小升初奥数分数百分数知识点总结

合集下载

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点奥数必考30个知识点大全

小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

小升初奥数分数百分数知识点总结

小升初奥数分数百分数知识点总结

小升初奥数分数百分数知识点总结【篇一】基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。

最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。

常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。

有以下三种情况:A、分量发生变化,总量不变。

B、总量发生变化,但其中有的分量不变。

C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

【篇二】分数和百分数的常用小学数学公式:1、特殊形式(1)“的”字类“的”前ד的”后(2)“是、相当于、占”字类“是”前÷“是”后“相当于”前÷“相当于”后“占”前÷“占”后(3)“比”字类(大数—小数)÷“比”后的数2、找标准量(单位“1”)的方法要正确找准单位“1”的量(即标准量)必须从题目中的分率句着手。

(1)分数应用题,存在着整体和部分两个数量,一般来说,整体是标准量,部分是比较量。

小升初奥数知识点总结

小升初奥数知识点总结

小学奥数都有哪些知识点和重点?看看下面的大汇总,学习数学总归用得到哦!还包括小升初中常考的题目类型等。

有工程问题、行程问题、质数合数问题等等。

1.、小升初奥数知识点(年龄问题的三大特征)①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;2、小升初奥数知识点(植树问题总结):基本类型:在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树。

3、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

4、奥数知识点(盈亏问题)盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

小升初数学百分数知识点

小升初数学百分数知识点

小升初数学百分数知识点小升初数学考试内容所占比例在整个小升初过程中越来越大,那么如何让数学考试锦上添花呢?下面为大家分享小升初数学百分数知识点,希望对大家有用!【一】百分数的基本概念1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

2.百分数的意义:表示一个数是另一个数的百分之几。

例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上〝%〞来表示。

分子部分可为小数、整数,可以大于100,小于100或等于100。

4.小数与百分数互化的规那么:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5.百分数与分数互化的规那么:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,〝死记〞之后会〝活用〞。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生〝死记〞名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

唐宋或更早之前,针对〝经学〞〝律学〞〝算学〞和〝书学〞各科目,其相应传授者称为〝博士〞,这与当今〝博士〞含义已经相去甚远。

小升初数学百分数的知识点整理

小升初数学百分数的知识点整理

小升初数学百分数的知识点整理百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。

百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。

百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。

百分数与分数的区别1.意义不同。

百分数是“表示一个数是另一个数的百分之几的数。

”它只能表示两数之间的倍数关系,不能表示某一具体数量。

如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。

”因此,百分数后面不能带单位名称。

分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。

分数还可以表示两数之间的倍数关系。

2.应用范围不同。

百分数在生产、工作和生活中,常用于调查、统计、分析与比较。

而分数常常是在测量、计算中,得不到整数结果时使用。

3.书写形式不同。

百分数通常不写成分数形式,而采用百分号“%”来表示。

如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.4.百分数不能带单位名称;当分数表示具体数时可带单位名称。

百分数一般有三种情况:①100%以上,如:增长率、增产率等。

②100%以下,如:发芽率、成长率等。

③刚好100%,如:正确率,合格率等。

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题在小学六年级的学习中,分数与百分数问题是奥数中的重要内容,也是小升初考试中经常出现的考点。

掌握这部分知识,不仅能够提高我们的数学思维能力,还能为今后的学习打下坚实的基础。

首先,我们来了解一下分数的基本概念。

分数表示把一个整体平均分成若干份,其中的一份或几份就是这个分数。

比如,把一个蛋糕平均分成 8 份,其中的 3 份就可以用分数 3/8 来表示。

百分数则是表示一个数是另一个数的百分之几的数。

例如,25%表示 25 是 100 的 25%。

在解决分数与百分数问题时,我们常常需要用到以下几种方法:一、单位“1”的运用在很多分数与百分数问题中,我们需要明确单位“1”。

单位“1”通常是我们进行比较和计算的标准。

例如:有一堆苹果,第一天吃了总数的1/5,第二天吃了剩下的1/4,还剩下 18 个苹果。

这堆苹果原来有多少个?在这个问题中,我们首先要明确总数是单位“1”。

第一天吃了总数的 1/5,那么剩下的就是总数的 1 1/5 = 4/5。

第二天吃了剩下的 1/4,也就是总数的 4/5 × 1/4 = 1/5。

所以剩下的苹果占总数的 1 1/5 1/5 =3/5,已知剩下 18 个苹果,总数就是 18 ÷ 3/5 = 30 个。

二、转化法有时候,题目中的分数或百分数所对应的单位“1”不同,这时候我们需要将它们转化为相同的单位“1”。

比如:甲班人数的 1/3 等于乙班人数的 1/4,甲班人数是乙班人数的几分之几?我们可以把乙班人数看作单位“1”,那么甲班人数的 1/3 等于乙班人数的 1/4,甲班人数就是乙班人数的 1/4 ÷ 1/3 = 3/4。

三、方程法对于一些比较复杂的分数与百分数问题,我们可以通过设未知数,列方程来解决。

例如:果园里有苹果树和梨树共 360 棵,苹果树的棵数是梨树的4/5,苹果树和梨树各有多少棵?设梨树的棵数为 x 棵,则苹果树的棵数为 4/5 x 棵。

小升初小学数学(分数和百分数)知识点汇总(四)

小升初小学数学(分数和百分数)知识点汇总(四)

小升初小学数学(分数和百分数)知识点汇总185.为什么在分数的教与学中,单位“1”是一个重要概念?单位“1”也称做整体“1”,在分数的教与学中,正确理解单位“1” 是正确理解什么是分数的前提。

教材中对分数的定义是这样阐述的:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

由此可见,不理解单位“1”,就不理解如何平均分份;更不理解几分之一或几分之几,因此,单位“1”是分数中最基本也是最重要的一个概念。

单位“1”一般情况下,表示一个事物的整体。

如:世界的人口数,一个国家的面积,一个县播种小麦的亩数,一段路程,一个果园果树的棵数,一个工厂产品的总产量,一堆煤的重量等,都可以作为单位“1”,也就是把整体看作“1”。

但是,整体与部分是相对的,它们之间在一定条件下也是可以相互转化的。

当部分转化为整体时,单位“1”也可以表示原来的这个部分。

如世界人口是 50 亿,是个整体,中国人口是 11 亿,只是它的一部分,当说到北京市人口占全国人口的一百分之一时,中国人口数又成为整体,当说到某区人口是全市人口的十分之一时,全市人口又成了整体等。

在这些不同情况下,部分转化为整体时,都可以用单位“1”来表示。

例如:(1)我国土地面积约 960 万平方千米;(2)某县的土地面积约 8 万平方千米;(3)红星小学全校有学生 900 人;(4)五一班有学生 42 人;(5)第二学习小组有学生 8 人;(6)这条公路全长 4800 米;(7)一根电线全长 8.5 米;(8)一堆煤重 3.2 吨。

……单位“1”包含的数量可以很大,也可以很小。

大到有限数的任何事物,都可以看作单位“1”;小到可分事物的某一部分,也可以看作单位“1”。

但是,无限多的事物不能看作单位“1”,因为无限多的事物是不可分的。

在分数应用题中,单位“1”又是解题的关键。

如:解这道题,要求没修的是多少米,必须知道全长多少米和修了多少米。

题目中全长 480 米已知,未知条件是修了多少米。

小升初数学知识点之分数和百分数

小升初数学知识点之分数和百分数

精选精选
小升初数学知识点之分数和百分数
小升初考试常常是对基础知识的一种提高,基础知识没
掌握好,会很简单失分,下边为大家分享数学知识点之分数
和百分数,希望对大家有帮助!
1.分数的意义:把单位“ 1”均匀分红若干份,表示这样的
一份或几份的数叫做分数。

2.分数单位:把单位“ 1”均匀分红若干份,表示此中一份
的数,叫做分数单位。

3.分数和除法的联系:分数的分子就是除法中的被除数,分
母就是除法中的除数。

分数和小数的联系:小数实质上就是分母是10、100、
1000的分数。

分数和比的联系:分数的分子就是比的前项,分数的分母就
是比的后项。

4.分数的分类:分数能够分为真分数和假分数。

5. 真分数:分子小于分母的分数叫做真分数。

真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。

假分数大
于或许等于1。

6.最简分数:分子与分母互质的分数叫做最简分数。

7.分数的基天性质:分数的分子和分母同时乘或除以同样的
数 ( 零除外 ) ,分数的大小不变。

8.这样的分数能够化成有限小数:前提是这个分数假如最简
精选精选
分数,假如分母只含有2、 5 这 2 个质因数,这样的分数就能化成有限小数。

9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫做百分率或许百分比。

百分数往常用“ %”来表示。

以上是为大家分享的数学知识点之分数和百分数,希望大家
仔细学习 !。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数分数百分数知识点总结
【篇一】
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。

最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。

常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。

有以下三种情况:A、分量发生变化,总量不变。

B、总量发生变化,但其中有的分量不变。

C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

【篇二】
分数和百分数的常用小学数学公式:
1、特殊形式
(1)“的”字类
“的”前ד的”后
(2)“是、相当于、占”字类
“是”前÷“是”后
“相当于”前÷“相当于”后
“占”前÷“占”后
(3)“比”字类
(大数—小数)÷“比”后的数
2、找标准量(单位“1”)的方法
要正确找准单位“1”的量(即标准量)必须从题目中的分率句着手。

(1)分数应用题,存在着整体和部分两个数量,一般
来说,整体是标准量,部分是比较量。

(2)“的”前就是标准量
(3)“比、占、是、相当于”后面的就是标准量
(4)工程问题中工作总量就是单位“1”
3、分数应用题的解题公式
标准量×对应分率=比较量
标准量×(1+分率)=比较量
标准量×(1—分率)=比较量
比较量÷对应分率=标准量
比较量÷(1+分率)=标准量
比较量÷(1—分率)=标准量
比较量÷标准量=对应分率
(1)
4、百分率
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
【篇三】
分数与百分数应用题
1、学校举行一次数学讲座,整个教室坐满了听众,其中两个人中有一个六年级学生,四个人中有一个五年级学生,七个人中有一个四年级学生,还有六位教师。

问整个教室听课的有多少人?
2、四、五年级参加航模小组共56人。

从四年级来的学生中,男生占2/3.从五年级来的学生中,男生占75%。

四、五年级来的女生一样多。

四、五年级各有多少人参加航模小组?
3、学校阅览室里有36名学生在看书,其中女生占4/9,后来又有几名女生来看书,这时女生人数占所有看书人数的9/19,问后来又有几名女生来看书?
4、某班学生缺席的人数是出席人数的1/6,此后因为从教室里又有一个学生走出,于是缺席的人数等于出席人数的1/5,这个班一共有多少人?
5、某校五年级共有学生152人,选出男同学的1/11和5个女同学参加科技小组,剩下的男女同学人数刚好相等,求这个年级男女同学各有多少人?
6、一桶油,第一次取出全桶的20%,第二次取出20千克,第三次取出的等于前两次数量之和,桶里还剩下8千克,原桶里共有多少千克油?
7、有纯酒精含量不同的三种酒精溶液A、B、C,它们的纯酒精含量分别是40%、36%、35%,需配制纯酒精含量为39%的酒精溶液12升,至少要取A种酒精溶液多少升?
8、甲、乙、丙、丁四人共同购置一只价值4200元的游艇,甲支付的现金是其余三人所付现金总数的1/4,乙支付的现金比其余三人所支付的现金总数少50%,丙支付的现金占其余三人所支付的现金总数的
1/3,那么丁支付的现金是多少?
9、两筐苹果共重51千克,第一筐的1/3与第二筐的2/5共重18.2千克,两筐苹果各重多少千克?
10、这次参加全市数学竞赛的学生,男生人数的6/21正好和女生人数的5/7相等。

男生比女生多几倍?
11、某商店有两件商品,其中一件商品成本增加25%出售,一件商品按成本减少20%出售,售价恰好相同,那么两件商品售价总和是两件商品成本总和的几分之几?
12、学校植树,第一天完成了计划的3/8,第二天完成了余下计划的2/3,第三天植树55棵,结果超过计划的1/4,原计划植树多少棵?
13、一篓苹果分给甲、乙、丙。

甲分得全部苹果的1/5加5个苹果,乙分得全部苹果的1/4加7个苹果,丙分得其余苹果的一半,最后剩下的是一篓苹果的1/8,求这篓苹果有多少个?
14、育才小学举行三年级数学竞赛,参加竞赛的女生人数比男生多28名,根据成绩,男生全部列入优良,女生则有1/4没有达到优良成绩,男女生取得优良成绩的共计42名,参加比赛的男女生人数占全年级的20%,三年级共有学生多少人?
15、一个班,女同学比男同学的2/3多4人,如果男同学减少3人,女同学增加4人,那么男女同学的人数恰好相等。

这个班男、女同学各有多少人?
16、六(1)班的人数比六(2)班多10%,六(2)班的人数比六(3)班的人数少10%,请你判断:六(1)班和六(3)班哪个班的人数多?。

相关文档
最新文档