八年级数学上册期末综合水平测试

合集下载

沪科版八年级数学上册试题 期末综合测试卷(含解析)

沪科版八年级数学上册试题 期末综合测试卷(含解析)

期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(二)

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(二)

八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.下列图形中,是轴对称图形的是()2.下列各点中,位于第二象限内的是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1) 3.已知△ABC的三边长a,b,c满足等式a-b+|2a-b-3|+c-3=0,则△ABC 的形状是()A.钝角三角形B.直角三角形C.不等边三角形D.等边三角形4.如图,点B,D,E,C在同一直线上,△ABD≌△ACE,∠AEC=100°,则∠DAE=()A.10°B.20°C.30°D.80°(第4题)(第5题)5.如图,AB和CD相交于点O,则下列结论正确的是()A.∠DOB<∠B B.∠DOB=∠DC.∠AOC>∠C+∠B D.∠DOB=∠B+∠C6.如图,在等边三角形ABC中,D,E分别是AC,AB的中点,则下列命题中假命题是()A.BF=CF B.BF=CDC.∠BFC=120°D.点F到AB,AC距离相等(第6题)(第7题)7.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论中,错误的是()A.∠BDE=∠BAC B.∠BAD=∠BC.DE=DC D.AE=AC8.对于正比例函数y=kx(k≠0),它的函数值y随x的增大而增大,则一次函数y =kx-k的图象大致是()9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人间的距离y(m)与甲出发的时间t(min)之间的关系如图所示,下列说法正确的是()A.乙用16min追上甲B.乙追上甲后,再走1500m才到达终点C.甲、乙两人之间的最远距离是300mD.甲到终点时,乙已经在终点处休息了6min(第9题)(第10题)10.如图,已知△ABC的高AD恰好平分边BC,∠B=30°,点P是BA延长线上一动点,点O是线段AD上一动点,且OP=OC,下面的结论:①AO+AP=AB;②△OCP的周长为3CP;③∠APO+∠PCB=90°;④S△ABC=S四边,其中正确个数是()形AOCPA.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A(-3,a)和点B(b,2)关于y轴对称,那么a+b的值是________.12.对于一次函数y1=3x-2和y2=-2x+8,当y1>y2时,x的取值范围是________.13.将两个三角尺如图放置,∠FDE=∠A=90°,∠C=45°,∠E=60°,且点D 在BC上,点B在EF上,AC∥EF,则∠FDC的度数为________.(第13题)(第14题)14.如图,四边形纸片ABCD的面积为10,将其沿过A点的直线折叠,使B落在CD上的点Q处,折痕为AP;再将三角形PCQ、三角形ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.(1)∠DAR的度数是________.(2)若R为AP的三等分点....,则此时三角形AQR的面积是________________________________________________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,4),B(-4,2),C(-3,1),按下列要求作图.(1)△ABC关于y轴对称的图形为△A1B1C1(点A,B,C分别对应A1,B1,C1),请画出△A1B1C1;(2)将△A1B1C1向右平移1个单位,再向下平移4个单位得到△A2B2C2,请画出△A2B2C2;(3)求△A2B2C2的面积.(第15题)16.已知y-2与x+3成正比例,且当x=-2时,y=5.(1)求y与x之间的函数表达式;(2)当y=2时,求x的值.四、(本大题共2小题,每小题8分,满分16分)17.数学课上,黄老师出了这样一道题:如图,在△ABC中,AD⊥BC于D,已知CD=AB+BD,求证:∠B=2∠C.小徐的思路是:在CD上截取DE=BD,连接AE.(第17题)请你根据小徐的思路,补全图形并完成剩下的证明过程(数学依据只需注明①②).证明:∵AD⊥BC,DE=DB,∴AB=AE(依据①:________________________________________________),∴∠B=∠AED(依据②:______________)…18.已知:如图,等腰三角形ABC,顶角∠A=36°.(1)在AC上求作一点D,使AD=BD(请用直尺、圆规作图,不写作法,但要保留作图痕迹);(2)求证:△BCD是等腰三角形.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.在学习“利用三角形全等测距离”之后,张老师给同学们布置作业,测量校园内池塘A,B之间的距离(无法直接测量).(第19题)小颖的方案是:先过点A作AB的垂线AM,在AM上找一看得见B的点C,连接BC,过点C作CD⊥CB,且CD=CB,过点D作DE⊥AM,垂足为E,则EC 的长度即为AB的长度.(1)小颖设计的方案你同意吗?并说明理由.(2)如果利用全等三角形去解决这个问题,请你写出和小颖依据不同的方案,并画出图形.20.如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN内部的射线AD上.已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y1=kx+b的图象交x轴与y轴分别于点A,B,且OB=2,与直线y2=ax交于P(2,1).(1)函数y1=kx+b和y2=ax的表达式分别为____________________________________________________;(2)点D为直线y1=kx+b上一点,其横坐标为m(0<m<2).过点D作DF⊥x轴于点F,与直线y2=ax交于点E,且DF=2FE,求点D的坐标.(第21题)七、(本题满分12分)22.太平猴魁是一种中国传统名茶,产于安徽黄山市黄山区一带,为尖茶之极品,久享盛名.某公司采购员到黄山市某茶叶市场购买该种茶叶作为公司员工的福利,该市场某商家推出了办会员卡打折销售的两种方案:(凭会员卡只打折一次)办卡费/(元/张)茶叶价格/(元/千克)方案一:黑卡6001000方案二:金卡2001200若该公司此次采购茶叶x千克,按方案一和方案二购买茶叶的总费用分别为y1元,y2元.(1)直接写出y1,y2与x之间的函数表达式:y1=__________,y2=________.(2)如果两种方案所需要的费用相同,该公司采购茶叶多少千克?(3)若该公司预计花费5000元购买此种茶叶,请你通过计算说明哪种方案能购买更多的茶叶.八、(本题满分14分)23.在△ABC中,∠ACB=90°,AC=BC,点D在射线BC上(不与B,C重合),连接AD,过点B作BF⊥AD,垂足为F.(1)如图①,点D在线段BC上,若AF恰好平分∠CAB,探究AC,CD,AB之间的数量关系,并说明理由.(2)如图②,点D在线段BC上,点M是直线BF上的一点,且AF平分∠MAC,探究AC,CD,AM之间的数量关系,并说明理由.(3)若点D在线段BC的延长线上(CD<BC),点M是直线BF上的一点,且AF平分∠MAC,请在图③中画出图形,判断(2)中的结论是否仍然成立?如果成立,说明理由;如果不成立,直接写出正确的结论.(第23题)答案一、1.D 2.C3.D4.B5.D6.B7.B8.C9.D 10.D二、11.512.x >213.165°14.(1)60°(2)109或209思路点睛:若R 为AP 的三等分点,存在两种情况:AR =2PR 或PR =2AR .三、15.解:(1)如图.(2)如图.(第15题)(3)S △A 2B 2C 2=2×3-12×2×2-12×1×3-12×1×1=2.16.解:(1)由y -2与x +3成正比例,可设y -2=k (x +3),把(-2,5)代入得5-2=k (-2+3),解得k =3,∴y -2=3(x +3),整理得y =3x +11.(2)把y =2代入y =3x +11得2=3x +11,解得x =-3.四、17.解:如图.线段的垂直平分线上的点到线段两端点的距离相等;等边对等角∵CD =AB +BD =AE +DE =CE +DE ,∴AE =CE ,∴∠C =∠CAE ,∴∠B =∠AEB =∠C +∠CAE =2∠C .(第17题)(第18题)18.(1)解:如图,点D 为所求.(2)证明:∵AB =AC ,∴∠ABC =∠C =12(180°-36°)=72°.∵DA =DB ,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.五、19.解:(1)同意.理由如下:∵CD⊥CB,AB⊥AM,DE⊥AM,∴∠BAC=∠CED=∠BCD=90°,∴∠ACB+∠ECD=∠ECD+∠EDC=90°,∴∠ACB=∠EDC.在△ABC和△ECD中,BAC=∠CED,ACB=∠EDC,=CD,∴△ABC≌△ECD,∴AB=EC,即EC的长度即为AB的长度.(2)如图,取一点O,使得能从点O到达点A,B,连接AO,OB,分别延长AO,BO到D,E,使得OD=OA,OE=OB,连接DE,然后可通过“SAS”证明△AOB≌△DOE,则DE的长度即为AB的长度.(第19题)20.(1)证明:∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠BED=∠BAC,∴∠ABE=∠CAF,同理得∠BAE=∠ACF,在△ABE和△CAFABE=∠CAF,=CA,BAE=∠ACF,∴△ABE≌△CAF.(2)解:EF+CF=BE.理由如下:∵△ABE≌△CAF,∴AE=CF,BE=AF.∵AE+EF=AF,∴CF+EF=BE.六、21.解:(1)y 1=-12x +2,y 2=12x (2)∵D 点横坐标为m ,D 点在直线y 1=-12x +2上,∴D ,-12m +∵E 点在直线y 2=12x 上,∴E ,12m ∴DF =-12m +2,EF =12m .∵DF =2FE ,∴-12m +2=2×12m ,∴m =43,当m =43时,y =-1×43+2=43.∴D 七、22.解:(1)1000x +600;1200x +200(2)根据题意得1000x +600=1200x +200,解得x =2.答:如果两种方案所需要的费用相同,该公司采购茶叶2千克.(3)按照方案一购买茶叶:1000x +600=5000,解得x =4.4;按照方案二购买茶叶:1200x +200=5000,解得x =4.∵4.4>4,∴按照方案一能购买更多的茶叶.八、23.解:(1)AC +CD =AB .理由如下:如图①,延长AC ,BF 交于点M ,∵AF 平分∠BAC ,∴∠BAF =∠MAF ,又∵∠AFB =∠AFM =90°,AF =AF ,∴△AFB ≌△AFM ,∴AB =AM .∵∠FAM +∠M =90°,∠CBM +∠M =90°,∴∠F AM =∠CBM .∵AC =BC ,∠ACB =∠BCM =90°,∴△ACD ≌△BCM ,∴CD =CM ,∴AB =AM =AC +CM =AC +CD .(第23题)(2)AC+CD=AM.理由如下:如图②,延长AC,BF交于点N,由(1)可知△AFM ≌△AFN,△ACD≌△BCN,∴AM=AN,CD=CN,∴AM=AN=AC+CN=AC+CD.(3)如图③,不成立.CD+AM=AC.。

湖南省长沙市明德中学2024届八年级数学第一学期期末综合测试试题含解析

湖南省长沙市明德中学2024届八年级数学第一学期期末综合测试试题含解析

湖南省长沙市明德中学2024届八年级数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,在△PAB 中,∠A =∠B ,D 、E 、F 分别是边PA 、PB 、AB 上的点,且AD =BF ,BE =AF .若∠DFE =34°,则∠P 的度数为( )A .112°B .120°C .146°D .150°2.一个三角形的三条边长分别为4,7,x ,则x 的值有可能是下列哪个数( ) A .3B .7C .11D .123.等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cmB .17cmC .20cmD .16cm 或20cm4.如图,在ABC 中,90,4,3C AC BC ∠=︒==,将ABC 绕点A 逆时针旋转,使点C 恰好落在线段AB 上的点E 处,点B 落在点D 处,则B D ,两点间的距离为( )A 10B 8C .3D .55.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .56.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )A .∠A=∠DB .BC =EF C .∠ACB=∠FD .AC =DF7.若1x =-使某个分式无意义,则这个分式可以是( ) A .121x x -- B .211x x ++ C .211x x -- D .121x x ++ 8.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处9.下列因式分解正确的是( ) A .256(5)6m m m m -+=-+ B .2241(21)m m -=- C .2244(2)m m m +-=+ D .241(21)(21)m m m -=+-10.如果把分式2aba b+中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( ) A .不变B .扩大为原来的2倍C .缩小到原来的12D .扩大为原来的4倍.11.已知△ABC 中,AB=8,BC=5,那么边AC 的长可能是下列哪个数 ( ) A .15B .12C .3D .212.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.14.计算:6x2÷2x= .15.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是_________元.16.若32x 有意义,则x的取值范围是__________.17.若实数,满足,则______.18.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面.那么乘游艇游点C出发,行进速度为每小时11713千米,到达对岸AD最少要用小时.三、解答题(共78分)19.(8分)(1)如图1,在△ABC 中,∠ABC 的平分线BF 交AC 于F,过点F 作DF∥BC,求证:BD=DF.(2)如图2,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F,过点F 作DE∥BC,交直线AB 于点D,交直线AC 于点E.那么BD,CE,DE 之间存在什么关系?并证明这种关系.(3)如图3,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F,过点F 作DE∥BC,交直线AB 于点D,交直线AC 于点E.那么BD,CE,DE 之间存在什么关系?请写出你的猜想.(不需证明)20.(8分)如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P . (1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ;②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.21.(8分)甲、乙、丙三明射击队员在某次训练中的成绩如下表: 队员 成绩(单位:环) 甲 6 6 7 7 8 9 9 9 9 10 乙 6 7 7 8 8 8 8 9 9 10 丙66677810101010针对上述成绩,三位教练是这样评价的: 教练A :三名队员的水平相当; 教练B :三名队员每人都有自己的优势;教练C :如果从不同的角度分析,教练A 和B 说的都有道理. 你同意教练C 的观点吗?通过数据分析,说明你的理由.22.(10分)如图1,直线AB ∥CD ,直线l 与直线AB ,CD 相交于点E ,F ,点P 是射线EA 上的一个动点(不包括端点)(1)若∠CFE =119°,PG 交∠FEB 的平分线EG 于点G ,∠APG =150°,则∠G 的大小为 .(2)如图2,连接PF .将△EPF 折叠,顶点E 落在点Q 处.①若∠PEF =48°,点Q 刚好落在其中的一条平行线上,请直接写出∠EFP 的大小为 . ②若∠PEF =75°,∠CFQ =12∠PFC ,求∠EFP 的度数.23.(10分)如图所示,在△ABC 中,已知AB =AC ,∠BAC =120°,AD ⊥AC ,DC =6 求BD 的长.24.(10分)已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).25.(12分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,该服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.请问该服装商第一批进货的单价是多少元?26.如图,在ABC ∆中,,=⊥AB AC AD BC 于D(1)若52C BAC ∠=∠,求BAD ∠的度数(2)若点E 在AB 上,EF//AC 交AD 的延长线于点F 求证:AE=FE参考答案一、选择题(每题4分,共48分) 1、A【分析】根据等边对等角得到∠A=∠B ,证得△ADF ≌△BFE ,得∠ADF=∠BFE ,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可. 【题目详解】解:∵PA=PB , ∴∠A=∠B ,在△ADF 和△BFE 中,AD BF A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BFE (SAS ), ∴∠ADF=∠BFE ,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF , ∴∠A=∠DFE=34°, ∴∠B =34°,∴∠P=180°-∠A-∠B=112°, 故选:A . 【题目点拨】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键. 2、B【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,从而得出结果.【题目详解】解:根据题意得:7-4<x <7+4, 即3<x <11, 故选:B . 【题目点拨】本题考查三角形的三边关系,关键是理解如何根据已知的两条边求第三边的范围.3、C【解题分析】试题分析:分当腰长为4cm 或是腰长为8cm 两种情况:①当腰长是4cm 时,则三角形的三边是4cm ,4cm ,8cm ,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm ,8cm ,4cm ,三角形的周长是20cm .故答案选C .考点:等腰三角形的性质;三角形三边关系. 4、A【分析】连接BD ,利用勾股定理求出AB ,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB 和BE ,最后利用勾股定理即可求出结论. 【题目详解】解:连接BD∵90,4,3C AC BC ∠=︒== ∴225AC BC +由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3 ∴∠DEB=180°-∠AED=90°,BE=AB -AE=1 在Rt △DEB 中,2210+=BE DE 故选A . 【题目点拨】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键. 5、B【题目详解】解:∵AD 是∠BAC 的平分线, ∴∠EAD =∠CAD 在△ADE 和△ADC 中, AE =AC , ∠EAD =∠CAD , AD =AD ,∴△ADE ≌△ADC (SAS),∴ED =CD ,∴BC =BD +CD =DE +BD =5,∴△BDE 的周长=BE +BD +ED =(6−4)+5=7 故选B . 【题目点拨】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS )、边角边(SAS )、角边角(ASA )、角角边(AAS )、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解. 6、D【解题分析】解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ; ∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ; ∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ; 故选D .点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键. 7、B【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案. 【题目详解】解:A 、由210x -=,得12x =,故A 不符合题意; B 、由10x +=,得1x =-,故B 符合题意; C 、由10x -=,得1x =,故C 不符合题意; D 、由210x +=,得12x =-,故D 不符合题意;故选:B. 【题目点拨】本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0. 8、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果. 【题目详解】解:如图所示,可供选择的地址有4个,故选:D 【题目点拨】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 9、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案. 【题目详解】A 没有把256m m -+化为因式积的形式,所以A 错误, B 从左往右的变形不是恒等变形,因式分解是恒等变形,所以B 错误, C 变形也不是恒等变形所以错误,D 化为几个因式的积的形式,是因式分解,所以D 正确. 故选D . 【题目点拨】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键. 10、B【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可 【题目详解】分别用2a 和2b 去代换原分式中的a 和b , 得22242222a b ab aba b a b a b⨯⨯==⨯+++,可见新分式是原分式的2倍. 故选:B . 【题目点拨】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论. 11、B【解题分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可. 【题目详解】解:根据三角形的三边关系,8−5<AC <8+5, 即3<AC <13, 符合条件的只有12, 故选:B . 【题目点拨】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键. 12、C【分析】如图,作点P 关于直线AD 的对称点P′,连接QP′,由△AQP ≌△AQP′,得PQ=QP′,欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长.【题目详解】解:如图,作点P 关于直线AD 的对称点P′,连接QP′,△AQP 和△AQP′中,''⎧=⎪∠=∠⎨⎪=⎩AP AP QAP QAP AQ AQ ,∴△AQP ≌△AQP′, ∴PQ=QP′∴欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长. 在Rt △ABC 中,∵∠C=90°,AB=12,∠BAC=30°, ∴BC=12AB=6, ∴PQ+BQ 的最小值是6, 故选:C . 【题目点拨】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P 、Q 的位置是解题的关键.二、填空题(每题4分,共24分)13、14801480370x x =++ 【解题分析】试题解析:设原来的平均速度为x 千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程:1480x =148070x ++3, 故答案为1480x =148070x ++3. 14、3x .【解题分析】试题解析:6x 2÷2x=3x . 考点:单项式除以单项式.15、5.1【分析】由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x 份答卷,根据重量小于等于100列出方程组求出x 的取值范围,然后分情况计算所贴邮票的总金额即可.【题目详解】解:11份答卷以及两个信封总计:12×11+2×4=140(克),由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x 份答卷,则另一个信封装(11−x )份答卷,由题意得:()12410012114100x x +≤⎧⎨-+≤⎩, 解得:3≤x≤8,∴共有三种情况:①一个信封装3份答卷,另一个信封装8份答卷,装3份答卷的信封重量为12×3+4=40(克),装8份答卷的信封重量为140-40=100(克),此时所贴邮票的总金额为:0.8×2+0.8×5=5.1(元);②一个信封装4份答卷,另一个信封装7份答卷,装4份答卷的信封重量为12×4+4=52(克),装7份答卷的信封重量为140-52=88(克),此时所贴邮票的总金额为:0.8×3+0.8×5=1.4(元);③一个信封装5份答卷,另一个信封装1份答卷,装5份答卷的信封重量为12×5+4=14(克),装1份答卷的信封重量为140-14=71(克),此时所贴邮票的总金额为:0.8×4+0.8×4=1.4(元);∴所贴邮票的总金额最少是5.1元,故答案为:5.1.【题目点拨】本题考查了一元一次不等式组的实际应用,正确理解题意,分析得出把它分成两个小于或等于100克的信封比较省钱,进而列出方程组是解题的关键.16、一切实数【分析】根据使立方根有意义的条件解答即可.【题目详解】解:立方根的被开方数可以取一切实数,所以x可以取一切实数.故答案为:一切实数.【题目点拨】本题考查使立方根有意义的条件,理解掌握该知识点是解答关键.17、1.5【解题分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【题目详解】解:根据题意得:,∴∴;故答案为:.【题目点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.18、0.1【分析】连接AC,在直角△ABC中,已知AB,BC可以求AC,根据AC,CD,AD的长度符合勾股定理确定AC⊥CD,则可计算△ACD的面积,又因为△ACD的面积可以根据AD边和AD边上的高求得,故根据△ACD的面积可以求得C到AD的最短距离,即△ACD中AD边上的高.【题目详解】解:连接AC,在直角△ABC中,AB=3km,BC=1km,则22,34∵CD=12km,AD=13km,故存在AD2=AC2+CD2∴△ACD为直角三角形,且∠ACD=90°,∴△ACD的面积为12×AC×CD=30km2,∵AD=13km,∴AD边上的高,即C到AD的最短距离为7150 1313=km,游艇的速度为11601313150⨯km/小时,需要时间为601313150⨯小时=0.1小时.故答案为0.1.点睛:本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算公式,本题中证明△ACD是直角三角形是解题的关键.三、解答题(共78分)19、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【题目详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE =EF ,∵DE =DF +EF ,∴BD +CE =DE ;(3)BD ﹣CE =DE .理由是:∵BF 平分∠ABC ,∴∠ABF =∠CBF ,∵DF ∥BC ,∴∠DFB =∠CBF ,∴∠DFB =∠DBF ,∴BD =DF ;同理可证:CE =EF ,∵DE =DF ﹣EF ,∴BD ﹣CE =DE .【题目点拨】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.20、(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论; (2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【题目详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BC A ACB AE CD =⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS ≌ ,∴AEC CDB ∠=∠,在四边形AEPD 中,∵360AEC EPD PDA A ∠+∠+∠+∠=︒,∴18060360AEC EPD CDB ∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM ;②AP =2PM 成立,理由如下:延长BP 至D ,使PD =PC ,连接AD 、CD ,如图4所示:则∠CPD =180°﹣∠BPC =60°,∴△PCD 是等边三角形,∴CD =PD =PC ,∠PDC =∠PCD =60°,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°=∠PCD ,∴∠BCP =∠ACD ,∴△ACD ≌△BCP (SAS ),∴AD =BP ,∠ADC =∠BPC =120°,∴∠ADP =120°﹣60°=60°,延长PM 至N ,使MN =MP ,连接CN ,∵点M 是边BC 的中点,∴CM =BM ,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【题目点拨】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.21、同意教练C 的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【题目详解】解:依题意渴求得: 甲队员成绩的平均数为6677899991010+++++++++=8; 乙队员成绩的平均数为6778888991010+++++++++=8; 丙队员成绩的平均数为6667781010101010+++++++++=8; 甲队员成绩的中位数为898.52+=,乙队员成绩的中位数为8882+=, 丙队员成绩的中位数为787.52+=, 甲队员成绩的方差为2s 甲=110 [(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为2s 乙=110[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2; 丙队员成绩的方差为2s 丙=110 [(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3; 由于甲、乙、丙三名队员成绩的平均数分别为:8x =甲,8x =乙,8x =丙,所以,三名队员的水平相当.故,教练A 说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:2 1.8s =甲,2 1.2s =乙,23s =丙.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【题目点拨】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.22、(1)29.5°;(2)①42°或66°;②35°或63°.【分析】(1)根据平行线的性质和三角形的内角和即可得到结论;(2)①Ⅰ、当点Q落在AB上时,利用三角形内角和定理计算即可.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,利用平行线的性质,三角形的内角和定理计算即可.②分两种情形:Ⅰ、当点Q在平行线AB,CD之间时.Ⅱ、当点Q在CD下方时,分别构建方程即可解决问题.【题目详解】(1)∵直线AB∥CD,∴∠BEF=∠CFE=119°,∠PEF=180°﹣∠CFE=61°,∵EG平分∠BEF,∴∠FEG=12∠BEF=59.5°,∵∠APG=150°,∴∠EPF=30°,∴∠G=180°﹣30°﹣61°﹣59.5°=29.5°;故答案为:29.5°;(2)①Ⅰ、当点Q落在AB上时,易证PF⊥AB,可得∠EPF=90°,∴∠EFP=90°﹣∠PEF=90°﹣48°=42°.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,∵AB∥CD,∴∠EPQ+∠PQF=180°,∴∠EPQ=132°,∵∠EPF=∠QPF,∴∠EPF=12×132°=66°,∴∠EFP=180°﹣48°﹣66°=66°.综上所述,满足条件的∠EFP的值为42°或66°,故答案为:42°或66°.②Ⅰ、当点Q在平行线AB,CD之间时.设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.Ⅱ、当点Q在CD下方时,设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=23x,∴75°+23x+x=180°,解得x=63°,∴∠EFP=63°.【题目点拨】本题考查了三角形的角度问题,掌握平行线的性质和三角形的内角和定理是解题的关键.23、1.【题目详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=12CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.24、详见解析.【解题分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【题目详解】解:作图:①画射线AE ,在射线上截取AB=a ,②作AB 的垂直平分线,垂足为O ,再截取CO=h ,③再连接AC 、CB ,△ABC 即为所求.【题目点拨】此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25、该服装商第一批进货的单价是80元.【分析】设第一批进货的单价为x 元,则第二批进货单价为()8x +元,据此分别表示出两批进货的数量,然后根据“第二批所购数量是第一批购进数量的2倍”列出方程求解,然后检验得出答案即可.【题目详解】设第一批进货的单价为x 元,则第二批进货单价为()8x +元, 则:80001760028x x ⨯=+, 解得:80x =,经检验,80x =是原方程的解,答:该服装商第一批进货的单价是80元.【题目点拨】本题主要考查了分式方程的实际应用,准确找出等量关系是解题关键.26、(1)50°;(2)见解析【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD ,根据52C BAC ∠=∠设∠C=2x ,∠BAC=5x ,根据三角形的内角和求出x ,即可得到结果;(2)根据等腰三角形的性质得到∠BAD=∠CAD 根据平行线的性质得到∠F=∠CAD ,等量代换得到∠BAD=∠F ,于是得到结论.【题目详解】解:(1)∵AB=AC ,AD ⊥BC 于点D ,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,∵52C BAC ∠=∠,设∠C=2x ,∠BAC=5x ,则∠B=2x,则2x+2x+5x=180,解得:x=20,∴∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【题目点拨】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.。

鲁教版八年级数学上册期末素养综合测试(一)课件

鲁教版八年级数学上册期末素养综合测试(一)课件
6,点F的纵坐标是4.又∵点B的对应点F是直线y= 4 x上的一
7
点,∴设点F的横坐标为a,则4= 4 a,解得a=7.∴点F的坐标是(7,
定时间多一天;如果用快马送,所需的时间比规定时间少3天.
已知快马的速度是慢马的2倍,求两匹马的速度.设慢马的速

度为x里/天,则可列方程为 ( D )
A. 900+1= 90+03
x
2x
C. 900+1= 90-03
x
2x
B. 9-010=
x
900
-32x
D. 9-010= +9300
x
2x
解析 慢马的速度为x里/天,则快马的速度为2x里/天,根据规
则∠EFC=∠EFD=90°,
∴∠FED=90°-∠D=90°-60°=30°,
∴DF= 1 ED=2,
2
∴EF= E=D2 = D,FC2 F=C4D2 -D22F=81-2=6,∴CE= E=F 2 =CF,故2 选(C1. 2)2 62 48
10.(2024浙江杭州上城期末)如图,△ABC中,∠BAC=45°,将 △ABC绕点A逆时针旋转α(0°<α<45°)得到△ADE,DE交AC 于点F.当α=30°时,点D恰好落在BC上,则∠AFE= ( B )
1 EC;②四边形AEBD是平行四边形;③若∠ADF=∠BCF,则
2
∠ABC=90°;④若DF=FC,则△DCE是直角三角形.其中正确 的有 ( A )
A.4个 C.2个
B.3个 D.1个
解析 ∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC, AB∥CD,又∵AE∥BD,∴四边形AEBD是平行四边形,故② 正确;∵四边形AEBD是平行四边形,∴AD=EB,∴EB=BC,∵ EC=EB+BC,∴BC= 1 EC,故①正确;③∵AD∥EC,∴∠ADF=

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末测试卷(附有参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若三角形的两条边的长度是4cm 和7cm ,则第三条边的长度可能是( )A .2cmB .5cmC .11cmD .12cm2.如图所示,点D ,E 分别是△ABC 的边BC ,AB 上的点,分别连结AD ,DE ,则图中的三角形一共有( )A .3个B .4个C .5个D .6个3.下列各题的计算,正确的是( )A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=4.下列等式中不成立的是( )A .()222396x y x xy y -=-+.B .()()22a b c c a b +-=--. C .2221124⎛⎫-=-+ ⎪⎝⎭m n m mn n . D .()22244x y x y -=-. 5.在学校“文明学生”表彰会上,6名获奖者每两位都相互握手祝贺,则他们一共握了多少次手( )A .6B .8C .13D .156.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,内错角相等D .如果两个角都是30°,那么这两个角相等 7.已知实数x 、y 满足33x ?y 27=-,当x 1>时,y 的取值范围是( )A .y 3<-B .3y 0-<<C .y 3<-或y 0>D .3y 0-<<或y 0>8.下列计算中,(1) m n mn a a a ⋅=; (2) ()22m n m n a a ++= ; (3) ()311211263n n n n a b ab a b -++⎛⎫⋅-=- ⎪⎝⎭;(4)633a a a ÷=;正确的有( )A .0个B .1个C .2个D .3个9.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D . 10.要使分式21x x +-有意义,x 必须满足的条件是( ) A .1x ≠ B .0x ≠ C .2x ≠- D .2x ≠-且1x ≠11.《居室内空气中甲醛的卫生标准》(GB /T 16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g /m 3.将0.00008用科学记数法可表示为( )A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯12.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化二、填空题13.已知3x y -=,则代数式()()2122x x y y x +-+-的值为 .14.计算:(1)202220241(4)4⎛⎫-⨯-= ⎪⎝⎭ .(2)10298⨯= .15.在螳螂的示意图中AB DE ∥,ABC 是等腰三角形12672ABC CDE ∠=︒∠=︒,,则ACD ∠的度数是 .16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是 .17.若()22224x k x x k +=++,则k = .18.一个多边形截去一个角后,形成一个新的多边形内角和为360°,那么原来的多边形的边数为19.如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为 °.20.计算()22x xy x -÷的结果是 .21.如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形……按照这样的方法拼成的第n 个正方形比第(n )1-个正方形多 个小正方形.22.在等边△ABC 中,E 是∠B 的平分线上一点,∠AEB =105°,点P 在△ABC 上,若AE =EP ,则∠AEP 的度数为 .三、解答题23.化简:231124a a a -⎛⎫-÷⎪+-⎝⎭ 24.计算:(1)860.10.1÷;(2)741133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)()()3a b a b -÷-;(4)()()53xy xy ÷;25.我们知道多项式的乘法可以利用图形的面积进行解释,例如,(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示成(a+b )(a+3b )=a 2+4ab+3b 2.26.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦12000kg 和14000kg ,已知第一块试验田每公顷的产量比第二块少1500kg .如果设第一块试验田每公顷的产量为xkg ,那么x 满足怎样的分式方程?27.春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?28.下表为抄录某运动会票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图如图所示.比赛项目票价(张/元)足球1000男篮800乒乓球x依据上述图表,回答下列问题:(1)其中观看足球比赛的门票有______张,观看乒乓球比赛的门票占全部门票的______%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______;(3)若购买乒乓球门票的总款数占全部门票总款数的542,求每张乒乓球门票的价格.29.某高速路修建项目中有一项挖土工程,招标时接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完成.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完成,你将选择哪一种方案?说明理由.30.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.的边BC,CD上,∠EAF=12(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.答案: 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 9.A 10.A 11.D 12.B 13.414.16 999615.45︒/45度16.ASA17.1218.5或4或3.19.4520.2x y -21.21n +/1+2n22.90︒或120︒23.2-a24.(1)0.01(2)127-(3)222a ab b -+(4)22x y 25.(1)(a +2b )(2a +b )=2a 2+5ab +2b 226.12000140001500x x =+. 27.第一批春笋每千克进价10元28.(1)50,20;(2)310;(3)每张乒乓球门票的价格为500元. 29.(1)20天(2)方案三30.(1)EF =BE +DF ;(2)EF =DF−BE ;(3)5.。

人教版八年级数学上册期末素养综合测试(二)课件

人教版八年级数学上册期末素养综合测试(二)课件
∴△ADE≌△BCF(SAS),∴∠ADE=∠BCF,
∵∠CGE=∠ADE+∠BCF=94°,
∴∠GCD= 1 ∠CGE=47°.
2
16.(2022山东临沂期末)有两个正方形A、B,现将B放在A的 内部得图甲,将A、B并列放置后构造新的正方形得图乙.若 图甲和图乙中阴影部分的面积分别为1和10,则正方形A、B 的面积之和为 11 .
∴AB的长度可能是3.5.故选C.
7.如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作 DE⊥BC于点E,且CE=1.5,则AB的长为 ( C )
A.3
B.4.5
C.6
D.7.5
解析 ∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC= AC,∵DE⊥BC,∴∠CDE=30°,∵CE=1.5,∴CD=2CE=3,∵BD 平分∠ABC,∴AD=CD=3,∴AB=AC=AD+CD=6.
解析 如图,在BC上取一点E',使得BE'=BE,连接FE',过点A作 AH⊥BC于H.
在Rt△ACH中,∵∠AHC=90°,∠C=30°,AC=24, ∴AH= 1 AC=12,
2
∵BD平分∠ABC,∴∠FBE=∠FBE',
∵BE=BE',BF=BF,∴△FBE≌△FBE'(SAS), ∴FE=FE',∴AF+FE=AF+FE', 根据垂线段最短可知,当A,F,E'三点共线,且与AH重合时,AF+ FE的值最小,最小值为12.
值:
x

1
1,其中x2xx=223x.1
1
解析 原式=1 ·x 1 2分(x 1)2
x 1 (x 1)(x 1)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•江津区校级月考)下列各组三条线段中,不能构成三角形的是()A.2cm,2cm,3cm B.3cm,8cm,10cmC.三条线段之比为1:2:3D.3a,5a,4a(a>0)2.(2分)(2022秋•望花区月考)在△ABC中,∠C=90°,∠B=2∠A,则∠A=()A.15°B.30°C.45°D.60°3.(2分)(2022秋•越秀区期中)已知一个正n边形的一个外角为40°,则n =()A.10B.9C.8D.74.(2分)(2022秋•天山区校级期中)如图,在△ABC≌△DEF,且AB=3,AE =1,则BD的长为()A.4B.5C.6D.75.(2分)(2022秋•天门期中)如图为轴对称图形的是()A.B.C.D.6.(2分)(2022秋•兴宁区校级期中)如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A'B′C,P为线段A'C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.17.(2分)(2022秋•广安区校级期中)点P(5,﹣2)关于y轴的对称的点的坐标是()A.(﹣5,﹣2)B.(﹣5,2)C.(5,﹣2)D.(5,2)8.(2分)(2022秋•任城区期中)下列从左到右的变形属于因式分解的是()A.a2+a+14=(a+12)2B.6a3b=3a2•2abC.a2﹣b2+1=(a+b)(a﹣b)+1D.(x+3)(x﹣3)=x2﹣99.(2分)(2022秋•朝阳区校级期中)下列运算正确的是()A.a3+a6=a9B.a6•a2=a12C.(a3)2=a5D.a4•a2+(a3)2=2a610.(2分)(2022秋•张店区校级月考)分式2x−6x+8的值是零,则x的值为()A.﹣3B.3C.8D.﹣811.(2分)(2022秋•岳阳楼区月考)根据分式的基本性质,分式a−b−x可变形为()A.−a−bx B.a+bxC.−a−bxD.−a+bx12.(2分)(2022秋•冷水滩区校级月考)若1m +1n=2,则代数式5m−2mn+5n−m−n的值为()A.﹣4B.﹣3C.3D.4二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•海淀区校级期中)如图,D是△ABC的边CA延长线上一点,∠1=°,∠2=°.14.(3分)(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=.15.(3分)(2022秋•江阴市期中)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BE的长为.16.(3分)(2022秋•大埔县期中)在平面直角坐标系中,A(2022,2023)和B (2022,﹣2023),则A与B关于对称.17.(3分)(2022春•沙坪坝区校级月考)若x+y=3,x2+y2=132,则x﹣y的值为.18.(3分)(2022•秦都区校级开学)关于x的方程x−2x+4=ax+4有增根,则a的值为.三、解答题(共9小题,满分78分)19.(8分)(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.20.(8分)(2022秋•西城区校级月考)计算:(1)(x2y )2⋅xyx2−xy2xy2÷2x;(2)a2b3•(a2b﹣2)﹣2.21.(8分)(2021秋•德江县期末)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘2000毫克所需的银杏树叶的片数与一年滞尘1100毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22.(9分)(2022秋•谷城县期中)如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=80°,∠C=60°,求∠DAE和∠BOA的度数.23.(9分)(2022秋•汕尾校级月考)如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.24.(9分)(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC 相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.25.(9分)(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.26.(9分)(2019秋•垦利区期中)如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20km,BB1=40km,已知A1B1=80km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.27.(9分)(2021秋•寻乌县期末)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)求证:△BDE是等腰三角形;(2)若∠A=35°,∠C=70°,求∠BDE的度数.参考答案一、选择题(共12小题,满分24分,每小题2分)1.C;2.B;3.B;4.B;5.A;6.A;7.A;8.A;9.D;10.B;11.C;12.A;二、填空题(共6小题,满分18分,每小题3分)13.110;7014.515.316.x17.±218.﹣6;三、解答题(共9小题,满分78分)19.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.20.解:(1)原式=x24y2•xyx2−12y•x2=x4y −x4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.21.解:设一片槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,依题意得:20002x−4=1100x,解得:x=22,经检验,x=22是原方程的解,且符合题意.答:一片槐树叶一年的平均滞尘量为22毫克.22.解:∵AE 平分∠CAB ,∠CAB =80°, ∴∠BAE =∠CAE =12∠CAB =40°, ∵AD 是△ABC 的高, ∴∠ADC =90°,∴∠CAD =90°﹣∠C =90°﹣60°=30°, ∴∠DAE =∠CAE ﹣∠CAD =40°﹣30°=10°, ∵∠CAB =80°,∠C =60°,∴∠ABC =180°﹣(∠CAB +∠C )=180°﹣(80°+60°)=40°, ∵BF 平分∠ABC , ∴∠ABO =12∠ABC =20°,∴∠BOA =180°﹣(∠ABO +∠BAE )=180°﹣(20°+40°)=120°. 23.(1)证明:∵四边形的内角和是360°, ∴∠DAB +∠DCB =360°﹣∠B ﹣∠D =180°, ∵AE ,CF 分别是∠DAB 和∠DCB 的平分线. ∴∠FCB =12∠DCB ,∠BAE =12∠DAB , ∴∠FCB +∠BAE =12(∠DAB +∠DCB )=90°, ∵∠AEB +∠BAE =90°, ∴∠FCB =∠AEB , ∴AE ∥FC ;(2)解:∵CF 是∠DCB 的平分线. ∴∠DCF =12∠DCB =28°, ∴∠DFC =90°﹣∠DCF =62°, ∵AE ∥FC ,∴∠DAE =∠DFC =62°. 24.证明(1)在ABC 和△BAD 中, {AC =BD BC =AD AB =BA,∴△ABC ≌△BAD (SSS );(2)∵△ABC ≌△BAD , ∴∠CBA =∠DAB , ∴OA =OB , ∵OE ⊥AB , ∴AE =BE .25.(1)证明:∵CE ∥AB , ∴∠B =∠DCE , 在△ABC 与△DCE 中, {BC =CE∠ABC =∠DCE BA =CD, ∴△ABC ≌△DCE (SAS );(2)解:∵△ABC ≌△DCE ,∠B =50°,∠D =22°, ∴∠ECD =∠B =50°,∠A =∠D =22°, ∵CE ∥AB ,∴∠ACE =∠A =22°,∵∠CED =180°﹣∠D ﹣∠ECD =180°﹣22°﹣50°=108°, ∴∠AFG =∠DFC =∠CED ﹣∠ACE =108°﹣22°=86°. 26.解:如图,延长AA 1到D 使A 1D =AA 1,连接BD 交MN 于P , 则P A +PB 的最小值=BD , 过D 作DE ⊥BB 1交BB 1于E ,∵AA 1=20km ,BB 1=40km ,A 1B 1=80km , ∴DE =80km ,BE =60km , ∴BD =√602+802=100km , ∴这个最短距离是100km .27.(1)证明:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DBE=∠DEB,∴DB=DE,∴△BDE是等腰三角形;(2)解:∵∠A=35°,∠C=70°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣35°﹣70°=75°,∵DE∥BC,∴∠BDE+∠DBC=180°,∴∠BDE=180°﹣75°=105°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册期末综合水平测试
一、相信你的选择(每小题3分,共30分)
1、下列计算中,正确的是 ( ) A 、(a +b)2=a 2+b 2 B 、(a -b)2=a 2-b 2
C 、(a +m )(b +n )=ab +mn
D 、(m +n )(-m +n )=-m 2+n 2
2、一次函数y=ax+b 在直角坐标系中的图象如图1所示,则化简|a+b |-|a -b |的结果是 A 、2a
B 、-2a
C 、2b
D 、-2b
3、下列图形中,对称轴有6条的图形是 ( )
A B C D 4、在△ABC 和△A 'B 'C '中有①AB =A 'B ',②BC =B 'C ',
③AC =A 'C ',④∠A =∠A ',⑤∠B =∠B ',⑥∠C =∠C ',则下列各组条件中不能保证 △ABC ≌△A 'B 'C '的是 ( ) A 、①②③
B 、①②⑤
C 、①③⑤
D 、②⑤⑥
5、如果x >-1,则多项式x 3-x 2-x +1的值 ( ) A 、大于1
B 、小于0
C 、不小于0
D 、不大于0
6、某兴趣小组做实验,将一个装满水的啤酒瓶倒置,并设法使瓶里的水从瓶口匀速流出,那
么,该倒置啤酒瓶内水面的高度h 随水流出的时间t 变化的图象大致是 ( )
A B C D
A B C D
7、如图2刻画了小李、小王、小张、小刘、小杨五位同学每月的平均花费情况,则下列说法错误的是 ( )
A 、小张每月花费大约是小王
每月花费的20%,大约是小杨的33.3%
B 、小刘每月花费占这五位同学每月总花费的35%
C 、这五位同学每月花费钱数之比依次是4:5:1:7:3
D 、小王每月花费是另外四位同学每月总花费的25%

1
图2
8、如图3,三角形纸片ABC 中,∠A =75º,∠B =60º,将纸片的角折叠,使点C 落在△ABC 内,若∠α=35º,则∠β等于 ( )
A 、48º
B 、55º
C 、65º
D 、以上都不对
9、⊿ABC 的三边a 、b 、c 满足:a 2
+b 2
+c 2
-2a -2b =2c -3,则⊿ABC 为( ) A 、直角三角形 B 、等腰直角三角形 C 、等腰三角形 D 、等边三角形 10、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )
A 、4个
B 、5个
C 、7个
D 、8个
二、试试你的身手(每小题3分,共30分)
11、当n 为奇数时,n
n
n n )
42(372-⋅⋅= . 12、某一次函数的图象经过点(-1,2),且函数y 的值随自变量的增大而减小,请你写出一个符合上述条件的函数关系式: .
13、如图4,点P 是∠BAC 的平分线上一点,PE ⊥AB ,PF ⊥AC ,E 、F 分别为垂足,①PE =PF ,②AE =AF ,③∠APE =∠APF ,上述结论中正确的是 (只填序号).
14、如图5,在△ABC 中,∠B =70º,DE 是AC 的垂直平分线,且∠BAD :∠BAC =1:3,则∠C 的度数是 .
15、已知a 2+b 2+4a -2b +5=0,则b
a b
a -+= .
16、下列问题中,选用哪种统计图较恰当?
(1)为了反映长江汛期水位的变化情况,有关人员每天在长江某地测量汛期的最高水位. (2)为了反映南京每年12个月中,每个月的平均温度,有关人员对南京市2004年12个月的温度作了测量与计算.(算出月平均温度).
(3)为了了解南京市民对“随地吐痰就要重罚”的态度(赞成、基本赞成、无所谓、反对),某新闻机构对1000位市民作了调查.
答:(1) (2) (3)
17、若一次函数y=kx -3与y=x +1的图象以及y 轴围成的三角形的面积为8,则k = . 18、有一轮船由东向西航行,在A 处测得西偏北15º有一灯塔P .继续航行10海里后到B 处,又测得灯塔P 在西偏北30º.如果轮船航向不变,则灯塔与船之间的最近距离是 .
19、如图6,用火柴棒按如图3的方式搭一行三角形,搭一个三角形需3枝火柴棒,搭2个三角形需5枝火柴棒,搭3个三角形需7枝火柴棒,照这样的规律搭下去,搭n 个三角形需要s 枝火柴棒,那么s 关于n 的函数关系是 (n 为正整数).
20、观察下列各式,你会发现什么规律? 1×3=12+2×1, 2×4=22+2×2,
图3
A
B
C E
P
F
图4
A
B
C
E
D 图
5
图6
3×5=32+2×3, 4×6=42+2×4,…
请你将猜到的规律用正整数n 表示出来: .
三、挑战你的技能(本大题共40分)
21、如图7,计算它的体积.(5分)
22、先化简,再求值:)12)(1()1(32-+-+a a a ,其中3-=a .(5分)
23、利用因式分解计算(5分)
2008
200720072004
2007320072323-+-⨯-
24、(8分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM =CN ,直线BN 与AM 相交于Q 点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM 的大小,然后猜测∠BQM 等于多少度.并利用图③证明你的结论.
25、(7分)南宁市政府为了了解本市市民对首届中国一东盟博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了300个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总
图7
① ②

图8
体印象感到满意的人数绘制了图9和图10(部分).
根据图中提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(2)已知被抽查的300人中有83%的人对博览会总体印象感到满意,请你求出21~30岁年龄段的满意人数,并补全图11.
(3)比较21~30岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
26、(10分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些土豆后,又降价出售,以每千克0.4元的价格售完了全部土豆,售出土豆的千克数与他手中持有钱数(含备用零钱)的关系如图11所示,结合图像回答下列问题.
(1)农民自带的零钱是多少?
(2)降价出售前,农民手中的钱数与售出的土豆千克数的关系如何? (3)该农民一共带了多少土豆?
图9
图10
图11
参 考 答 案
一、DCDCC CDBDC
二、11、-1 12、y=-x +1(只要满足条件即可) 13、①②③ 14、44º
15、
3
1
16、折线统计图,条形统计图,扇形统计图 17、2(注:k ≠0) 18、5海里 19、S=2n +1 20、n (n +2)=n 2+2n
三、21、25x 3+10x 2 22、
23、设2007=x ,则原式=502501
2008200413)
1)(1()3)(1(133222
323==+-=+---=--++--x x x x x x x x x x x x 24、∠BQM =60º,如图③,在△ABN 和△CAM 中,易证∠BAN =∠ACM =120º,AN =CM ,又AB =AC ,所以△ABN ≌△CAM ,所以∠N =∠M ,又∠BQM =∠N +∠QAN =∠M +∠CAM =∠ACB =60º.
25、(1)21—30岁;(2)300×83%-(41+50+40+18+7)=93(人),图略. (3)21-30岁的满意率:
%79%10011793
%100%3930093≈⨯=⨯⨯
41-50岁的满意率:%89%10045
40
%100%1530040≈⨯=⨯⨯
因此21—30岁年龄段比41—50岁年龄段的满意率低. 26、(1)5元;(2)y =
2
1
x +5;(3)45kg .。

相关文档
最新文档