2021届广东省东莞市高三上学期第一次调研考试数学(文)试题Word版含答案

合集下载

广东省东莞市2021-2022学年高三上学期期末考试数学试题

广东省东莞市2021-2022学年高三上学期期末考试数学试题

2021-2022学年度第一学期教学质量检查高三数学一、单项选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 请把正确选项在答题卡中的相应位置涂黑. 1. 设集合{}=|04A x x ≤≤,{}2|230B x x x =--≤,则AB =A. {}|03x x ≤≤B. {}|14x x -≤≤C. {}|13x x -≤≤D. {}|01x x ≤≤2. 234(1)(1)(1)x x x +++++的展开式中2x 项的系数是A. 9B. 10C. 11D. 12 3. 已知函数()sin f x x =,()x x g x e e -=+,则下列结论正确的是A. ()()f x g x 是偶函数B. |()|()f x g x 是奇函数C. ()|()|f x g x 是奇函数D. |()()|f x g x 是奇函数4. 若(0,)2πα∈,212tan cos αα=,则tan α=A. 12B. 1C. 2D. 5. 甲乙两人在数独APP 上进行“对战赛”,每局两人同时解一道题,先解出题的人赢得一局,假设无平局,且每局甲乙两人赢的概率相同,先赢3局者获胜,则甲获胜且比赛恰进行了4局的概率是A. 310B. 38C. 116D. 3166. “中国天眼”(如图1)是世界最大单口径、最灵敏的射电望远镜,其形状可近似地看成一个球冠(球冠是球面被平面所截的一部分,如图2所示,截得的圆叫做球冠的底,垂直于截面的直径被截得的线段叫做球冠的高.若球面的半径是R ,球冠的高度是h ,则球冠的面积2S Rh π=).已知天眼的球冠的底的半径约为250米,天眼的反射面总面积(球冠面积)约为25万平方米,则天眼的球冠高度约为0.52)图1 图2A. 52米B. 104米C. 130米D. 156米7. 已知直线l 过抛物线C :22(0)y px p =>的焦点,且与该抛物线交于,M N 两点.若线段MN 的长为16,MN 的中点到y 轴距离为6,则MON ∆(O 为坐标原点)的面积是A. B. C. D. 68. 已知O 为坐标原点,点P 为函数cos y x =图象上一动点,当点P 的横坐标分别为,,1286πππ时,对应的点分别为123,,P P P ,则下列选项正确的是 A. 123||||||OP OP OP >> B. 132||||||OP OP OP >> C. 231||||||OP OP OP >> D. 321||||||OP OP OP >>二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 请把正确选项在答题卡中的相应位置涂黑.9. 已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是A. 若120z z +=,则12z z =B. 若21z z =,则12z z =C. 若312z z z =,则312z z z =D. 若1211z z +=+,则12z z =10. 已知函数()sin cos f x a x b x =+,若()0f =且对任意x R ∈都有()3f x f π⎛⎫≤ ⎪⎝⎭,则下列结论正确的是A. ()3s f x x π⎛⎫=+ ⎪⎝⎭ B. ()6f x x π⎛⎫=+ ⎪⎝⎭C. ()f x 的图象向左平移 6π个单位后,图象关于原点对称 D. ()f x 的图象向右平移2 3π个单位后,图象关于y 轴对称11. 气象意义上从春季进入夏季的标志为“当且仅当连续5天每天日平均温度不低于22C ”.现有甲、乙、丙三地连续5天日平均温度的记录数据(数据均为正整数,单位C )且满足以下条件: 甲地:5个数据的中位数是24,众数是22; 乙地:5个数据的中位数是27,平均数是24;丙地:5个数据有1个是30,平均数是24,方差是9.6; 根据以上数据,下列统计结论正确的是A. 甲地进入了夏季 B . 乙地进入了夏季C. 不能确定丙地进入了夏季D. 恰有2地确定进入了夏季12. 已知函数291241()1(1)14x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩,则下列结论正确的是A. 1*()4,n f n n N -=∈B. 1(0,),()x f x x∃∈+∞> C. 关于x 的方程1*()4()n f x n N -=∈的所有根之和为23n n +D. 关于x 的方程1*()4()n f x n N -=∈的所有根之积小于2(!)n三、填空题:本大题共4小题,每小题5分,共20分. 请把答案填在答题卡的相应位置上.13. 已知F 为双曲线C :221916x y -=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______.14. 已知一个圆锥的底面半径为3,其侧面积为15π,则该圆锥的体积为___________.15. 桌面上有一张边长为2的正三角形的卡纸,设三个顶点分别为A ,B ,C ,将卡纸绕顶点C 顺时针旋转56π,得到A 、B 的旋转点分别为1A 、1B ,则11AA BB ⋅=_________. 16. 龙曲线是由一条单位线段开始,按下面的规则画成的图形:将前一代的每一条折线段都作为这一代的等腰直角三角形的斜边,依次画出所有直角三角形的两段,使得所画的相邻两线段永远垂直(即所画的直角三角形在前一代曲线的左右两边交替出现). 例如第一代龙曲线(图3)是以12A A 为斜边画出等腰直角三角形的直角边13A A ,32A A 所得的折线图,图4、图5依次为第二代、第三代龙曲线(虚线即为前一代龙曲线). 1A ,2A ,3A 为第一代龙曲线的顶点,设第n 代龙曲线的顶点数为n a ,由图可知13a =,25a =,39a =,则4a =_____;数列12n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S =________.图3 图4 图5四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分. 解答应写出文字说明、证明过程或演算步骤. 必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. 17. (本小题满分10分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2cos cos a b C c B =+. (1)求a ;(2)若3A π=,ABC ∆,求ABC ∆的周长.18. (本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且517a =,42222S a =+.(1)求数列{}n a 的通项公式;(2)在任意相邻两项k a 和1k a +(1,2,3,...)k =之间插入2k 个1,使它们和原数列的项构成一个新的数列{}n b ,求数列{}n b 的前200项的和200T .19. (本小题满分12分)如图6,在正四棱锥S ABCD -中,点O ,E 分别是BD ,BC 中点,点F 是SE 上的一点. (1)证明:OF BC ⊥;(2)若四棱锥S ABCD -的所有棱长为OF 与平面SDE 所成角的正弦值的最大值.图620. (本小题满分12分)已知某次比赛的乒乓球团体赛采用五场三胜制,第一场为双打,后面的四场为单打.团体赛在比赛之前抽签确定主客队. 主队三名选手的一单、二单、三单分别为选手A 、B 、C ,客队三名选手的一单、二单、三单分别为选手X 、Y 、Z . 比赛规则如下:第一场为双打(YZ 对阵BC )、第二场为单打(X 对阵A )、第三场为单打(Z 对阵C )、第四场为单打(Y 对阵A )、第五场为单打(X 对阵B ). 已知双打比赛中YZ获胜的概率是14,单打比赛中X 、Y 、Z 分别对阵A 、B 、C 时,X 、Y 、Z 获胜的概率如下表:(1(2)客队输掉双打比赛后,能否通过临时调整选手Y 为三单、选手Z 为二单使得客队团体赛获胜的概率增大?请说明理由.21. (本小题满分12分)已知点A 为椭圆2222:1(0)x y C a b a b+=>>的左顶点,点(1,0)F 为右焦点,直线:4l x =与x 轴的交点为N ,且||||AF FN =,点M 为椭圆上异于点A 的任意一点,直线AM 交l 于点P .(1)求椭圆C 的标准方程; (2)证明:2MFN PFN ∠=∠.22. (本小题满分12分)已知0a >且1a ≠,函数21()log 2a f x x ax =+.(1)若e a =,求函数()f x 在1x =处的切线方程; (2)若函数()f x 有两个零点,求实数a 的取值范围.。

广东省东莞市市高级中学2021年高三数学文模拟试题含解析

广东省东莞市市高级中学2021年高三数学文模拟试题含解析

广东省东莞市市高级中学2021年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 五名志愿者去四个不同的社区参加创建文明城市的公益活动,每个社区至少一人,且甲、乙不能分在同一社区,则不同的分派方法有()A.240种 B.216种 C.120种 D.72种参考答案:B略2. 函数是上的奇函数,满足,当∈(0,3)时,则当∈(,)时, =()A. B. C. D.参考答案:B3. 若x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则()A.a<b<c B.c<a<bC.b<a<c D.b<c<a参考答案:C4. 下列函数既是奇函数,又是上的增函数的是()A. B. C. D.参考答案:【知识点】函数的奇偶性函数的单调性B3 B4【答案解析】D A选项是偶函数,B选项为奇函数但是为减函数,C选项既不是奇函数也不是偶函数,故选D。

【思路点拨】根据奇函数偶函数的定义确定,再用增减性求出结果5. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种参考答案:B本题主要考查了排列组合和均匀分组问题.难度不大.分给4人可以是2本画册2本集邮册,分法为,还可以1本画册3本集邮册,分法为,所以分法有10种。

6. 已知双曲线的右焦点F,直线与其渐近线交于A,B两点,且为钝角三角形,则双曲线离心率的取值范围是( )A. ()B. (1,)C. ()D. (1,)参考答案:D7. 已知等于()A. B. C. D.参考答案:D8. 已知1+i=,则在复平面内,复数z所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限参考答案:A考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则和几何意义即可得出.解答:解:∵1+i=,∴z===在复平面内,复数z所对应的点在第一象限.故选:A.点评:本题考查了复数的运算法则和几何意义,属于基础题.9. 已知圆O的半径为定长r,点A是平面内一定点(不与O重合),P是圆O上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹可能是下列几种:①椭圆,②双曲线,③抛物线,④直线,⑤点()A.①②⑤B.①②③C.①④⑤D.②③④参考答案:A【考点】J3:轨迹方程.【分析】对A的位置进行讨论,利用中垂线的性质即可得出QO和QP的关系,根据圆锥曲线的定义得出结论.【解答】解:∵线段AP的垂直平分线l和直线OP相交于点Q,∴QA=QP,(1)若A在圆外,则|QO﹣OP|=OP,即|QO﹣QA|=r<OA,此时Q点轨迹为双曲线;(2)若A在圆内,则|QA+QO|=|QP+QO|=r>OA,此时Q点轨迹为椭圆;(3)若A在圆上,则AP的中垂线经过圆心O,过Q点轨迹为圆心O,故选A.【点评】本题考查了圆锥曲线的定义,属于中档题.10. 若函数在区间,0)内单调递增,则的取值范围是 ( )A.[,1)B.[,1)C.,D.(1,)参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 如图,线段=8,点在线段上,且=2,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点.设=,的面积为.则的定义域为________;的最大值为 ________.参考答案:略12. 当x= 时,函数取得最小值。

广东省2021届高三数学上学期第一次质量检测试题 文

广东省2021届高三数学上学期第一次质量检测试题 文

最新学年高三级第一学期第一次质检试题文科数学2019-10本试卷共4页,22小题, 满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}{}21,20A x x B x x x =≥=--<,则AB =( ). A.{}1x x ≥ B.{}12x x ≤< C. {}11x x -<≤ D.{}1x x >- 2.设复数z 满足(3)3i z i +=-,则||z =( ).A.12B.1 2 D. 23.为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:参加场数12 3 4 567参加人数占调查人数的百分比 8% 10% 20%26%18%12% 4% 2%估计该校高一学生参加传统文化活动情况正确的是( ).A.参加活动次数是3场的学生约为360人B.参加活动次数是2场或4场的学生约为480人C.参加活动次数不高于2场的学生约为280人D.参加活动次数不低于4场的学生约为360人4.已知双曲线C :222210,0)x y a b a b-=>>(,直线y b =与C 的两条渐近线的交点分别为,M N ,O 为坐标原点.若OMN ∆为直角三角形,则C 的离心率为( ). 23C.255.已知数列{}n a 中,3=2a ,7=1a .若数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,则9a =( ).A.12B.54C.45D. 45-6.已知1sin()62πθ-=,且02πθ∈(,),则cos()3πθ-=( ).A. 0B.12 C.1 37.如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2. 在圆O 内,将线段MN 绕N 点按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将线段MN 绕M 点按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动……点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则此点取自阴影部分内的概率为().A.4π-12π-C.2π-D.2π8.在边长为3的等边ABC ∆中,点M 满足2BM MA =,则CM CA ⋅=( ).A.2B .C .6D .1529.已知函数()314,025,0x x f x x x x ⎧+≤⎪=⎨⎪--+>⎩(),,当[],1x m m ∈+时,不等式()()2f m x f x m -<+恒成( ).A 11.已知过抛物线2y =焦点F l 与x 轴交于点C ,AM l ⊥于点M ,则四边形AMCF 的面积为( ) A .B .12C .D .12.若关于x 的方程0x e ax a +-=没有实数根,则实数a 的取值范围是( )A .(2,0e -⎤⎦B .)20,e ⎡⎣C .(],0e -D .[)0,e二、填空题:本大题4小题,每小题5分,共20分.13.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于______.14.已知长方体1111ABCD A B C D -的外接球体积为323π,且12AA BC ==,则直线1A C 与平面11BB C C 所成的角为______.15.将函数()sin cos f x a x b x =+(),0∈≠R ,a b a 的图象向左平移π6个单位长度,得到一个偶函数图象,则=ba______. 16.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2920n n a b n n =-+-,且1n n b b +<,则满足条件的n 的取值集合为______.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,角A B C ,,的对边分别是a b c ,,.已知sin sin 03b C c B π⎛⎫--= ⎪⎝⎭.(Ⅰ)求角C 的值;(Ⅱ)若4a c ==,ABC ∆的面积.18.(本小题满分12分)为了了解A 地区足球特色学校的发展状况,某调查机构得到如下统计数据:(Ⅰ)(已知:0.751r ≤≤,则认为y x 与线性相关性很强;0.30.75r ≤<,则认为y x 与线性相关性一般;0.25r ≤,则认为y x 与线性相关性较弱);(Ⅱ)求y 关于x 的线性回归方程,并预测A 地区2019年足球特色学校的个数(精确到个).参考公式:()()()()12211niii nni i i i x x yy r x x y y ===--=--∑∑∑,()2110ni i x x =-=∑,()211.3ni i y y =-=∑,13 3.6056≈,()()()121ˆˆˆ.nii i nii xx y y bay bx xx ==--==--∑∑,19.(本小题满分12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(Ⅰ)求证:AB CG ⊥;(Ⅱ)若ABC ∆和梯形BCGF 的面积都等于3,求三棱锥G ABE -的体积.20.(本小题满分12分)已知直线:10l x y -+=与焦点为F 的抛物线2:2C y px =(0p >)相切. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 的直线m 与抛物线C 交于A ,B 两点,求A ,B 两点到直线l 的距离之和的最小值.21.(本小题满分12分)已知函数()223ln f x x ax a x =-+(a R ∈). (Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的2x e ≥(e 为自然对数的底数),()0f x ≥恒成立,求a 的取值范围.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为122x t y a t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数,a ∈R ).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线()03θρπ=≥与曲线C 交于,O P 两点,直线l 与曲线C 相交于,A B 两点. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)当AB OP =时,求a 的值.23.(本小题满分10分)选修4-5:不等式选讲已知()32f x x =+. (Ⅰ)求()1f x ≤的解集;(Ⅱ)若()2f x a x ≥恒成立,求实数a 的最大值.最新学年高三级第一学期第一次质检文科数学试题参考答案一、选择题 1.D 2.B 3.D 4.A 5.C 6.C 7.B 8.D 9.B 10.C 11.A 12.A 1.【简解】()(){}{}|2+10|12B x x x x x =-<=-<<,所以{}|1A B x x =>-,故选D .2.【简解一】因为()()()()3i 3i 3i i ==3+i3+i 3i 8610z ----=-,所以1z=,故选B .【简解二】因为(3+i)3i =-z ,所以(3+i)(3+i)=3i z z =-,所以1z =,故选B . 3.【简解】估计该校高一学生参加活动次数不低于4场的学生约为:1000+⨯(0.180.12+0.04+0.02)=360人,故选D.4.【简解】依题意得:因为∆OMN 为直角三角形,所以双曲线C 的渐近线为=y x ±,即C 是等轴双曲线,所以C的离心率=e A .5.【简解】依题意得:732,1a a ==,因为数列1{}na 为等差数列,所以7311111273738--===--a a d ,所以()9711159784a a =+-⨯=,所以945=a ,故选C . 6.【简解一】由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得,πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .【简解二】由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,πcos 62θ⎛⎫-= ⎪⎝⎭,所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 7. 【简解一】依题意得:阴影部分的面积2136[222632S =⨯π⨯-⨯⨯π-1()624-6333122P πππ==-⋅,故选B . 【简解二】依题意得:阴影部分的面积2132622=4322S =π⨯-⨯⨯⨯⨯π-4-63331P π==,故选B .8.【简解一】依题意得:121211215)333333333232CM CA CB CA CA CB CA CA CA ⋅=+⋅=⋅+⋅=⨯⨯⨯+⨯⨯=(,故选D .【简解二】依题意得:以C 为原点,CA 所在的直线为x 轴建立平面直角直角坐标系,则530,03,02C A M (),(),(,),所以53153,022CM CA ⋅==(,(),故选D . 【简解三】依题意得:过M 点作MD AC ⊥于D ,如图所示,则CM CA ⋅=CD CA ⋅=15(31cos60)32-⨯⨯=,故选D . 9. 【简解】依题意得:函数()314,025,0x x f x x x x ⎧+≤⎪=⎨⎪--+>⎩()在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1∈+x m m 上恒成立,所以2(1)m m +<,即2m <-,故选B .10. 【简解】【解析】∵函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,∴当2x >-时,()0f x '>;当2x =-时,()0f x '=;当2x <-时,()0f x '<.∴当20x -<<时,()0xf x '<;当2x =-时,()0xf x '=;当2x <-或0x >时,()0xf x '>.选:C .11.【解答】解:解:过B 作BN l ⊥于N ,过B 作BK AM ⊥于K ,设||BF m =,DABM||3AF m =,则||4AB m =,2AK m =,1360222BAA CF p m ⇒∠=︒⇒===42m ∴=342AM m ⇒==3sin 60326MC AF m =︒==则四边形AMCF 的面积为11()(2242)2612322S CF AM MC =+=⨯A .12.【解答】解:方程0x e ax a +-=没有实数根,得方程(1)x e a x =--没有实数根, 等价为函数x y e =与(1)y a x =--没有交点,当0a >时,直线(1)y a x =--与x y e =恒有交点,不满足条件. 当0a =时,直线0y =与x y e =没有交点,满足条件.当0a <时,当过(1,0)点的直线x y e =相切时,设切点为(,)m m e ,则()x f x e '=,则()m f m e '=, 则切线方程为()m m m m y e e x m e x me -=-=-.即m m m y e x me e =-+, 切线过(1,0)点,则0m m m e me e -+=,得2m =,即切线斜率为2e , 要使x y e =与(1)y a x =--没有交点,则满足20a e <-<,即20e a -<<, 综上20e a <,即实数a 的取值范围是2(e -,0],故选:A . 二、填空题13.【简解】依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:3y x z =-,则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为20:220x y A x y +=⎧⎨-+=⎩解得11,2A ⎛⎫- ⎪⎝⎭,所以3z x y =-的最小值()min 173122z =⋅--=-. 14.【简解】设长方体1111ABCD A B C D -的外接球半径为R ,因为长方体1111ABCD A B C D -的外接球体积为343233R ππ=,所以2R =,即1A C 2221=24AA BC AB R ++=,因为12AA BC ==,所以22AB =因为11A B ⊥平面11BB C C ,所以1A C 与平面11BB C C 所成的角为11ACB ∠, 在11Rt ACB △中,因为12AA BC ==,所以11122B C A B ==,所以11=4ACB π∠.15. 【简解】因为()sin cos f x a x b x =+(),0∈≠R ,a b a 的图象向左平移π6单位长度,得到偶函数图象,所以函数()sin cos f x a x b x =+的对称轴为π6x =,所以()sin cos =(0)=333f a b f b πππ=+,因为0a ≠,所以ba16. 【简解】因为11a =,且1n n S a λ=-(λ为常数),所以111a λ=-=,解得=2λ,所以21n n S a =-,所以()-1-1212n n S a n =-≥,所以12n n a a -=,所以12n n a -=,因为2920n n a b n n =-+-,所以2-19202n n n n b -+-=, 所以2+111+28(4)(7)22n n n nn n n n b b ----==0<,解得47n <<,又因为*n ∈N ,所以=5n 或=6n .所以,当=5n 或=6n 时,1n n b b +<,即满足条件的n 的取值集合为{}5,6. 三、解答题:17.(本小题满分12分)解: (Ⅰ)∵sin sin 03b C c B π⎛⎫--= ⎪⎝⎭,∴1sin sin sin sin 02B C C C B ⎛⎫-= ⎪ ⎪⎝⎭,………………2分∴1sin 02C C =,∴sin 03C π⎛⎫+= ⎪⎝⎭. ……………………………………4分∵()0C π∈,,∴23C π=. …………………………6分(Ⅱ)∵2222cos c a b ab C =+-,∴24120b b +-=, ………………………………8分∵0b >,∴2b =, ……………………………… 10分∴11sin 2422S ab C ==⨯⨯=…………………………12分18.(本小题满分12分)解:(Ⅰ)20161x y ==,, …………………………2分()()()()122113.60.753.605610 1.3niii nni i i i x x yy r x x y y ===--===>--∑∑∑,……………………4分 ∴y x 与线性相关性很强. …………………………6分(Ⅱ)()()()()()()()5152120.710.410.420.7ˆ0.3641014iii ii x x yy bxx ==---⨯-+-⨯-+⨯+⨯===++++-∑∑, (8)分ˆˆ120160.36724.76ay bx =-=-⨯=-, ………………………………9分∴y 关于x 的线性回归方程是ˆ0.36724.76yx =-. …………………………10分当2019x =时,ˆ0.36724.76 2.08yx =-=, 即A 地区2019年足球特色学校有208个. …………………………12分19.(本小题满分12分)(Ⅰ)证明:取BC 的中点为D ,连结DF . …………………………1分 由ABC EFG -是三棱台得,平面//ABC 平面EFG ,∴//BC FG .………2分 ∵2CB GF =,∴//CD GF =,……………………………………3分 ∴四边形CDFG 为平行四边形,∴//CG DF . ∵BF CF =,D 为BC 的中点,∴DF BC ⊥,∴CG BC ⊥.……………………4分∵平面ABC ⊥平面BCGF ,且交线为BC ,CG ⊂平面BCGF ,∴CG ⊥平面ABC ,而AB ⊂平面ABC ,∴CG AB ⊥. ……………………6分 (Ⅱ)∵三棱台ABC EFG -的底面是正三角形,且2CB GF =,∴2AC EG =,∴2ACG AEG S S ∆∆=, ………………………………8分 ∴1122G ABE B AEG B ACG G ABC V V V V ----===. …………………………9分 由(Ⅰ)知,CG ⊥平面ABC .∵正ABC ∆的面积等于3,∴2BC =,1GF =. …………………………10分 ∵直角梯形BCGF 的面积等于3,∴()1232CG+⋅=,∴233CG =,∴11112233G ABE G ABC ABC V V S CG --∆==⋅⋅⋅=. (12)分20.(本小题满分12分)解:(Ⅰ)∵直线:10l x y -+=与抛物线C 相切.由2102x y y px-+=⎧⎨=⎩消去x 得,2220y py p -+=,……2分从而2480p p ∆=-=,解得2p =. ………………………………4分∴抛物线C 的方程为24y x =. …………………………5分(Ⅱ)由于直线m 的斜率不为0,所以可设直线m 的方程为1ty x =-,A (11x y ,),B (22x y ,).……6分由214ty x y x=-⎧⎨=⎩消去x 得,2440y ty --=, ………………………………7分∴124y y t +=,从而21242x x t +=+, ……………………………………8分∴线段AB的中点M 的坐标为(221 2t t +,). ………………………………9分设点A 到直线l 的距离为A d ,点B 到直线l 的距离为B d ,点M 到直线l 的距离为d ,则221322124A B d d d t t ⎫+===-+=-+⎪⎭, …………………………11分∴当12t =时,可使A 、B 两点到直线l 的距离之和最小,. ………………12分21.(本小题满分12分)解:(Ⅰ)()f x 的定义域为(0 +∞,). …………………………1分()()222223223a x x a a x ax a f x x a x x x⎛⎫-- ⎪-+⎝⎭'=-+==. …………………………2分⑴当0a ≤时,()0f x '>恒成立,()f x 的单调递增区间为(0 +∞,),无单调递减区间;…………3分⑵当0a >时,由()0f x '>解得0 2a x ⎛⎫∈ ⎪⎝⎭,() a +∞,,由()0f x '<解得2a x a ⎛⎫∈ ⎪⎝⎭,.………………4分∴()f x 的单调递增区间为0 2a ⎛⎫ ⎪⎝⎭,和()a +∞,,单调递减区间是2a a ⎛⎫⎪⎝⎭,. ……………………5分(Ⅱ)①当0a ≤时,()0f x '>恒成立,()f x 在(0 +∞,)上单调递增, ∴()2422()320≥=-+≥f x f e e ae a 恒成立,符合题意. …………………………6分②当0a >时,由(Ⅰ)知,()f x 在 0 2a ⎛⎫ ⎪⎝⎭,和()a +∞,上单调递增,在2a a ⎛⎫⎪⎝⎭,上单调递减. (ⅰ)若202a e <≤,即22≥a e 时,()f x 在2 2a e ⎡⎫⎪⎢⎣⎭,上单调递增,在2a a ⎡⎫⎪⎢⎣⎭,上单调递减,在()a +∞,上单调递增.∴对任意的实数2x e ≥,()0f x ≥恒成立,只需 ()20f e ≥,且()0f a ≥.……………………………7分而当22≥a e 时,()22242223(2)()0=-+=--≥f e a ae e a e a e 且()22223ln (ln 2)0=-+=-≥f a a a a a a a 成立.∴22a e ≥符合题意. ………………………………8分(ⅱ)若22ae a <≤时,()f x 在)2e a ⎡⎣,上单调递减,在[)a +∞,上单调递增. ∴对任意的实数2x e ≥,()0f x ≥恒成立,只需()0≥f a 即可, 此时()22223ln (ln 2)0=-+=-≥f a a a a a a a 成立,∴222e a e ≤<符合题意.…………………………9分(ⅲ)若2e a >,()f x 在)2e ⎡+∞⎣,上单调递增. ∴对任意的实数2x e ≥,()0f x ≥恒成立,只需 ()2422320f e e ae a =-+≥,……………………10分即()()()2422223220f e e ae a a e a e =-+=--≥,∴202e a <≤符合题意.……………………………11分综上所述,实数a 的取值范围是)222e e ⎛⎤⎡-∞+∞ ⎥⎣⎝⎦,,. …………………………12分 22.(本小题满分10分)【解析】(1)将直线l0y a +-=. ········ 2分 由4cos ρθ=,得24cos ρρθ=, ····················· 3分 从而224x y x +=,即曲线C 的直角坐标方程为2240x x y -+=. ········ 5分(2)解法一:由()4cos 03ρθθρ=⎧⎪π⎨=≥⎪⎩,得2,3P π⎛⎫ ⎪⎝⎭.所以2OP =, ········· 6分 将直线l 的参数方程代入圆的方程2240x x y -+=,得()2220t t a ++=由0∆>,得44a << …………………………………………………………8分设A 、B 两点对应的参数为12,t t ,则12AB 2t t =-=== (9)分解得,0a =或a =.所以,所求a的值为0或………………………………………………10分解法二:将射线()03θρπ=≥()00y x -=≥,······· 6分 由(1)知,曲线C :()2224x y -+=的圆心()2,0C ,半径为2, 由点到直线距离公式,得C到该射线的最短距离为:d ==, 所以该射线与曲线C相交所得的弦长为2OP ==.········ 7分圆心C 到直线l=, ·············· 8分由22212+=⎝⎭,得()212a=,即a =± ······ 9分解得,0a=或a = 所以,所求a的值为0或……………………………………10分23.(本小题满分10分)解:(Ⅰ)由()1f x ≤得,|32|1x +≤,所以,1321x -≤+≤,解得113x -≤≤-,所以,()1f x ≤的解集为113⎡⎤--⎢⎥⎣⎦,. …………………………5分(Ⅱ)()2f x a x ≥恒成立,即232+≥x a x 恒成立. 当0x =时,a R ∈;当0x ≠时,23223+≤=+x a x x x.因为23x x +≥当且仅当23x x =,即x =时等号成立),所以a ≤a 的最大值是…………………………10分。

2021年高三上学期第一次统一考试数学(文)试题 含答案

2021年高三上学期第一次统一考试数学(文)试题 含答案

2021年高三上学期第一次统一考试数学(文)试题含答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时长120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合,集合为函数的定义域,则(A) (B) ( C) (D)2. 已知命题:直线,不相交,命题:直线,为异面直线,则是的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件3. 在等差数列中,,则的前5项和=( )(A)7 (B)15 (C)20 (D)25则这个三棱柱的体积等于(A)(B)(C)(D)5.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28 Array粒,则这批米内夹谷约为(A)134石(B)169石(C)338石(D)1365石6.某程序的框图如图所示, 执行该程序,若输入的为,则输出的的值分别为(A) (B) (C) (D)7. 圆心在曲线上,且与直线相切的面积最小的圆的方程为 (A ) (B ) (C ) (D )8.已知是R 上的单调递增函数,则实数a 的取值范围为 (A )(B )(C )(D )9. 已知F 是椭圆的一个焦点,B 是短轴一个端点,线段BF 的延长线交椭圆于点D ,且,则椭圆的率心率是(A ) (B ) (C ) (D )10.设函数()11sin 222f x x x πθθθ⎛⎫⎛⎫⎛⎫=++<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且其图像关于轴对称,则函数的一个单调递减区间是()11.P 是所在的平面上一点,满足,若,则的面积为(A )4 (B )6 (C )8 (D )16 12. 已知函数在区间内存在零点,则的取值范围是 (A) (B) (C) (D)宁城县高三年级统一考试(xx.10.20)数学试题(文科) 第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13. 若复数满足,则在复平面内对应的点的坐标是______________ 14.已知实数列等比数列,其中成等差数列.则公比_______15. 已知为由不等式组,所确定的平面区域上的动点,若点,则的最大值为___________. 16.已知三棱柱的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球的表面上,且球的表面积为,则此三棱柱的体积为 .三、解答题(共5小题,70分,须写出必要的解答过程)17.(本小题满分12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且3a =2c sin A . (Ⅰ)确定角C 的大小;(Ⅱ)若c =7,且△ABC 的面积为332,求a +b 的值.18.(本小题满分12分)对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统计数据如下:(Ⅰ)求该校教师在教学中不.经常使用信息技术实施教学的概率; (Ⅱ)在教龄10年以下,且经常使用信息技术实施教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是多少?19.(本小题满分12分)如图,已知AB平面ACD,DE∥AB,△ACD是正三角形,,且F是CD的中点.(Ⅰ)求证AF∥平面BCE;(Ⅱ)设AB=1,求多面体ABCDE的体积.20.(本小题满分12分)已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知为原点,求证:为定值.21.(本小题满分12分)设函数的导函数为.(Ⅰ)求函数的最小值;(Ⅱ)设,讨论函数的单调性;四、选做题(本小题满分10分.请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.选修4-1:几何证明选讲如图,⊙的半径为6,线段与⊙相交于点、,,,与⊙相交于点.(Ⅰ)求长;(Ⅱ)当⊥时,求证:.23.选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系. 设曲线参数方程为(为参数),直线的极坐标方程为.(Ⅰ)写出曲线的普通方程和直线的直角坐标方程;(Ⅱ)求曲线上的点到直线的最大距离.24.选修4-5:不等式选讲设函数.(Ⅰ)当时,解不等式;(Ⅱ)若的解集为,,求证:.宁城县高三年级统一考试(xx.10.20)数学试题(文科)参考答案一、选择题:DBBA BCAD CCAC二、填空题:13、;14、;15、4;16、.三、解答题:17. 解:(1)由3a=2c sin A及正弦定理得,3sin A=2sin C sin A.-----------2分∵sin A≠0,∴sin C=3 2,∵△ABC是锐角三角形,∴C=π3.------------------4分(2)∵C=π3,△ABC面积为332,∴12ab sinπ3=332,即ab=6.①--------------------6分∵c=7,∴由余弦定理得a 2+b2-2ab cos π3=7,即a2+b2-ab=7.②----------------------------9分由②变形得(a+b)2=3ab+7.③将①代入③得(a+b)2=25,故a+b=5.----------------12分18.解:(Ⅰ)该校教师人数为8+10+30+18=66,该校经常使用信息技术实施教学的教师人数为2+4+10+4=20.……………………2分设“该校教师在教学中经常使用信息技术实施教学”为事件A,…………3分则,……………………5分.…………6分所以该校教师在教学中不经常使用信息技术实施教学的概率是.(Ⅱ)设经常使用信息技术实施教学,教龄在5年以下的教师为(i=1,2),教龄在5至10年的教师为(j=1,2,3,4),那么任选2人的基本事件为,,,,,,,,,,,,,,共15个.………………8分设“任选2人中恰有一人的教龄在5年以下”为事件B,包括的基本事件为,,,,,,,共8个,……………………10分则.所以恰有一人教龄在5年以下的概率是. -----------12分19.解:(Ⅰ)取CE 中点P ,连结FP 、BP ,∵F 为CD 的中点,∴FP//DE ,且FP =. 又AB//DE ,且AB =∴AB//FP ,且AB =FP ,∴ABPF 为平行四边形,∴AF //BP . ……………4分 又∵AF 平面BCE ,BP 平面BCE ,∴AF //平面BCE . ……………6分 (II )∵直角梯形ABED 的面积为,C 到平面ABDE 的距离为,∴四棱锥C -ABDE 的体积为.即多面体ABCDE 的体积为.……………12分20.解:(Ⅰ)将代入,得所以抛物线方程为,焦点坐标为 ………………3分(Ⅱ)设,,, 设直线方程为与抛物线方程联立得到 ,消去,得: 则由韦达定理得: ………………5分 直线的方程为:,即,令,得, 同理可得: …………8分又 ,12124(2)(2)44(2)(2)M N y y OM ON y y y y --⋅=+=+++ ………11分所以,即为定值 ………………12分 21.(1)解:,令f /(x )=0,得. ∵当时,f /(x )<0;当时,f /(x )>0, ∴当时,.----------------- 5分 (2)F (x )=ax 2+lnx+1(x >0), .①当a≥0时,恒有F /(x )>0,F (x )在(0,+∞)上是增函数; ②当a <0时,令F /(x )>0,得2ax 2+1>0,解得;P令F /(x )<0,得2ax 2+1<0,解得.综上,当a≥0时,F (x )在(0,+∞)上是增函数; 当a <0时,F (x )在上单调递增,在上单调递减.---12分四、选做题(本小题满分10分.请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)22.证明(1)∵OC =OD ,∴∠OCD =∠ODC ,∴∠OCA =∠ODB , ∵∠BOD =∠A ,∴△OBD ∽△AOC .∴,∵OC =OD =6,AC =4,∴,∴BD=9.…………………5分 (2)证明:∵OC =OE ,CE ⊥OD .∴∠COD =∠BOD =∠A . ∴∠AOD =180º–∠A –∠ODC=180º–∠COD –∠OCD=∠ADO . ∴AD =AO ……………………10分 23. 解:⑴由得 ,∴……………2分 由得.………………5分⑵在上任取一点,则点到直线的距离为|cos 3sin 4|)4|22d θθθϕ-+++==. ………………7分其中,∴当1,.………………10分 24.解:(1)当时,不等式为,不等式的解集为; ------------ 5分 (2)即,解得,而解集是, ,解得,所以所以. -------------- 10分3755792B5銵n366648F38輸39066989A颚x(282656E69湩20759 5117 儗 40767 9F3F 鼿35494 8AA6 誦25586 63F2 揲34069 8515 蔕32368 7E70 繰。

2021年高三1月模拟调研数学(文)试题 含答案

2021年高三1月模拟调研数学(文)试题 含答案

试卷类型:A 2021年高三1月模拟调研数学(文)试题含答案本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体体积公式,其中为锥体的底面积,为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i为虚数单位,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2. 已知集合,,则A. B. C. D.3. 命题“若,则”的否命题是A.若,则B.若,则C .若,则D .若,则 4. 设向量,, , 则实数的值是A .B .C .D . 5. 函数的最小正周期为A .B .C .D .6. 一算法的程序框图如图1,若输出的, 则输入的的值可能为A .B .C .D .7. 用,,表示空间中三条不同的直线, 表示平面, 给出下列命题: ① 若, , 则∥; ② 若∥, ∥, 则∥; ③ 若∥, ∥, 则∥; ④ 若, , 则∥. 其中真命题的序号是A .① ②B .② ③C .① ④D .8. 已知,则下列不等式一定成立的是 A . B . C . D .9. 已知双曲线的左,右焦点分别为,,过点 的 图1直线与双曲线的右支相交于,两点,且点的横坐标为,则△的周长为 A . B . C . D . 10. 已知函数, 则12340292015201520152015f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭值为A .B .C .D .二、填空题: 本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11. 不等式的解集是 .12. 在平面直角坐标系中,设不等式组所表示的平面区域是,从区域中随机取点,则的概率是 .13. 已知实数,满足,则的最大值为 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)FEDCBA 如图2,圆的直径,直线与圆相切于点,于点,若,设,则______.15.(坐标系与参数方程选讲选做题) 图2 在极坐标系中,设曲线与的交点分别为,, 则线段的垂直平分线的极坐标方程为______.三、解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数R ,是函数的一个零点.(1)求的值,并求函数的单调递增区间; (2)若,且,,求的值.17.(本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C )与该奶茶店的这种饮料销量(杯),得到如下数据:(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率; (2)请根据所给五组数据,求出y 关于x 的线性回归方程. (参考公式:.)18.(本小题满分14分) 如图3,在多面体中,平面, ∥,平面平面, ,,.(1)求证:∥;(2)求三棱锥的体积. 图319.(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)令,数列的前项和为,求证:.20.(本小题满分14分)已知椭圆的离心率为,且经过点.圆.(1)求椭圆的方程;(2)若直线与椭圆C有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.21.(本小题满分14分)已知函数在点处的切线为.(1)求实数,的值;(2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;(3)若,求证:.xx年广州市高考模拟考试数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一.选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二.填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.12.13.14.15.三.解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(1)解:∵是函数的一个零点,∴ . …………………………………………1分∴ . ………………………………………………2分∴………………………………………………3分. ………………………………………………4分由,Z,得,Z,………………………………………………5分∴函数的单调递增区间是Z. …………………6分(2)解:∵,∴.∴ . ………………………………………………7分∵,∴ . ………………………………………………8分∵,∴.∴ . ………………………………………………9分∵,∴ . ………………………………………………10分∴…………………………………………11分. ……………………………………………12分HFEDCBA17.(本小题满分12分)(1)解:设“选取的2组数据恰好是相邻2天数据”为事件. …………………………………1分所有基本事件(m ,n )(其中m ,n 为1月份的日期数)有:(11,12),(11,13),(11,14), (11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)共10种. …………3分事件包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种. …………5分∴ . …………………………………………6分 (2)解:由数据,求得,. ………8分()()()()()()()()()()()()()()()2222291023251010252512103025111026258102125ˆ 2.1910101012101110810b --+--+--+--+--==-+-+-+-+- , …………………………………………10分 ∴ y 关于x 的线性回归方程为. …………………………………………12分 18.(本小题满分14分) (1)证明:∵∥,平面,平面, ∴ ∥平面. …………………2分又平面,平面平面,∴∥. ………………………………4分 (2)解: 在平面内作于点,∵平面,平面,∴. ………………………………5分 ∵平面,平面,,∴平面. ………………………………7分 ∴是三棱锥的高. ………………………………8分 在Rt △中,,,故. ………………………………9分 ∵ 平面,平面,∴ . ………………………………10分 由(1)知,∥,且∥,∴ ∥. …………………………………………11分∴ . …………………………………………12分∴三棱锥的体积. …………………14分19.(本小题满分14分)(1)解:由题意得, …………………………………………1分即,即. …………………………………………2分 ∴ . …………………………………………3分 ∴ 公比. …………………………………………4分 ∴ . …………………………………………5分 另解:由题意得,, …………………………………………1分 ∴. …………………………………………2分化简得,解得, …………………………………………4分 ∴. …………………………………………5分 (2)解:, …………………………………………6分 ∴12312336932222n n nn T b b b b =++++=++++,① ……………………………7分, ② …………………………………………8分 ①②得,,…………………………………………10分∴ . …………………………………………12分∴ . …………………………………………14分20.(本小题满分14分) (1)解:∵ 椭圆过点,∴ . …………………………………………1分 ∵, …………………………………………2分∴. …………………………………………3分∴椭圆的方程为. …………………………………………4分(2)解法1:由(1)知,圆的方程为,其圆心为原点. ………………………5分∵直线与椭圆有且只有一个公共点,∴方程组(*)有且只有一组解.由(*)得.……………………………………6分从而,化简得.①…………………7分,. ……………9分∴ 点的坐标为. ……………………………………10分由于,结合①式知,∴.……………………………………11分∴ 与不垂直. ……………………………………12分∴ 点不是线段的中点. ……………………………………13分∴不成立. ……………………………………14分解法2:由(1)知,圆的方程为,其圆心为原点. ………………………5分∵直线与椭圆有且只有一个公共点,∴方程组(*)有且只有一组解.由(*)得.……………………………………6分从而,化简得.①…………………7分,…………………………………………………8分由于,结合①式知,设,线段的中点为,由消去,得.………………………………9分∴ . ……………………………………10分若,得 ,化简得,矛盾. ………………………………11分∴点与点不重合. ……………………………………12分∴ 点不是线段的中点. ……………………………………13分∴不成立. ……………………………………14分21.(本小题满分14分)(1)解:∵,其定义域为,∴. …………………………………………1分依题意可得…………………………………………2分解得. …………………………………………4分(2)解:2=-+-=--∈,()()(1)(1)2ln,(0,1]g x f x x m x m x x x∴. …………………………………………5分①当时,,则在上单调递减,∴. …………………………………………6分②当时,,则在上单调递减,∴. …………………………………………7分③当时,则时,;时,,∴在上单调递减,在上单调递增.故当时,的最小值为.∵.∴. …………………………………………8分综上所述,存在满足题意,其取值范围为. …………………………………………9分(3)证法1:由(2)知,当时,在上单调递减,∴时,, 即. …………………………………………10分∵,∴ . …………………………………………11分∴. …………………………………………12分∴. …………………………………………13分∵,∴. …………………………………………14分证法2:设,则.当,,…………………………………………10分∴在上单调递减∴. …………………………………………11分∴时,. …………………………………………12分,∴. …………………………………………13分,∴. …………………………………………14分- 20690 50D2 僒26132 6614 昔34616 8738 蜸38465 9641 陁c30959 78EF 磯j30066 7572 畲38019 9483 钃35786 8BCA 诊HfB。

2021年高三上学期1月教学质量调研数学(文)试题word版含答案

2021年高三上学期1月教学质量调研数学(文)试题word版含答案

2021年高三上学期1月教学质量调研数学(文)试题word版含答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数()A. B. C. D.2、已知集合{|320},{|(1)(3)0}=+>=+->,( )A x xB x x xA. B. C. D.3、设,则()A.1 B.2 C.4 D.84、已知数列的前n项和为,且,则()A.-10 B.6 C.10 D.145、在中,若,则()A. B. C. D.6、如图在程序框图中,若输入,则输出的值是()A.2 B.3C.4 D.57、设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8、把函数的图象上所有的点向左平移个单位长度,再把所得图象上所有的点的横坐标缩短到原来的倍,(纵坐标不变),得到的图象所表示的函数解析式是()A. B. C. D.9、已知变量满足约束条件,则目标函数的最大值是()A .6B .3C .D .110、若某几何体的三视图(单位:)如图所示,则此几何体的体积是( )A .B .C .D .11、已知函数,则函数的图象可能是( )12、已知椭圆方程,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( )A .B .C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上。

.13、某单位青年、中年、老年职工的人数之比为从中抽取200名职工作为样本,则应抽取青年职工的人数为14、若,且,则15、圆心在原点,并与直线相切的圆的方程为16、定义在R 上的函数满足,且时,,则三、解答题:本大题共6小题,满分74分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)已知向量()31(sin ,),(,cos ),22a xb x f x a b ===⋅ (1)求函数的解析式;(2)求函数的单调递增区间。

广东省2021届高三数学上学期第一次教学质量检测试题 文(含解析)

广东省2021届高三数学上学期第一次教学质量检测试题 文(含解析)

广东省2021届高三数学上学期第一次教学质量检测试题文(含解析)一、选择题(本大题共12小题)1.已知集合,0,2,4,,则A. B. 0, C. D. 2,2.A. B. C. D.3.下列选项正确的是A. B.C. D.4.记数列的前n项和为,若,则A. B. C. D.5.已知,,则A. B. C. D.6.已知函数,则下列说法正确的是A. 函数的对称轴为,且在上单调递增B. 函数的对称轴为,且在上单调递增C. 函数的对称中心为,且在上单调递增D. 函数的对称中心为,且在上单调递增7.已知数列中,,若对任意的,,则A. 12B. 16C. 8D. 108.函数的图象大致为A. B.C. D.9.边长为2的正方形ABCD中,,,则A. B. C. D.10.将函数的图象向右平移个单位,平移后的图象关于y轴对称,则周期的最大值为A. B. C. D.11.已知等差数列的前n项和为,若,,则最小时n的值为A. 10B. 11C. 5D. 612.已知函数若函数在R上单调递增,则实数a的取值范围为A. B. C. D.二、填空题(本大题共4小题)13.已知平面向量,若,则______.14.曲线在点处的切线方程为______.15.函数的值域为______.16.已知,记数列的前n项和为,且对于任意的,,则实数t的取值范围是______.三、解答题(本大题共7小题)17.已知中,角A,B,C所对的边分别为a,b,c,且,.求证:;若,求c的值.18.已知首项为3的数列的前n项和为,且.求数列的通项公式;求证:,,成等差数列.19.设等差数列的前n项和,已知,求;若,,,,,成等比数列,求的前n项和.20.已知函数.若关于x的方程仅有1个实数根,求实数的取值范围;若是函数的极大值点,求实数a的取值范围.21.已知函数其中e为自然对数的底数.若,求的单调区间;若,求证:.22.极坐标系中,曲线C的极坐标方程为以极点为原点,极轴为x轴建立平面直角坐标系xOy,直线l的参数方程为为参数.求曲线C的直角坐标方程以及直线l的普通方程;若曲线C上恰有四个不同的点到直线l的距离等于1,求实数a的取值范围.23.已知函数.求不等式的解集;若,,求证:.答案和解析1.【答案】A【解析】解:1,2,,0,2,4,,.故选:A.可以求出集合M,然后进行交集的运算即可.本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.【答案】B【解析】解:.故选:B.直接利用诱导公式以及特殊角的三角函数求解即可.本题考查诱导公式的应用,三角函数化简求值,是基本知识的考查.3.【答案】B【解析】解:依题意,对于A选项,是单调递增的函数,故,故A错;对于B,和恒大于0,且,所以,故B正确;对于C,,故C错误;对于D,幂函数是单调递增,,故D错误.故选:B.利用不等式的性质、幂函数、对数函数、指数函数的单调性即可得出.本题考查了不等式的性质、幂函数、对数函数、指数函数的单调性,属于基础题.4.【答案】D【解析】解:当时,,当时,,所以,故选:D.通过,,结合数列的递推关系式,求解即可.本题考查数列的递推关系式的应用,是基本知识的考查,基础题.5.【答案】B【解析】解:根据题意,,,又由,则,则;故选:B.根据题意,有,则,结合函数的解析式分析可得答案.本题考查函数值的计算,注意函数的解析式,属于基础题.6.【答案】A【解析】解:依题意,解得,因为,故函数的对称轴为,排除C、D;因为,,故,排除B,故选:A.求出函数的定义域,判断函数的对称轴,利用特殊值验证函数的单调性,即可.本题考查函数的单调性以及函数的对称性的应用,命题的真假的判断与应用,是基本知识的考查.7.【答案】C【解析】解:依题意,,,两式相加可得,则,故周期为6,故.故选:C.利用数列的递推关系式求出数列的周期,然后求解即可.本题考查数列的递推关系式的应用,考查转化思想以及计算能力,是基本知识的考查.8.【答案】A【解析】解:依题意,,,故函数为奇函数,图象关于原点对称,排除C;而,排除B;而,,故,排除D,故选:A.利用函数奇偶性和特殊点,判断即可.考查函数的图象的判断,用了函数的性质和特殊值,基础题.9.【答案】C【解析】解:以A为原点,建立如图所示的平面直角坐标系,则,,,,故,,则,故选:C.通过建系,求出相关点的坐标,求出向量,然后求解向量的数量积即可.本题考查向量的坐标运算,向量的数量积的应用,考查计算能力,是基础题.10.【答案】A【解析】解:依题意,的图象向右平移个单位,可得的图象,平移后的图象关于y轴对称,则,故,故的最小值为,则周期的最大值为,故选:A.由题意利用两角和差的三角公式化简得解析式,再利用函数的图象变换规律,三角函数的图象的对称性求得的值,可得周期的最大值.本题主要考查两角和差的三角公式,函数的图象变换规律,三角函数的图象的对称性和周期性,属于基础题.11.【答案】C【解析】解:由,得,由,得,所以时,,时,,所以最小时,故选:C.只需求得得,,即可得时,,可得最小时,本题考查了等差数列的性质,考查了数学推理能力,属于中档题.12.【答案】D【解析】解:因为函数在R上单调递增,首先在上单调递增,故,则;其次在上单调递增,而,令,故或,故,即;最后,当时,;综合,实数a的取值范围为,故选:D.利用函数在R上单调递增,推出,则;得到在上单调递增,利用函数的导数判断单调性,然后求解a的范围即可.本题考查函数的导数的应用,函数的单调性以及分段函数的应用,考查转化思想以及计算能力,是中档题.13.【答案】【解析】解:向量时,,即,解得,所以,计算.故答案为:.根据平面向量时,列方程求出的值,再计算的值.本题考查了平面向量的数量积表示垂直与模长的计算问题,是基础题.14.【答案】【解析】解:由,得,,所求切线方程为,即.故答案为:.求出原函数的导函数,得到函数在处的导数值,再由直线方程的点斜式得答案.本题考查利用导数研究过曲线上某点处的切线方程,训练了基本初等函数求导公式的应用,是基础题.15.【答案】【解析】解,所以当时,取到最大值,当时,取到最小值0,所以的值域为.故答案为:.利用二倍角公式和配方法,再根据讨论,求出即可.考查三角函数求最值,二倍角公式,配方法等,中档题.16.【答案】【解析】解:依题意,,.,即,显然,,又,当且仅当时,等号成立,,,即.故答案为:依题意,,求得由,可得,即可求解.本题考查了裂项求和,数列恒成立问题,属于中档题.17.【答案】解:证明:依题意可得:,则,可得,因为B,,故B.依题意,,,所以,因为,即,可得,又,所以,;由,得.【解析】由已知利用余弦定理可求cos B的值,根据二倍角的余弦函数公式可求cos2A 的值,可得,由范围B,,可得.利用同角三角函数基本关系式可求sin A,sin B的值,利用三角形内角和定理,两角和的正弦函数公式可求sin C的值,根据正弦定理可得,结合,可求a,b的值,根据正弦定理即可解得c的值.本题主要考查了余弦定理,二倍角的余弦函数公式,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:因为,故,,,,,,,把上面个等式叠加,得到,故,而,故.证明:由可得,,故,,所以,故,,成等差数列.【解析】利用已知条件化简数列的递推关系式,然后利用累加法转化求解数列的通项公式即可.求出数列的和,利用等差数列的定义,转化证明即可.本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力,是中档题.19.【答案】解:设等差数列的首项为,公差为d,由,,得,解得.;,,且,,,,,成等比数列,,又在等差数列中,,,即.的前n项和.【解析】设等差数列的首项为,公差为d,由题意列关于首项与公差的方程组,求得首项与公差,则等差数列的通项公式可求;分别写出等差数列与等比数列中的,得到数列的通项公式,再由数列的分组求和得答案.本题考查等差数列与等比数列的通项公式及前n项和,考查计算能力,是中档题.20.【答案】解:依题意,,显然不是方程的根,故,令,则,故函数在和上单调递增,且当时,,当x从负方向趋于0时以及时,,当x从正方向趋于0时,,作出函数的图象如图所示,观察可知,,即实数的取值范围为.,则.若,则当时,,,,所以 0'/>;当时,,,所以.所以在处取得极大值.若,则当时,,,所以 0'/>.所以不是的极大值点.综上所述,实数a的取值范围是.【解析】,得到,令,利用函数的导数判断函数的单调性,转化求解函数的最值.,则通过若,若,求解函数的极值,然后推出数a的取值范围.考查利用导数研究函数的极值问题,构造法的应用,体现了数形结合、转化的思想方法,属于难题.21.【答案】解:.在上单调递增,且,当,,函数单调递增;当,,函数单调递减,函数的单调递增区间,函数单调递减区间;,,在上单调递增,,,使得,,,,时,函数取得最小值在单调递减,,.【解析】先对函数求导,然后结合函数的单调性与函数的导数的关系即可求解;先对求导,可得在上单调递增,结合函数的零点判定定理可知使得,然后结合单调性可求最小值,即可证明.本题主要考查了利用函数的导数判定函数的单调性及利用函数的单调性及零点判定定理可求解函数的最值,属于中等试题22.【答案】解:由,得,代入公式,得曲线C的直角坐标方程为;由为参数,消去参数t,得直线l的普通方程为;依题意可得,圆心O到直线l:的距离,,解得.实数a的取值范围是.【解析】把两边同乘,代入公式,得曲线C的直角坐标方程,把直线l参数方程中的参数t消去,可得直线l的普通方程;由题意可得,圆心到直线的距离小于1,利用点到直线的距离公式列式求解a的范围.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与圆位置关系的应用,是基础题.23.【答案】解:等价于或或,解得或或,所以原不等式的解集为.要证:,只要证,只需证,而,从而原不等式成立.【解析】分类讨论求出即可;化简,再平方,证明即可.考查绝对值不等式的解法,分类讨论思想,中档题.。

2021年高三上学期第一次调研考试数学(文)试题

2021年高三上学期第一次调研考试数学(文)试题

2021年高三上学期第一次调研考试数学(文)试题一:填空题(本大题共14小题,每小题5分,共70分,请把答案直接写在横线上)1.设全集S ={}{})(,1,0,1,2,1,0,1,2T S C T s ⋂-=--则集合= ▲ .2.已知命题{}{}2:;0:2<=∈<-=∈x x B a q x x x A a p 命题,那么p 是q 的 ▲条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) 3. 在等比数列中,如果是一元二次方程的两个根,那么 的值为 ▲ .4.函数的增区间是 ▲ .5.已知数列{a n }成等差数列,S n 表示它的前n 项和,且a 1+a 3+a 5=6,S 4=12.则数列{a n }的通项公式a n = ▲ .6.在△ABC 中,A =,b =1,其面积为,则外接圆的半径为 ▲ .7.定义在(-1,1)上的函数f(x)=-5x +sinx ,如果f(1-a)+f(1-a 2)>0,则实数a 的取值范围为 ▲ .8. 已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).若方程f (x )+6a=0有两个相等的根,则实数a = ▲ .9.设=,=(0,1),O 为坐标原点,动点P (x ,y )满足0≤≤1,0≤≤1,则z =y -x 的最小值是 ▲ .10.设周期函数是定义在R 上的奇函数,若的最小正周期为3,且满足>-2,=,则m 的取值范围是 ▲ .11.设表示等比数列()的前项和,已知,则 ▲ .12.已知{a n }是首项a 1=-52,公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,b n =1+a n a n. 则当取得最大值是,n= ▲ .13.若不等式a +≥在x ∈(,2)上恒成立,则实数a 的取值范围为 ▲ .14.如图放置的等腰直角三角形ABC 薄片(∠ACB =,AC =2)沿x 轴滚动,设顶点A (x ,y )的轨迹方程是y =,则在其相邻两个零点间的图象与x 轴所围区域的面积为 ▲ .二、解答题(本大题共6小题,共90分,解答应写出文字说明,证明过程或演算步骤)15.在中,分别是角A 、B 、C 的对边,,且. (1)求角A 的大小;(2)求的值域.16.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且q ∧p 为真,求实数x 的取值范围;(2)若是的充分不必要条件,求实数a 的取值范围.17.已知函数f(x)=x|x 2-3|,x ∈[0,m ]其中m ∈R ,且m>0.(1)若m<1,求证:函数f(x)是增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届广东省东莞市高三上学期第一次调研考试数学(文)试题注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合2{|430}A x x x =-+< ,{|230}B x x =->,则AB =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2(2)若复数z 满足(12)(1)i z i +=-,则||z =(A )25 (B )35(C )5 (D (3)等差数列}{n a 的前9项的和等于前4项的和,若0,141=+=a a a k ,则=k(A )3 (B )7 (C )10 (D )4(4)双曲线)0,0(1:2222>>=-b a b y a x C 的离心率213=e ,则它的渐近线方程(A )x y 23±= (B )x y 32±= (C )x y 49±= (D )x y 94±= (5)已知 1.22a =,8.02=b ,52log 2c =,则,,a b c 的大小关系为(A )c b a << (B )c a b << (C )b a c << (D )b c a << (6)已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则cos2θ= (A)45 (B) 35 (C) 35- (D) 45- (7)已知两点()1,1A -,()3,5B ,点C 在曲线22y x =上运动,则AB •AC 的最小值为A .2B .12 C .2- D .12-(8)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的 硬币.若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没 有相邻的两个人站起来的概率为 (A )14 (B )716 (C )12 (D )916(9)已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2,2,AB SA SB SC ====则三棱锥的外接球的球心到平面ABC 的距离是(A )33 (B )1 (C 3(D )332(10)如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为A .83 B .163C .323D .16(11)设关于y x ,的不等式组⎪⎩⎪⎨⎧>-<+>+-00012m y m x y x 表示的平面区域内存在点),(00y x P 满足2200=-y x ,则m的取值范围是(A ))34,(--∞ (B ))0,32(-(C ))31,(--∞ (D ))32,(--∞(12)已知函数()2sin 4f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的图象在区间[]0,1上恰有3个最高点,则ω的取值范围为 A .1927,44ππ⎡⎫⎪⎢⎣⎭ B .913,22ππ⎡⎫⎪⎢⎣⎭ C .1725,44ππ⎡⎫⎪⎢⎣⎭ D .[)4,6ππ 第Ⅱ卷本卷包括必考题和选考题两部分。

第13~21题为必考题,每个考生都必须作答。

第22~23题为选考题,考生根据要求作答。

二、填空题:本小题共4题,每小题5分。

(13)已知向量a ()1,2=,b (),1=-x ,若a ∥()a b -,则a b ⋅= .(14)设ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若ABC ∆22243C =(15)已知等比数列}{n a 的公比为正数,且25932a a a =⋅,12=a ,则=1a .(16)《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有 个.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。

第17~21题为必考题,每个考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

(17)(本小题满分12分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin b C b C a +=.(Ⅰ)求角B 的大小; (Ⅱ)若BC 边上的高等于14a ,求cos A 的值.(18)(本小题满分12分)为了解本校学生课外阅读情况,某校随机抽取了100名学生对其课外阅读时间进行调查。

下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”。

(1)根据已知条件完成下面2×2列联表,(须在答题卷上画出2×2列联表)并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷 读书迷 合计 男15女45合计(2)利用分层抽样从这100名学生的“读书迷”中抽取8名进行集训,从中选派2名参加市读书知识比赛,求至少有一名男生参加比赛的概率。

附: ()()()()()22,,n ad bc K n a b c d a b c d a c b d -==+++++++()20P K k ≥ 0.1000.050 0.025 0.010 0.001 k 02.7063.8415.0246.63510.828(19)(本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,ABC ∆为正三角形,16AA AB ==,D 为AC 的中点.(Ⅰ)求证:平面1BC D ⊥平面11A ACC ; (Ⅱ)求三棱锥1C BC D -的体积.(20)(本小题满分12分)已知函数()21ln 22f x ax x =--,R a ∈.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个零点,求实数a 的取值范围.(21)(本小题满分12分)已知椭圆E : 22221(0)x y a b a b+=>>的左顶点为A ,右焦点为()1,0F ,过点A 且斜率为1的直线交椭圆E 于另一点B ,交y 轴于点C , 6AB BC =.(1)求椭圆E 的方程;(2)过点F 作直线l 与椭圆E 交于,M N 两点,连接MO (O 为坐标原点)并延长交椭圆E 于点Q ,求MNQ ∆面积的最大值及取最大值时直线l 的方程.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

答题时请写清题号并将相应信息点涂黑。

(22)(本小题满分10分)[选修 4-4]参数方程与极坐标系在平面直角坐标系xOy 中,已知曲线1C : 22134x y +=,以平面直角坐标系xOy 的原点O 为极点, x 轴正半轴为极轴,取相同的单位长度建立极坐标系.已知直线 l : ()2cos sin 6ρθθ-=. (Ⅰ)试写出直线l 的直角坐标方程和曲线1C 的参数方程;(Ⅱ)在曲线1C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -a |.(Ⅰ)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (Ⅱ)在(Ⅰ)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.2021届广东省东莞市高三上学期第一次调研考试数学(文)试题参考答案一、选择题:本大题共12小题,每小题5分。

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCCAACDBABAC1.2.【解析】113||1255i i z z i ---==⇒=+,故选C. (3)解析:因为49S S =,所以05796549==+++=-a a a a S S ,即07=a ,于是027410==+a a a ,可知答案选C.另解:由已知直接求出61-=d . 4.【解析】双曲线)0,0(1:2222>>=-b a b y a x C 的离心率213=e ,可得4131,4132222=+∴=a b a c ,可得23=a b ,双曲线的渐近线方程为:x y 23±=. (6)解析:显然 1.22a =2>,8.02=b ,21<<b ,14log 5<=c ,因此a 最大,c 最小,故选A.9. 【解析】由题意S 在平面ABC 内的射影为AB 的中点H ,SH ∴⊥平面ABC ,3SH =,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC =,1SM ∴=,30OSM ∠=︒,33SO OH ∴==O 到平面ABC 的距离,故选A . (11)解析:画出可行域,由题意只需要可行域的顶点),(m m -在直线22=-y x 的下方即可,得到22>--m m ,解得32-<m .故选D.二.填空题:本大题共4小题,每小题5分。

(13)52-(14)30°或3π(16)23(15)【解析】∵2693a a a =⋅,∴25262a a =,因此,22=q 由于,0>q 解得,2=q ∴2221==q a a 三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.解:(Ⅰ)因为cos sin b C b C a +=, 由正弦定理sin sin sin a b cA B C==得, sin cos sin sin B C B C +sin A =.……………2分因为A B C π++=,所以sin cos sin sin B C B C +()sin B C =+. 即sin cos sin sin B C B C +sin cos cos sin B C B C =+.……………4分因为sin 0C ≠,所以sin cos B B =.……………5分 因为cos 0B ≠,所以tan 1B =. 因为()0,B π∈,所以4B π=.……………6分(Ⅱ)设BC 边上的高线为AD ,则14AD a =.……………7分 因为4B π=,则14BD AD a ==,34CD a =.……………9分所以22AC AD DC =+10a =,24AB a =.……………10分 由余弦定理得222cos 2AB AC BC A AB AC+-=⋅5=-.所以cos A 的值为5-.…12分(18)(本小题满分12分)……………2分19.解:(Ⅰ)证明:因为1AA ⊥底面ABC ,所以1AA BD ⊥……………2分非读书迷读书迷 合计 男401555女 20 25 45 合计6040100因为底面ABC 正三角形, D 是AC 的中点,所以BD AC ⊥……………4分 因为A AC AA =⋂1,所以BD ⊥平面11ACC A ………………5分 因为平面BD ⊂平面1BC D ,所以平面1BC D ⊥平面11ACC A …………6分(Ⅱ)由(Ⅰ)知ABC ∆中,BD AC ⊥,sin 60BD BC =︒=所以132BCD S ∆=⨯⨯=………………………………9分所以11163C BC D C C BD V V --=== ………………………12分21. 解:(Ⅰ)011)(2>-=-='x xax x ax x f , ……………1分当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减;当aax x f a =='>解得时,令,0)(0.………… 3分 0)()(0)()0(>'∞+∈<'∈x f aax x f a a x 时,,;当时,,当.…………4分内单调递增,内单调递减;在,在函数)()0()(∞+∴aa a a x f …………5分综上:当)()(∞+≤,在时,00x f a 上单调递减; 当a>0时,内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f …………6分(Ⅱ)当0时,a ≤由(Ⅰ)得()在(0,+)f x 上单调递减,函数)(x f 不可能有两个零点;………7分当a>0时,由(Ⅰ)得,()(0)f x +∞函数在内单调递减,在内单调递增,且当x 趋近于0和正无穷大时,)(x f 都趋近于正无穷大,………8分故若要使函数)(x f 有两个零点,则)(x f 的极小值0f <,………………10分 即11ln -2022a +<,解得30e a <<,综上所述,a 的取值范围是)0(3e , …………………12分 (21)解:(Ⅰ)由题知),0(),0,(a C a A -,故)76,7(aa B -,……………1分 代入椭圆E 的方程得1493649122=+b a ,……………2分 又122=-b a ,……………3分故3,422==b a ,……………4分 椭圆134:22=+y x E ;……………5分(Ⅱ)由题知,直线l 不与x 轴重合,故可设1:+=my x l ,由⎪⎩⎪⎨⎧=++=134122y x my x 得096)43(22=-++my y m ,……………8分 设),(),,(2211y x N y x M ,则439,436221221+-=+-=+m y y m m y y ,由Q 与M 关于原点对称知, 431124)(||2222122121++=-+=-==∆∆m m y y y y y y S S MONMNQ 11131222+++=m m ,……………10分211m +≥,223141m m ∴++,即3MNQ S ∆≤,当且仅当0=m 时等号成立,MNQ ∆∴面积的最大值为3,此时直线l 的方程为1=x ……………12分……………2分……………5分……………8分……………10分23. (本小题满分10分)解:(Ⅰ)由f (x )≤3,得|x -a |≤3.解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5}.所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2. ………………………………4分(Ⅱ)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立), ∴g (x )的最小值为5.因此,若g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立,知实数m 的取值范围是(-∞,5]. …………………………………10分。

相关文档
最新文档