15.如图,在矩形ABCD 中,AB m =,3AD =,点E 是AB 边上的动点(不与点A ,B 重合),连接CE ,将BCE 沿直线CE 翻折得到B CE ' ,连接AB '.当点B '落在边AD 上,且点B '恰好是AD 的三等分点时,AEB '△的周长为______.评卷人得分三、解答题16.先化简,再求值:22111244x x x x x x ⎛⎫---+÷ ⎪+++⎝⎭,其中4x =-.上面是小宇同窗的化简过程,请认真阅读并完成相应任务.解:原式()()2212144221x x x x x x x x ⎡⎤++-++=-⋅⎢⎥++-⎣⎦步()223321x x x x +--=⋅+-第二步()()3321x x x --+=-第三步()()3121x x x ++=--.第四步(1)任务一:填空:①以上化简步骤中,第__________步是约分得到的,约分的根据是__________;②第__________步开始出现错误,这一步错误的缘由是__________.第5页/总64页(2)任务二:请直接写出该分式化简后的正确结果,并代入求值.17.某广告设计公司要在一座高楼的临街墙体(图2中AB )上安装星空图案霓虹灯(图2中AE ),需求用到如图1所示的云梯送料车已知云梯底端距离墙体10m 远,然后升起云梯自上而下安装霓虹灯,经测量,云梯顶端落在A 处时,云梯与程度面的夹角为65°,云梯顶端落在E 处时,云梯与程度面的夹角为45°,求这个星空图案霓虹灯的高度.(结果到1m .参考数据:sin650.91︒≈,cos650.42︒≈,tan65 2.14︒≈)18.如图,在Rt △ABC 中,∠B =90°,点O 在线段AC 上,⊙O 点A ,且与BC 边相切于点D ,与AB 边交于点F ,与AC 边交于点E.(1)求证:DE =DF;(2)若AE =10,AB =8,求EC 的长.19.2022年1月初,郑州市新型冠状肺炎疫情再度发生,为防止疫情扩散,确保教育教学质量,各校及时调整教学方式,改为线上教学.某中学在一周网课结束之后,针对家长开展了“做好配合,进步先生网课质量”的直播宣传,为了解先生在家上网课的实践情况,在前和后分别随机抽取了部分家长进行线上问卷调查(单选),并根据调查结果绘制成了如下统计图表.根据以上信息,解答下列成绩:前网课情况统计表试卷第6页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※类别人数A 80B 364C 430D 126合计1000根据以上信息,解答下列成绩:(1)直播宣传前,抽取到的家长反馈中,类别______的先生最多,占被调查人数的百分比为______.(2)若该校有4500名先生,请估计直播宣传前经常在网课期间打游戏的先生人数.(3)小雨发现,直播宣传后经常在网课期间打游戏的有130名先生,相比直播宣传前添加了4人,因此小雨认为学校的直播宣传没有.统计图表,你认为小雨的分析合理吗?请阐明理由.20.如图,直线12y k x =+与x 轴、y 轴分别交于点A ,B ,与反比例函数()20k y x x=>的图象交于点C ,其中2OB OA =,2BC AB =.第7页/总64页(1)求反比例函数的解析式.(2)点D 是反比例函数()20k y x x=>的图象上一动点,过点D 作DE x ∥轴,交直线AB 于点E ,连接CD ,BD .若2BDE CDE S S =△△,求点D 的纵坐标.21.在同不断线上有甲、乙、丙三地,丙地在甲、乙两地之间.小刚和小强分别从甲、乙两地同时出发,相向而行.小刚匀速行进到丙地后,立即以原速度前往甲地;小强从乙地匀速行进到甲地.在整个行进过程中,他们两人到甲地的距离y (m )与行进的工夫x (min )之间的函数关系图象如图所示,请图象信息解答下列成绩.(1)a =______,小强的速度为______m/min .(2)求点C 的坐标,并阐明点C 的实践意义.(3)直接写出小刚和小强两人相距200m 时小强行进的工夫.22.已知抛物线()210y x tx t t =-+++>过点()4,h ,交x 轴于A ,B 两点(点A 在点B 左侧),交y 轴于点C ,且对于任意实数m ,恒有214m tm t -+++≤成立.(1)求抛物线的解析式.(2)作直线BC ,点是直线BC 上一点,将点E 向右平移2个单位长度得到点F ,连接EF .若线试卷第8页,共8页○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※段EF 与抛物线只要1个交点,求点E 横坐标的取值范围,(3)若()112,P n y -,()22,P n y ,()332,P n y +三点都在抛物线上且总有132y y y <<,直接写出n 的取值范围.23.(1)【探求发现】小明在学习等边三角形的相关知识时,遇到这样一个成绩:如图1,ABC 是等边三角形,点O 是ABC 的外心,D 是AB 边的中点,连接OC,OD ,OA ,OB .猜想:①∠AOB =______°;②OCOD的值为______.(2)【猜想验证】如图2,若点O 在等边三角形ABC 的内部运动,且∠AOB 的度数和(1)中一样,D 是AB 边的中点,连接OC ,OD .小明想经过三角形全等或类似来探求OCOD的值能否发生变化,上面是小明的探求过程:OCOD的值没有发生变化.证明如下:以OA ,OB 为邻边构造AEBO ,在边OC 左侧构造等边三角形COF ,连接AF ,DE ,如图3所示.……请你根据以上辅助线,将后面的证明过程补充残缺.(3)【拓展运用】在(2)的条件下,若AB =OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,直接写出线段OA 的长.答案:1.B【分析】根据负数的值是它的相反数,可得出答案.【详解】根据值的性质得:|-3|=3.故选B.本题考查值的性质,需求掌握非负数的值是它本身,负数的值是它的相反数.2.A【分析】科学记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的值与小数点挪动的位数相反.当原数值≥10时,n 是正整数,当原数值<1时,n是负整数.【详解】解:5012亿=501200000000=5.012×1011.故选:A.此题考查科学记数法的表示方法.科学记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【分析】找到从左面看所得到的图形即可.【详解】解:从左面看易得左视图有3列,左边一列有1个小正方形,两头一列有3个小正方形,左边一列有1个正方形,故选:D.本题次要考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,难度适中.4.C【分析】分别根据合并同类项运算法则,单项式除以单项式运算法则、平方差公式以及完全平方公式分别计算出各项后,再进行判断即可.【详解】解:A.22m 与m 不是同类项,不能合并,故此选项错误,不符合题意;B.2422xy xy y ÷=,故此选项错误,不符合题意;C.()()2224n n n -+--=-,计算正确,故此选项符合题意;D.()2222m n m mn n --=++,故此选项错误,不符合题意;故选:C .本题次要考查了合并同类项,单项式除以单项式、平方差公式以及完全平方公式,纯熟掌握运算法则和乘法公式是解答本题的关键.5.A【分析】根据题意可求出1a m =+,12m b +=,两者作差可得12m a b +-=,利用10m -<<求出011m <+<,即可知a b >.【详解】解:∵点(),A a m ,()(),10B b m m -<<分别在函数1y x =-和函数21y x =-的图象上,∴1m a =-,21m b =-,∴1a m =+,12m b +=,∴12m a b +-=,∵10m -<<∴011m <+<,∴102m a b +-=>,即a b >.故选:A .本题考查函数,不等式的性质,解题的关键是求出1a m =+,12m b +=,两者作差比较其与0的大小.6.D 【分析】根据一元二次方程定义和根的判别式即可求解.【详解】解:依题意得()()210410m m m ⎧-≠⎪⎨--⎪⎩>解得1m ≠且2m ≠,∵m 为正整数.故选:D .此题次要考查一元二次方程定义和根的判别式,解题的关键是熟知一元二次方程定义:只含有一个未知数,并且未知数的次数2的整式方程,叫做一元二次方程;一元二次方程有两个不相等的实数根对应△>0.7.C【分析】根据题意画出树状图得出一切等情况数,找出印有冰球图案和冰壶图案的卡片被抽中的情况数,然后根据概率公式即可得出答案.【详解】解:分别用A ,B ,C ,D 表示短道速滑、花样滑冰、冰球、冰壶四种不同的卡通图案,画树状图如下:由图可知:共有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 共12种等可能的结果,其中抽到冰球图案和冰壶图案的有2种,则印有冰球图案和冰壶图案的卡片被抽中的概率是21=126.故选C 此题考查的是树状图法求概率.树状图法合适两步或两步以上完成的;解题时要留意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.B【分析】根据新运算的定义将不等式组(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,解不等式组,找出其中的负数解即可;【详解】解:由题意可知:(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,解不等式组可知不等式组的解集为:32x -≤<∴负整数解为:2-,1-,有2个,故选:B 本题考查解不等式组中的整数解,解题的关键是将(2)2152x x -<⎧⎪⎨≤⎪⎩变构成2421252x x x --<⎧⎪⎨+≤⎪⎩,掌握解不等式组的方法,9.A【分析】由尺规作图的步骤,可知CE 是线段BD 的垂直平分线,再根据45A ∠=︒,推出AEC △是等腰直角三角形,即可求出AE 的长度,从而求出BE 的长度,再根据三角形的面积公式求解即可.【详解】解:由尺规作图的步骤,可知CE 是线段BD 的垂直平分线,∴90BEC AEC ∠=∠=︒,又∵45A ∠=︒,∴45ACE ∠=︒,∴AE CE =,∴AEC △是等腰直角三角形,∴2AE CE AC ==,∴2BE AB AE =-=-,∴(112122BEC S BE CE =⋅=⨯-=△故选A .本题考查了基本作图、等腰三角形的性质、等腰直角三角形的判定与性质、三角形的面积公式等知识点,解答本题的关键是要掌握基本作图.10.D【分析】过点D 作DN y ⊥轴,垂足为N ,证明()ADN BAO AAS ≌△△.求出点D 的坐标为()4,6.进一步求出点M 的坐标为()3,3.分析可知点M 旋转一周需求旋转360458︒÷︒=(次),利用202282526÷=⋅⋅⋅⋅⋅⋅,645270⨯︒=︒,可知第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.故可知点M 的坐标为()3,3-.【详解】解:∵()0,4A ,()2,0B ,∴4AO =,2BO =.过点D 作DN y ⊥轴,垂足为N ,如解图所示,则90DNA AOB ∠=∠=︒.∵四边形ABCD 为正方形,∴DA AB =,90DAB ∠=︒.∴90NAD OBA OAB ∠=∠=︒-∠.∴()ADN BAO AAS ≌△△.∴2AN BO ==,4DN AO ==.∴点D 的坐标为()4,6.∵点M 为BD 的中点,∴点M 的坐标为()3,3.由题意,可知正方形ABCD 绕着原点O 逆时针旋转,每次旋转45°,点M 也绕着原点O 逆时针旋转,每次旋转45°,则点M 旋转一周需求旋转360458︒÷︒=(次).又∵202282526÷=⋅⋅⋅⋅⋅⋅,645270⨯︒=︒,∴第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.∴第2022次旋转结束时,点M 的坐标为()3,3-,故选:D .本题考查坐标与旋转规律,正方形性质,全等三角形的判定及性质,解题的关键是理解第2022次旋转结束时和第6次旋转结束时,点M 的坐标相反,且此时点M 的地位就是()3,3M 绕点O 逆时针旋转270°(或顺时针旋转90°)的地位.11.0【分析】本题涉及负整数指数幂、二次根式化简.对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:1112022-=-=故0本题次要考查了实数的综合运算能力,是各地中考题中常见的计算题型.处理此类标题的关键是纯熟掌握负整数指数幂、二次根式等知识点的运算.12.75°【分析】根据平行线的性质和三角形内角和定理可求解.【详解】解:在Rt △ABC 中,90,30C B ∠=︒∠=︒,∴903060A ∠=︒-︒=︒∵DF AB ∥,45D ∠=︒,∴45AED D ∠=∠=︒,又180A AEM AME ∠+∠+∠=︒,∴180180604575AME A AEM ∠=︒-∠-∠=︒-︒-︒=︒,故75°本题次要考查了平行线的性质,三角形内角和定理等知识,纯熟掌握相关性质和定理是解答本题的关键.13.①②③④【分析】分别根据众数、加权平均数、样本容量及中位数的定义求解可得.【详解】解:根据题意,样本容量为:3+4+2+1=10,故①正确;平均锻炼工夫是:3034046028014510⨯+⨯+⨯+⨯=,故②正确;锻炼时长为40分钟的人数是4人,人数最多,故③正确;第5个数是40,第6个数是40,∴中位数为:4040402+=,故④正确;故①②③④.本题次要考查众数、加权平均数、样本容量及中位数的定义,解题的关键是掌握众数:一组数据中出现次数最多的那个数据;加权平均数:普通地,对于n 个数12,,,n x x x ,我们把121()n x x x n+++ 叫做这n 个数的算术平均数,简称平均数,样本容量:样本中个体的数目;中位数:将一组数据按照由小到大(或由大到小)的顺序陈列,如果数据的个数是奇数,则处于两头地位的数就是这组数据的中位数;如果数据的个数是偶数,则两头两个数据的平均数就是这组数据的中位数.14.23π-【分析】连接OD ,BD ,先证明OBD 为等边三角形,由三线合一可知1OC BC ==,由锐角三角函数的知识求出CD 、CE 的长,然后根据OCD BCE OBD S S S S =--阴影扇形△△求解即可.【详解】解:连接OD ,BD ,如解图所示.在扇形OBA 中,∵120AOB ∠=︒,点D 为 AB 的中点,∴60BOD ∠=︒.∵2OB OD OA ===,∴OBD 为等边三角形.又∵C 为线段OB 的中点,∴1OC BC ==,90OCD BCD ∠=∠=︒.所以在Rt OCD △中,tan 60CD OC =︒⋅=∴122OCD S CD =⋅=△.∵OA OB =,120AOB ∠=︒,∴30OBA ∠=︒,即30CBE ∠=︒,∴在Rt BCE 中,tan 30EC BC =︒⋅=∴1112236BCE S BC EC =⋅=⨯⨯△,∵260223603OBD S ππ=⨯⨯=扇形,∴2233OCD BCE OBD S S S S ππ=--==阴影扇形△△故23π-.本题考查了等边三角形的判定与性质,锐角三角函数的知识,弧、弦、圆心角的关系,以及扇形的面积公式,纯熟掌握各知识点是解答本题的关键.151或2【分析】分以下两种情况进行讨论.①当点B '恰好是AD 的三等分点且靠近A 点时;②当点B '恰好是AD 的三等分点且靠近D 点时,根据折叠性质及勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD m ==,3AD BC ==.由题意,可知需分以下两种情况进行讨论.①当点B '恰好是AD 的三等分点且靠近A 点时,如图1所示.又∵3AD =,∴1AB '=,2DB '=.由折叠的性质,可知3BC B C '==,BE B E '=,∴CD ===.∴AB CD ==.∴1AEB C AE B E AB AB AB ''''=++=++△.②当点B '恰好是AD 的三等分点且靠近D 点时,如图2所示.又∵3AD =,∴2AB '=,1DB '=.由折叠的性质,可知3BC B C '==,BE B E '=,∴CD ===∴AB CD ==.∴2AEB C AE B E AB AB AB ''''=++=+=△.综上所述,当点B '落在边AD 上,且点B '恰好是AD 的三等分点时,AEB '△1或2.1或2本题考查矩形及其折叠成绩,勾股定理,解题的关键是纯熟掌握矩形性质和折叠的性质,对点B '地位进行分情况讨论.16.(1)①三,分式的基本性质;②一;添括号时,括号里面的第二项没有变号;(2)2x --;2【分析】(1)①根据分式的运算法则观察化简步骤即可知答案;②观察分式化简的步骤可知答案;(2)将分式进行正确的化简,再将4x =-代入化简之后的式子即可.(1)解:由题意可知:①化简步骤中,第三步是约分得到的,约分的根据是:分式的基本性质;故三,分式的基本性质;②步开始出现错误,这一步错误的缘由是:添括号时,括号里面的第二项没有变号.故答案为:一,添括号时,括号里面的第二项没有变号.(2)解:原式()()2212144221x x x x x x x x ⎡⎤-+-++=-⋅⎢⎥++-⎣⎦()()21221x x x x --+=⋅+-2x =--.当4x =-时,原式422=-=.本题考查分式的化简求值,解题的关键是掌握约分的根据以及分式的运算法则.17.11m【分析】过点D 作DF AB ⊥于点F ,利用三角函数在Rt DEF △中求出EF ,在Rt ADF 中求出AF ,从而可得AE 的长.【详解】解:过点D 作DF AB ⊥于点F ,如图所示,则四边形DFBC 为矩形,45EDF ∠=︒,65ADF ∠=︒.∴10BC DF ==m .在Rt DEF △中,tan tan451EF EDF DF ∠=︒==.∴10EF DF ==m .在Rt ADF 中,tan tan6521410AF AF ADF DF ∠=︒==≈..∴214.AF ≈m .∴2141011.AE AF EF =-≈-≈m .答:这个星空图案霓虹灯的高度大约为11m .本题考查利用三角函数测距的实践运用,纯熟掌握三角函数的概念是解题的关键.18.(1)见解析(2)103【分析】(1)连接OF ,OD ,利用切线的性质证明AB ∥OD ,推出∠1=∠2,从而证明结论;(2)证明△ODC ∽△ABC ,利用类似三角形的性质即可求解.(1)证明:连接OF ,OD ,标记∠1,∠2,∠3,∠4,如解图所示.∵⊙O与BC相切于点D,∴OD⊥BC,∴∠ODC=90°,∵∠B=90°,∴AB∥OD,∴∠1=∠4,∠2=∠3,∴OA=OF,∴∠3=∠4.∴∠1=∠2,∴DE =DF ;(2)解:∵AE=10,∴OA=OE=OD=5,∵∠ODC=∠B=90°,∠C=∠C,∴△ODC∽△ABC,∴OC ACOD AB=,即51058CE CE++=,∴103 CE=.本题考查了切线的性质:圆的切线垂直于切点的半径.也考查了类似三角形的判定和性质.处理本题的关键是掌握切线的性质.19.(1)C,43%(2)567(3)不合理,学校开展的直播宣传有,见解析【分析】(1)根据前网课情况统计表中的数据解答;(2)先计算前经常在网课期间打游戏的先生人数的百分比,再乘以4500即可;(3)分别计算直播宣传前后,“经常在网课期间打游戏”的先生人数占被调查人数的百分比,再作比较即可解答.(1)解:直播宣传前,抽取到的家长反馈中,类别C 的先生最多,有430人,占被调查人数的百分比为430=43%1000故答案为;C ,43%;(2)12645005671000⨯=(名).答:估计直播宣传前经常在网课期间打游戏的先生人数为567.(3)小雨的分析不合理.理由:直播宣传前,“经常在网课期间打游戏”的先生人数占被调查人数的百分比为126100%126%1000.⨯=;直播宣传后“经常在网课期间打游戏”的先生人数占被调查人数的百分比为130100% 6.5%836780254130⨯=+++.∵65%126%..<,∴学校开展的直播宣传有.本题考查频数分布表、条形统计图、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.20.(1)()120y x x =>;(2)143或10.【分析】(1)证明CBF ABO ∽,进一步可求出C 点的坐标,利用待定系数求解析式即可;(2)对点D 的地位分情况讨论,当点D 在直线AC 下方;当点D 在直线AC 上方;利用2BDE CDE S S =△△即可求出点D 的纵坐标.(1)解:直线12y k x =+与y 轴交于点B ,∴()0,2B .即2OB =.∵2OB OA =,∴1OA =.过点C 作CF y ⊥轴于点F ,如图1所示,则90CFB AOB ∠=∠=︒.∵CBF ABO ∠=∠,∴CBF ABO ∽.∴CF BF BC AO BO BA==.∵2BC AB =,∴212CF BF ==,解得2CF =,4BF =.∴6OF BF BO =+=.∴点C 的坐标为()2,6.把点()2,6C 代入2k y x=,得212k =.∴反比例函数的解析式为()120y x x =>.(2)解:由题意,可分以下两种情况进行讨论.①当点D 在直线AC 下方的反比例函数图象上时,过点C 作CM DE ⊥于点M ,延伸DE 交y 轴于点N ,如图2所示,则CM BN ∥.∵2BDE CDE S S =△△,12BDE S DE BN =⋅△,12CDE S DE CM =⋅△,∴2BN CM =.由(1)得4BN CM +=,∴43CM =,83BN =.∴点D 的纵坐标为814233+=.②当点D 在直线AC 上方的反比例函数图象上时,过点C 作CM DE ⊥于点M ,延伸ED 交y 轴于点N ,如解图3所示,则CM BN ∥.∵2BDE CDE S S =△△,12BDE S DE BN =⋅△,12CDE S DE CM =⋅△,∴2BN CM =.由(1)得4BN CM -=,∴4CM =,8BN =.∴点D 的纵坐标为8210+=.综上所述,当2BDE CDE S S =△△时,点D 的纵坐标为143或10.本题考查反比例函数和函数综合,类似三角形的判定及性质,解题的关键是掌握待定系数法求反比例函数解析式,对点D 的地位分情况讨论.21.(1)20,40;(2)点C 的坐标为()20,1200;点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m ;(3)18min 或30min 或45min .【分析】(1)函数图象可知:折线OCD 代表的是小刚行走的,直线AB 代表小强行走的,利用小刚匀速行走用的工夫为40min ,故a =20;利用小强用的工夫为50min ,故其速度为40m/min ;(2)利用待定系数法求出直线AB 的解析式为402000y x =-+.进一步可求出点C 的坐标为()20,1200.图象可知点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m .(3)求出直线OC 的解析式为60y x =,直线CD 的解析式为602400y x =-+,分情况进行讨论:①当小刚、小强相遇前相距200m 时,则40200060200x x -+-=,解得18x =;②当小刚、小强相遇后相距200m 且小刚未到达甲地时,()402000602400200x x -+--+=,解得30x =;③当小刚、小强相遇后相距200m 且小刚已到达甲地时,4020000200x -+-=,解得45x =.(1)解:由图像可知:折线OCD 代表的是小刚行走的,直线AB 代表小强行走的,∵小刚匀速行走用的工夫为40min ,∴a =20,∵小强用的工夫为50min ,∴其速度为2000=40m/min 50,故20,40.(2)解:设直线AB 的解析式为y kx b =+.将点()02000,A ,()500,B 代入y kx b =+,得2000500b k b =⎧⎨+=⎩,解得402000k b =-⎧⎨=⎩,∴直线AB 的解析式为402000y x =-+.将20x =代入402000y x =-+,得1200y =.∴点C 的坐标为()20,1200.点C 的实践意义:当行进工夫为20min 时,小刚和小强在丙地相遇,且两人距离甲地1200m .(3)18min 或30min 或45min .理由:由图可知,O (0,0),D (40,0)由(2)可知点C (20,1200)设OC 解析式为1y k x =,设CD 解析式为2y k x m=+将坐标代入可知1120020k =22040120020k m k m=+⎧⎨=+⎩解得160k =,2602400k m =-⎧⎨=⎩∴直线OC 的解析式为60y x =,直线CD 的解析式为602400y x =-+.由题意,可分以下三种情况进行讨论①当小刚、小强相遇前相距200m 时,则40200060200x x -+-=,解得18x =;②当小刚、小强相遇后相距200m 且小刚未到达甲地时,()402000602400200x x -+--+=,解得30x =;③当小刚、小强相遇后相距200m 且小刚已到达甲地时,4020000200x -+-=,解得45x =.综上所述,小刚和小强两人相距200m 时小强行进的工夫为18min 或30min 或45min .本题考查函数的实践运用:行程成绩,解题的关键是掌握待定系数法求解析式,函数图象获取信息.22.(1)2y x 2x 3=-++;(2)10x -≤<或03x <≤;(3)01n <<.【分析】(1)分析可知:点()4,h 是拋物线()210y x tx t t =-+++>的顶点.即2t h =,21422t t t t ⎛⎫-+⋅++= ⎪⎝⎭,求出2t =即可求出解析式;(2)求出点()1,0A -,()3,0B ,()0,3C ,顶点坐标为()1,4,进一步可知直线BC 的解析式为3y x =-+.分情况讨论:当点F 与抛物线顶点重合时,当点E 与点C 重合时,当点E 与点B 重合时,图象求解即可;(3)分析可知点2P 不可能在抛物线的对称轴上,点1P 在对称轴的左侧,点3P 在对称轴的右侧且点3P 到对称轴的距离比点1P 近.故可得()2112n n +-<--,解得1n <.再利用点2P 在对称轴的左侧,且点2P 到对称轴的距离比点3P 近.可知121n n -<+-,解得0n >.故可知n 的取值范围为01n <<.(1)解:∵对于任意实数m ,恒有214m tm t -+++≤成立,且抛物线()210y x tx t t =-+++>过点()4,h ,∴点()4,h 是拋物线()210y x tx t t =-+++>的顶点.∴2t h =,21422t t t t ⎛⎫-+⋅++= ⎪⎝⎭,即24120t t +-=,解得6t =-或2t =.∵0t >,∴2t =.∴抛物线的解析式为2y x 2x 3=-++.(2)解:令223=0x x -++,解得:1=1-x ,2=3x ,∴()1,0A -,()3,0B ,令=0x ,可得:3y =,∴()0,3C ,∵()2223=14y x x x =-++--+,∴抛物线的顶点坐标为()1,4,∴设直线BC 的解析式为y kx b =+,将()3,0B ,()0,3C 代入可得:303k b b +=⎧⎨=⎩,解得:=13k b -⎧⎨=⎩,∴直线BC 的解析式为3y x =-+.①当点F 与抛物线顶点重合时,如解图1所示,此时点F 的坐标为()1,4.平移的性质,可知此时点E 的坐标为()1,4-.∴点E 在直线BC 上,且线段EF 与抛物线只要1个交点.②当点E 与点C 重合时,如解图2所示,此时点()0,3E ,点()2,3F .∴点F 在抛物线上,此时线段EF 与抛物线有2个交点③当点E 与点B 重合时,如解图3所示,此时线段EF 与抛物线只要1个交点.综上所述,当线段EF 与抛物线只要1个交点时,点E 横坐标的取值范围为10x -≤<或03x <≤.(3)解:01n <<.理由:当抛物线开口向下时,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小,且抛物线上的点到对称轴的距离越近,其对应的y 值越大.题意,可知点2P 不可能在抛物线的对称轴上,点1P 在对称轴的左侧,点3P 在对称轴的右侧且点3P 到对称轴的距离比点1P 近.∴()2112n n +-<--,解得1n <.∴点2P 在对称轴的左侧,且点2P 到对称轴的距离比点3P 近.∴121n n -<+-,解得0n >.∴n 的取值范围为01n <<.本题考查二次函数综合,解题的关键是掌握待定系数法求函数解析式,掌握二次函数性质,以及平移的性质.23.(1)①120;②2;(2)不变,是定值2;见解析;(3)2或4【分析】(1)作等边三角形ABC 的外接圆O ,可知OC OA OB ==,2120AOB ACB ∠=∠=︒,进一步可得2OA OD =,2OC OD =,故可知2OC OD=;(2)证明()ACF BCO SAS ≌△△可得AF BO =,FAC OBC ∠=∠.再证明≌OAF OAE△△(SAS ),可得OF OE OC ==.利用D 是AB 的中点,四边形AEBO 是平行四边形,得到2OE OD =,2OC OD =,即2OC OD=;(3)由(2),可知OC OE =,AE OB =,则以OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,即AOE △为直角三角形.可分以下两种情况进行讨论.①若90AOE ∠=︒,②若90AEO ∠=︒,图象求解即可.【详解】解:(1)①120;②2.作等边三角形ABC 的外接圆O ,如解图1所示,则OC OA OB ==,2120AOB ACB ∠=∠=︒,∵OA OB =,D 是AB 边的中点,∴⊥OD AB ,1602AOD BOD AOB ∠=∠=∠=︒,∴90ODA =∠°,30OAD ∠=︒,∴2OA OD =,∴2OC OD =,∴2OC OD=;(2)补充的证明过程如下:∵COF 是等边三角形,∴CF CO OF ==,60FCO ∠=︒.∵ABC 是等边三角形,∴CA CB =,60ACB ∠=︒,∴60ACF BCO OCA =∠=︒-∠,∴()ACF BCO SAS ≌△△,∴AF BO =,FAC OBC ∠=∠,∵四边形AEBO 是平行四边形,120AOB ∠=︒,∴AE BO AF ==,18060OBE OAE AOB ∠=∠=︒-∠=︒,60OAB OBA ∠+∠=︒,又∵60OBA OBC ∠+∠=︒,∴OAB OBC ∠=∠.∵60CAO OAB ∠+∠=︒,∴60CAO FAC ∠+∠=︒,∴FAO OBE OAE ∠=∠=∠,∴()OAF OAE SAS ≌△△,∴OF OE OC ==,∵D 是AB 的中点,四边形AEBO 是平行四边形,∴2OE OD =,∴2OC OD =,即2OC OD=,(3)2或4.由(2)可知OC OE =,AE OB =,则以OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,即AOE △为直角三角形.由题意,可分以下两种情况进行讨论.①若90AOE ∠=︒,如解图2所示,则30EOB AEO ∠=∠=︒,设OA x =,则OE =.∵2OE OD =,∴OD DE x ==.∵AB =,D 为AB 的中点,AD BD ==在Rt AOD △中,由勾股定理,得222OA OD AD +=,即222x x ⎫+=⎪⎪⎝⎭,解得2x =或2x =-(舍去).∴2OA =.②若90AEO ∠=︒,如解图3所示,则 90EOB ∠=︒,30AOE ∠=︒.设AE OB x ==,则2OA x =,OE =.∴OD DE x ==.由①,可知AD BD ==.在Rt BOD 中,由勾股定理,得222OB OD BD +=,即222x x ⎫+=⎪⎪⎝⎭,解得2x =或2x =-(舍去).∴2AE =.∴4OA =.综上所述,当OA ,OB ,OC 三条线段组成的三角形恰好为直角三角形时,线段OA 的长为2或4.本题考查等边三角形的性质,全等三角形的判定及性质,平行四边形的性质,勾股定理,解题的关键是纯熟掌握以上性质,添加适当的辅助线进行求解.。

2020年河南省普通高中招生考试数学模拟试卷含答案解析-2020年河南高中试卷数学

2020年河南省普通高中招生考试数学模拟试卷含答案解析-2020年河南高中试卷数学

2020年河南省普通高中招生考试数学模拟试卷一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×10104.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣46.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣27.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=______.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是______.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为______.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为______.13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为______.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是______.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是______.(结果保留根号)三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?22.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?2020年河南省普通高中招生考试数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.3 C.0 D.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<3,故在﹣2,0,3,这四个数中,最大的数是3,故选:B.2.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.3.十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A.146×107B.1.46×107 C.1.46×109 D.1.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.【解答】解:1 460 000 000=1.46×109.故选C.4.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°【考点】平行线的性质;等腰三角形的性质;多边形内角与外角.【分析】首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.【解答】解:∵ABCDE是正五边形,∴∠BAE=(5﹣2)×180°÷5=108°,∴∠AEB=÷2=36°,∵l∥BE,∴∠1=36°,故选:B.5.若方程组的解x,y满足0<x+y<1,则k的取值范围是()A.﹣4<k<0 B.﹣1<k<0 C.0<k<8 D.k>﹣4【考点】解二元一次方程组;解一元一次不等式组.【分析】理解清楚题意,运用二元一次方程组的知识,解出k的取值范围.【解答】解:∵0<x+y<1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=,所以>0,解得k>﹣4;<1,解得k<0.所以﹣4<k<0.故选A.6.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为()(用含n的代数式表示).A.2n+1 B.3n+2 C.4n+2 D.4n﹣2【考点】规律型:图形的变化类.【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故选:C.7.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.8.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.二、填空题(每小题3分,共21分)9.计算:(﹣1)2020+(π﹣3.14)0﹣()﹣2=﹣2.【考点】负整数指数幂;零指数幂.【分析】首先根据有理数的乘方的运算方法,求出(﹣1)2020的值是多少;然后根据零指数幂的运算方法,求出(π﹣3.14)0的值是多少;最后根据负整数指数幂的运算方法,求出()﹣2的值是多少;再从左向右依次计算,求出算式(﹣1)2020+(π﹣3.14)0﹣()﹣2的值是多少即可.【解答】解:(﹣1)2020+(π﹣3.14)0﹣()﹣2=1+1﹣4=2﹣4=﹣2.故答案为:﹣2.10.二次函数y=ax2+bx+c的图象如图所示,下列关系式中:①a<0;②abc>0;③a+b+c >0;④b2﹣4ac>0.其中不正确的序号是③.【考点】二次函数图象与系数的关系.【分析】根据函数图象可得各系数的关系:a<0,b<0,c>0,再结合图象判断各结论.【解答】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①a<0,正确;②abc>0,正确;③当x=1时,y=a+b+c<0,错误;④抛物线与x轴有两个不同的交点,b2﹣4ac>0,正确.故不正确的序号是③.11.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】利用列表法找出点P的所有坐标,再根据反比例函数图象上点的坐标特征找出符合题意的点的个数,由此即可得出结论.【解答】解:∵点P在双曲线y=的图象上,∴xy=6.利用列表法找出所用点P的坐标,如下表所示.其中满足xy=6的点有:(1,6)、(2,3)、(3,2)、(6,1).∴点P落在双曲线y=上的概率为:=.故答案为:.12.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm13.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A 与点B关于点C对称,则点B表示的数为5﹣.【考点】实数与数轴.【分析】先根据勾股定理计算出斜边的长,进而得到A的坐标,再根据A点表示的数,可得B点表示的数.【解答】解:∵直角三角形中较长的直角边是较短的直角边长度的2倍,∴斜边的长==,∴A点表示的数为﹣1,∵C所表示的数为2,点A与点B关于点C对称,∴点B表示的数为5﹣,故答案为:5﹣.14.如图,点A,B分别在函数y=(k1>0)与y=(k2<0)的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是4.【考点】反比例函数系数k的几何意义.【分析】设A(a,b),B(﹣a,d),代入双曲线得到k1=ab,k2=﹣ad,根据三角形的面积公式求出ad+ad=4,即可得出答案.【解答】解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,∵M是AB的中点,∴OC=OD,设A(a,b),B(﹣a,d),代入得:k1=ab,k2=﹣ad,∵S△AOB=2,∴(b+d)•2a﹣ab﹣ad=2,∴ab+ad=4,∴k1﹣k2=4,故选:4.15.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)【考点】菱形的性质;相似三角形的判定与性质.【分析】设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH,根据菱形邻角互补求出∠ABC=60°,再求出点B到CD的距离以及点G到CE的距离;然后根据阴影部分的面积=S△BDH+S△FDH,根据三角形的面积公式列式进行计算即可得解.【解答】解:如图,设BF交CE于点H,∵菱形ECGF的边CE∥GF,∴△BCH∽△BGF,∴,即,解得CH=,所以,DH=CD﹣CH=2﹣,∵∠A=120°,∴∠ECG=∠ABC=180°﹣120°=60°,∴点B到CD的距离为2×,点G到CE的距离为4×,∴阴影部分的面积=S△BDH+S△FDH,=,=.故答案为:三、计算题(本题共8个小题,75分)16.先化简,再求值:,其中x+2=.【考点】分式的化简求值.【分析】通分计算括号里面的加法,再算除法,由此顺序化简,进一步代入求得答案即可.【解答】解:原式=•=x+1,∵x+2=,∴x=﹣2,则原式=x+1=﹣1.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)通过证明△BCD∽△BAC,利用相似比得到结论;(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.【解答】(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.18.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,从而可以求出被调查的居民数;(2)根据条形统计图和扇形统计图可知A有90人占调查总数的30%,可以求得选B和选C的人数以及B、D所占的百分比,从而可以将统计图补充完整;(3)由C所占的百分比可以求得图2中“C”层次所在扇形的圆心角的度数;(4)根据条形统计图和扇形统计图,估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..【解答】解:(1)由条形统计图和扇形统计图可知A有90人占调查总数的30%,∴本次被抽查的居民有:90÷30%=300(人),即本次被抽查的居民有300人;(2)由条形统计图和扇形统计图可得,选B的人数有:300﹣(30%+20%)×300﹣30=120(人),选C的人数有:300×20%=60人,B所占的百分比为:120÷300=40%,D所占的百分比为:30÷300=10%,∴补全的图1和图2如右图所示,(3)由题意可得,图2中“C”层次所在扇形的圆心角的度数是:360°×20%=72°,即图2中“C”层次所在扇形的圆心角的度数是72°;(4)由题意可得,该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有:4000×(30%+40%)=2800(人),即该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.19.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x 的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.20.为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A 射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)【考点】解直角三角形的应用.【分析】(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT 中利用三角函数即可列方程求解;(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.【解答】解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°∵AT⊥MN∴∠A TC=90°在Rt△ACT中,∠ACT=31°∴tan31°=可设AT=3x,则CT=5x在Rt△ABT中,∠ABT=22°∴tan22°=即:解得:∴,∴;(2),,∴该车大灯的设计不能满足最小安全距离的要求.21.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?【考点】一次函数的应用.【分析】(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)由图象可知,当8<t≤13时,渔船和渔政船相遇,利用“两点法”求渔政船的函数关系式,再与这个时间段,渔船的函数关系式联立,可求相遇时,离港口的距离,再求两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【解答】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)设渔政船离港口的距离s 与渔政船离开港口的时间t 之间的函数关系式为s=kt +b (k ≠0),则,解得.所以s=45t ﹣360;联立,解得.所以渔船离黄岩岛的距离为150﹣90=60(海里);(3)s 渔=﹣30t +390,s 渔政=45t ﹣360,分两种情况:①s 渔﹣s 渔政=30,﹣30t +390﹣(45t ﹣360)=30,解得t=(或9.6); ②s 渔政﹣s 渔=30,45t ﹣360﹣(﹣30t +390)=30,解得t=(或10.4).所以,当渔船离开港口9.6小时或10.4小时时,两船相距30海里.22.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0)、B (0,6),点P 为BC 边上的动点(点P 不与点点B 、C 重合),经过点O 、P 折叠该纸片,得点B ′和折痕OP .设BP=t .(1)如图1,当∠BOP=30°时,求点P 的坐标;(2)如图2,经过点P 再次折叠纸片,使点C 落在直线PB ′上,得点C ′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(3)在(2)的条件下,当点C ′恰好落在边OA 上时如图3,求点P 的坐标(直接写出结果即可).【考点】几何变换综合题.【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB ′P 、△QC ′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB ′P ≌△OBP ,△QC ′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,在△PC′E和△OC′B′中,∴△PC′E≌△OC′B′,∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.2020年9月19日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档