数学分析四练习一

合集下载

数学分析练习题

数学分析练习题

数学分析练习题函数函数概念1. 证明下列不等式: (1) x y x y - ≥ - ;(2) 1212n n x x x x x x ++ ≤ +++ ;(3) 1212(||||||n n x x x x x x x x |+++| ≥ ||- + ++ ).2.求证 ||||||1||1||1||a b a b a b a b + ≤ +++ + +. 3.求证||max(,)22a b a b a b + -=+ ; ||min(,)22a b a b a b + -=- . 4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ ,试求此三角形的面()s θ ,并求其定义域.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.6.某公共汽车路线全长为 20km ,票价规定如下:乘坐 5km 以下(包括5km )者收费 1 元;超过 5km 但在15km 以下(包括 15km )者收费 2 元;其余收费 2 元 5 角. 试将票价表为路程的函数,并作出函数的图形.7.一脉冲发生器产生一个三角波. 若记它随时间t 的变化规律为()f t ,且三个角分别有对应关系(0)0f = ,(10)20f = ,(20)0f = ,求()20f t t (0≤≤) ,并作出函数的图形.8.判别下列函数的奇偶性:(1) 42()12x f x x = + - ;(2) ()sin f x x x = + ;(3) 22()x f x x e - = ;(4) ()lg(f x x = .9.判别下列函数是否是周期函数,若是,试求其周期: (1) 2()cos f x x = ;(2) ()cos sin 23x xf x = +2 ;(3) ()cos f x x π= 4;(4)()f x . 10.证明 2()1x f x x=+在 (,) -∞ +∞ 有界. 11.用肯定语气叙述函数无界,并证明21()f x x =在(0,1) 无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设()f x 为定义在(,) -∞ +∞ 内的任何函数,证明()f x 可分解成奇函数和偶函数之和.14.用肯定语气叙述:在(,) -∞ +∞ 上 (1) ()f x 不是奇函数;(2) ()f x 不是单调上升函数; (3) ()f x 无零点; (4) ()f x 无上界.复合函数与反函数1. 设()1x f x x 1-=+,求证 (())f f x x = . 2. 求下列函数的反函数及其定义域:(1) 112y x x x= (+) , 1 < < +∞ ;(2) 12x x y e e x -= ( - ) , -∞ < < +∞ ;(3) 2,1,,4,2,4.x x x y x x x -∞ < < ⎧⎪= 1≤ ≤⎨⎪ < <+∞⎩3.设()f x ,()g x 为实轴上单调函数,求证(())f g x 也是实轴上的单调函数. 4.设2,0,1,0,()(),0.,0.x x x x f x g x x x x x ≤ - - ≤ ⎧⎧ = = ⎨⎨ > - > ⎩⎩求复合函数(())f g x ,()g f x ( ). 5.设()f x ,求n f f f x () ()次. 6.设 ()|1|||f x x x + - 1 - =,试求n f f f x () ()次.7.设 1()f x x =1-,求(())f f x ,((()))f f f x ,1()()f f x .初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) ||y x = ; (2) []y x x = - ;(3) tan ||y x = ; (4)y (5) 2sin y x = ;(6) sin cos y x x = | | + | |.2.若已知函数()y f x = 的图形,作函数1()y f x = ,2()y f x = - ,3()y f x = --的图形,并说明123y y y , , 的图形与y 的图形的关系. 3.若已知函数(),()f x g x 的图形,试作函数[()()()()y f x g x f x g x 1=+ ±- ] 2的图形,并说明y 的图形与()f x 、()g x 图形的关系.4. 作出下列函数的图形: (1) sin y x x = ;(2) 1sin y x =. 5.符号函数0,0,0,1,0,x y sgn x x x 1 , > ⎧⎪= = = ⎨⎪- < ⎩试分别作出sgn x ,sgn )x (2 ,sgn(2)x - 的图形.6.作出下列函数的图形: (1) cos y sgn x = ;(2) ]22x y x ⎡⎤= [ - ⎢⎥ ⎣⎦.数列的极限1. 用定义证明下列数列的极限为零: (1) 1lim 1n n n →∞+ +;(2) sin lim n n n →∞;(3) lim n n π→∞;(4) 2(1)lim nn n n →∞ + - - 1; (5)n →∞;(6) 10lim !nn n →∞;(7) lim 1n n na a →∞ ( > );(8) !lim n n n n →∞; (9) 2123lim n nn →∞ + + + +;(10) 1lim 1n n a a n -→∞(+ ) , >. 2.用定义证明:(1) 223lim 21n n n n →∞+3= 2 - ;(2)n →∞ 1 ; (3) lim n n x →∞ = 1 ,其中 1,1,n n n nx n n n-⎧ ⎪⎪ = ⎨ + ⎪ ⎪⎩为偶数,为奇数;(4) lim n n x →∞ = 3 ,其中31,1(1,2,)22n n k n x n k k n n k ⎧⎪ 3 = ⎪3 + ⎪= = 3 + = ⎨⎪⎪ = 3 + ⎪⎩,,.3.用定义证明:(1) 若lim n n a a →∞= ,则对任一正整数k ,有lim n k n a a +→∞= ;(2) 若lim n n a a →∞= ,则lim |n n a a →∞|| = | .反之是否成立?(3) 若lim n n a a →∞= ,且a b > ,则存在N ,当n N > 时,有n a b > ;(4) 若lim n n a a →∞= ,且0n a >,则n .4.极限的定义改成下面形式是否可以?(其中“ ∃ ”是逻辑符号,表示“存在”.) (1) ε ∀ > 0 ,0N ∃ > ,当n N ≥ 时,有n x a ε |-|<; (2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a ε ≤ |-|;(2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a M ε < |-|(M 为常数).5.若 {}n n x y 收敛,能否断定{}n x 、{}n y 也收敛? 6.设 (1,)n n x a y n ≤ ≤ = 2, ,且lim()0n n n y x →∞- = ,求证:lim n n x a →∞= ,lim n n y a →∞= .7.利用极限的四则运算法则求极限:(1) 3232321lim 32n n n n n n →∞ + - + 2 - +;(2) (2)3lim (2)3n nn →∞- +- + ; (3) 112lim 1144nn n→∞1 + + + 2 1 + + + ; (4)n →∞.8.求下列极限: (1) 111lim ()12(1)n n n →∞ + + + 2 3 + ; (2) 222111lim ()(1)(2)n n n n →∞+ + + + ; (3)lim n →∞; (4) 21321lim()222n n n →∞- + + + ;(5)lim(1cos n n →∞; (6)n ;(7)lim n →∞;(8) lim[(1)]n n n n n →∞+ - ,01a < < ; (9) lim 2n n n→∞132-124 ;(10) n ;(11) n ;(12) n .9.证明:若{}n a ,{}n b 中一个是收敛数列,另一个是发散数列,则{}n n a b ± 是发散数列;又问{}n n a b 和(0)n n n a b b ⎧⎫≠ ⎨⎬⎩⎭是否也是发散数列?为什么?10.设(1)n n x = - ,证明{}n x 发散. 11.若12,,,m a a a 为m 个正数,证明:12max(,,,)m n a a a .12.设lim n n a a →∞= ,证明:(1) []lim n n n a a n→∞ = ;(2) 若0,0n a a > >,则1n .13.利用单调有界原理,证明lim n n x →∞存在,并求出它:(1)122,x x n = 3, ; (2)1,2,n x x n = 3, ;(3) nn c x n = (c>0)!;(4) 101,1,1,1n n n xx x n x -- = 1= + = 2, + . 14.若11,0(),x a y b a b = > 0 = > <11,2n nn n x y x y ++ + =证明:lim lim n n n n x y →∞→∞= .15.证明:若0n a > ,且1lim 1nn n a l a →∞+ = > ,lim n n a →∞= 0.16.设lim n n a a →∞= ,证明:(1) 12lim nn a a a a n→∞ + + += ;(又问,它的逆命题成立否?) (2) 若0n a >,则n a . 17.应用上题的结果证明下列各题:(1) 113lim n n n→∞11 + ++ +2 = 0 ; (2)1(0)n a > ;(3)1n ;n (5)n →∞ 1 ;(6) 若1lim ()n n n nba b b +→∞ = >0,则n a .18.用定义证明下列数列为无穷大量: (1){ ;(2) {}n !; (3) {}ln n ;(4) 113n11+ ++ + 2 .19.利用1lim 1nn e n →∞⎛⎫+ = ⎪⎝⎭,求下列极限:(1) 1lim 1nn n →∞⎛⎫- ⎪⎝⎭;(2) 1lim 11n n n →∞⎛⎫ + ⎪+⎝⎭; (3) 1lim 12n n n →∞⎛⎫ + ⎪⎝⎭;(4) 21lim 1n n n →∞⎛⎫ + ⎪⎝⎭.函数的极限1.用极限定义证明下列极限:(1) 2131lim 29x x x →- - = - ;(2) 331lim 69x x x → -= - ; (3)12x → ; (4) 1(2)(1)lim 03x x x x →--= - ;(5)23x → ;(6) 21(1)1lim 21x x x x →-= - ; (7) 3lim 9x xx →= ∞ - ;2x x →∞ + (9) 2lim 1x x xx →∞ + = ∞ + ;(10) 225lim 11x x x →∞ - = - .2.用极限的四则运算法则求下列极限:(1) 2201lim 21x x x x → - - - ;(2) 2211lim 21x x x x → - - - ;(3) 3230(1)(13)lim 2x x x x x → - + - + ;(4)1x → ; (5)3x → ; (6) 22356lim x x x x x → - + - 8 + 15;(7) 11lim 1n m x x x → - - (,n m 为正整数); (8)4x → . 3.设()0f x > ,证明:若0lim ()x x f x A → =,则0x x → n ≥ 2. 4.证明:若0lim ()x x f x A → = ,则0lim |()|||x x f x A → = ,但反之不真.5.求下列函数字所示点的左右极限:(1) 21,()1,2,1,x f x x x x ⎧ 0 , > ⎪= 1 , = ⎨⎪ + < ⎩ 在=1x ; (2) 21sin ,(),x x f x xx x ⎧, > 0⎪ = ⎨⎪ 1+ , < 0⎩在=0x ; (3) 2||1(),1x f x x x =+ 在=0x ; (4) 11()[],f x x x = - 在1=x n,n 是正整数;(5) 2,()0,,0,x x f x x x x ⎧ 2 , > 0⎪= 0 , = ⎨⎪ 1+ < ⎩在=x 0 .6.求下列极限:221x x x →∞ - - (2) limx ;(3) lim x x →+∞) ;(4) lim x x →-∞) ;(5) 23lim x x xx→∞ + ;(6) 2sin lim 4x x xx →+∞- ;(7) cos lim x x xx→-∞-;(8) lim x →+∞.7.用变量替换求下列极限:(1) 01lim []x x x+→ ;(2) 0lim ln (0)a x x x a +→ > ; (3) ln lim 0x xa x →+∞( > ) ;(4) 1lim x x →+∞.8.设()f x 在(,)a +∞ 上单调上升,lim n n x →∞= +∞,若l i m ()n n f x A →∞ = ,求证:lim ()x f x A →+∞= (A 可以为无穷).9.设()f x 在集合X 上定义,则()f x 在X 上无界的充要条件是:存在,n x X ∈1,2,n = ,使lim ()|n f x →∞| = +∞ .10.利用重要极限求极限: (1) 0sin 2lim x xx→;(2) 220sin lim (sin )x x x →; (3) 0tan 3lim sin 5x xx→ ;(4) 302sin sin lim x x xx → - 2 ;(5) 20cos 5cos 3lim x x xx → -;0x x →(7) 0arctan lim x xx→ ;(8)x → ;(9)0x → ; (10) 0cos(arccos )lim x n x n x→ ( )为奇数;(11) 4tan 1lim 4x x x ππ→- - ; (12) sin lim ,sin x mxm n nxπ→(为整数); (13) 2cos lim 2x x x ππ→-;(14) 1lim sin x x x→+∞ ;(15)lim x →+∞;(16)lim sin (x n π→+∞( )为整数;(17) lim xx x -→∞2⎛⎫ 1 ⎪ ⎝⎭-;(18) 1lim(1)xx nx n → + ( )为整数; (19) cot 0lim(1tan )x x x → + ; (20) 101lim()1x x x x→+ -;(21) 2132lim ()31x x x x -→+∞+ -;(22) tan 2lim (sin )x x x π→; (23) 2221lim 1x x x x →∞⎛⎫- ⎪ - ⎝⎭;(24) lim 1nx n x n →+∞+⎛⎫⎪-⎝⎭. 11.证明01limcos x x→不存在 .12.证明0lim ()x x D x → 不存在,其中1,(),.x D x x ⎧ = ⎨ 0 ⎩为有理数,为无理数13.求极限lim cos cos cos 242n n x x x→+∞ . 14.用定义证明:(1) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ,则lim ()()]x af xg x → [+ = +∞ ;(2) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ( >0) ,则lim ()()]x af xg x → [ = +∞ .15.若lim ()x f x A →+∞= ,lim ()x g x B →+∞= ,证明:lim ()()]x f x g x AB →+∞[ = .16.证明lim ()x f x A →+∞= 的充要条件是:对任何数列()n x n → +∞ →∞ ,有(()n f x A n ) → →∞ .17.证明0lim ()x x f x +→ = +∞ 的充要条件是:对任何数列0()n x x n → →∞ ,有 (()n f x A n ) → →∞ .18.设函数()f x 在(0,) +∞ 上满足方程(2)()f x f x = ,且lim ()x f x A →+∞= ,证明:(),(0,)f x A x ≡ ∈ +∞ .无穷小量与无穷大量的比较1. 当0x → 时,以x 为标准求下列无穷小量的阶: (1) sin sin x x 2 - 2 ; (2) 1(1)1x x- - +;(3)(4) (5) ln (1)x + ;(6)(7) 1; (8) 1x e - .2.当x →±∞ 时,以x 为标准求下列无穷大量的阶: (1) 26x x + ;(2) 2454x x x + 6 - ;(3)(4)223x x + - (6) 21arctan x x.3.当0x → 时,下列等式成立吗? (1) 2()()o x o x = ; (2) 2()()O x x = ο ; (3) 23()()x o x o x = ;(4) 2()()o x o x x = ;(5) 2()()()o x o x o x= ; (6) 2()()o x O x = . 4.试证下列各题:(1)3()(0)x O x x + →; (2) 32322()()x x O x x + = →∞; (3) 0(())(())(())o g x o g x o g x x x ± = (→); (4) ()()()00m n n o x o x o x x m n + = (→) , > > ; (5) ()()()00m n m n o x o x o x x m n + = (→) , > > . 5.证明下列各式:(1) tan (0)x x x → ; (2) arcsin (0)x x x → ; (3) arctan (0)x x x → ;(4) 21cos (0)x x x 1- → 2;(5) (0)x e x x - 1 → ;(6) (1)(0),a x x x α+- 1 → α ≠ 0 其中. 6.运用等价无穷小量求极限:(1) 2arctan lim cos x x x x→∞1- ; (2)0x →;sin x x → (4) 201lim sin x x e x x→ - .7.设0()()()f x g x x x → ,证明:()()(())f x g x o f x - = 或()()(())f x g x o g x - = .8.设x a → 时,1()f x 与2()f x 维等价无穷小,1()g x 与2()g x 是等价无穷大,且22lim ()()x af xg x → 存在,求证1122lim ()()lim ()()x ax af xg x f x g x →→ = .函数的连续性1. 用定义证明下列函数在定义域内连续: (1)y(2) 1y x =; (3) ||y x = ;(4) 1sin y x= .2.指出下列函数的间断点并说明其类型: (1) 1()f x x x = +; (2) 2()(1)xf x x =+;(3) 21()cos f x x= ;(4) ()[][]f x x x = + -;(5) sin ()||xf x x =; (6) ()sgn |f x x = |; (7) ()sgn(cos )f x x = ;(8) ()ln f x x1 =; (9) ,||1,()1,|1x x f x x ≤ ⎧ = ⎨|>⎩; (10) cos ,||1,()21,|1x x f x x x π⎧≤ ⎪ = ⎨⎪ | -| |>⎩; (11) sin ,,()0,x x f x x π ⎧ = ⎨⎩为有理数为无理数;(12) ,,(),x x f x x x ⎧ = ⎨- ⎩为有理数为无理数. 3.当0x = 时下列函数无定义,试定义(0)f 的值,使()f x 在0x = 连续:(1)()f x ;(2) tan 2()xf x x= ;(3) 1()sin sin f x x x= ;(4) ()xf x x 1 = (1+).4.设()f x 是连续函数,证明对任何0c > ,函数,(),()(),(),,()c f x c g x f x f x c c f x c - < -⎧⎪= || ≤ ⎨⎪ > ⎩是连续的.5.若()f x 在0x 点连续,那么()f x | | 和2()f x 是否也在0x 点连续?反之如何? 6.若函数()f x 字0x = 点连续,而()g x 在0x = 点不连续,问此二函数的和、积在0x 点是否连续?又若()f x 和()g x 在0x 点都不连续,问此二函数的和、积在0x 点是否必不连续?7.证明若连续函数在有理点的函数值为0,则此函数恒为0.8.若()f x 在[,]a b 连续,恒正,按定义证明1()f x 在,a b [ ] 连续. 9.若()f x 和()g x 都在[,]a b 连续,试证明max(()())f x g x , 和min(()())f x g x , 都在[,]a b 连续.10.证明:设()f x 为区间(,)a b 上单调函数,若0,x a b ∈ ( ) 为()f x 的间断点,则必是()f x 的第一类间断点.11.若()f x 在[,]a b ,12n a x x x b < < < < < ,则在12[,]x x 中必有ξ ,使得12()[()()()]n f f x f x f x nξ1= + ++ .12.研究复合函数f g 和g f 的连续性. 设(1) 2()sgn ,()1f x x g x x = = +; (2) 2()sgn ,()1)f x x g x x x = = (-.13.证明:若()f x 在[,]a b 连续,且不存在,]x a b ∈ [ ,使()f x = 0 ,则()f x 在[,]a b 恒正或恒负.14.设()f x 为[,]a b 上的递增函数,值域为[(),()]f a f b ,证明()f x 在[,]a b 上连续. 15.设()f x 在[,)a +∞ 上连续,且0()(0)f x x x ≤ ≤ ≥ ,若10a ≥ ,1()(1,2,)n n a f a n + = = .求证:(1) lim n n a →∞存在;(2) 设lim n n a l →∞= ,则()f l l = ;(3) 如果将条件改为0()(0)f x x x ≤ < > ,则0l = . 16.求下列极限:(1)11lim 2x x x →+⎛⎪+⎝⎭;(2) 1lim arctan cos x x x→+∞ ( ) ;(3) 21lim(cos )x x x → ;(4) 20cos 5lim 1ln(1)x x e x x x → ++ + -.17.证明方程30(0)x px q p + + = > 有且只有一个实根.实数的完备性1.求数列的上、下确界: (1) 11;n x n=-(2) [2(2)];n n x n =+-(3)2211,1(1,2,3,);k k x k x k k += =+ =(4) 1[1(1)];n n n x n+=+- (5);n x (6)12cos .13n n n x n π-=+ 2.设()f x 在D 上定义,求证:(1) sup{()}inf ();x Dx Df x f x ∈∈-=-(2)inf{()}sup ().x Dx Df x f x ∈∈-=-3.设s u p E β=,且E β∉,试证自E 中可选取数列{}n x 且n x 互不相同,使lim n x x β→∞=;又若E β∈,则情形如何?4.试证收敛数列必有上确界和下确界,趋于+∞的数列必有下确界,趋于-∞的数列必有上确界.5.试分别举出满足下列条件的数列: (1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.实数完备性基本定理1.利用有限覆盖定理9.2证明紧致性定理9.4. 2.利用紧致性定理证明单调有界数列必有极限. 3.用区间套定理证明单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件1122[,][,]a b a b ⊃⊃ 去掉或将条件0n n b a -→去掉,结果怎样?试举例说明.5.若{}n x 无界,且非无穷大量,则必存在两个子列,k k n m x x a →∞→ (a 为有限数).6.有界数列{}n x 若不收敛,则必存在两个子列,)kk n m x a x b b →→ (α≠.7.求证:数列{}n a 有界的充要条件是,{}n a 的任何子数列{}k n a 都有收敛的子数列.8.设()f x 在[,]a b 上定义,且在每一点处函数的极限存在,求证:()f x 在[,]a b 上有界. 9.设()f x 在[,]a b 无界,求证:存在[,]c a b ∈,对任给0δ>,函数()f x 在(,)[,]c c a b δδ-+⋂上无界.10.设()f x 是(,)a b 上的凸函数,且有上界,求证:lim (),lim ()x ax bf x f x +-→→ 存在. 11.设()f x 在[,]a b 上只有第一类间断点,定义()|(0)(0)|.x f x f x ω=+--求证:任意0,()x εωε> ≥的点x 只有有限多个.12.设()f x 在[0,)+∞上连续且有界,对任意(,)a ∈-∞+∞,()f x a =在[0,)+∞上只有有限个根或无根,求证:lim ()x f x →+∞存在.实数完备性续1,设()f x 在(,)a b 连续,求证:()f x 在(,)a b 一致连续的充要条件是lim ()x a f x +→与lim ()x bf x -→都存在,2.求证数列1nx =+ n →∞时的极限不存在. 3.利用柯西收敛定理讨论下列数列的收敛性: (1) 012(||1,||);n n n k x a a q a q a q q a M =++++<≤(2)2sin1sin 2sin 1;222n n n x =++++ (3) 11111(1).23n n x n+=-+++- 4.证明0l i m ()x x f x →存在的充要条件是:对任意给定0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<5.证明()f x 在0x 点连续的充要条件是:任给0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<6.证明下列极限不存在: (1) 12cos ;13n n n x n π-=+(2) n x(3) sin(n x =(4) cos ;n x n = (5)t a n .n x n = 7.设()f x 在(,)a +∞上可导,|'()|f x 单调下降,且lim ()x f x →+∞存在,求证lim '()0x xf x →+∞=.8.设()f x 在(,)-∞+∞可导,且|'()|1f x k ≤<,任给0x ,令1()(0,1,2,),n n x f x n += =求证, (1)lim n x x →∞存在;(2) 上述极限为()x f x =的根,且是唯一的.9.设()f x 在[,]a b 满足条件:(1) |()()|||,,[,],1;f x f y k x y x y a b k -≤- ∀∈ 0<< (2)()f x 的值域包含在[,]a b 内.则对任意0[,]x a b ∈,令1()(0,1,2,)n n x f x n +== ,有(1)lim n x x →∞存在;(2)方程()x f x =的解在[,]a b 上是唯一的,这个解就是上述极限值.闭区间上连续函数的性质1.设()f x 在[,]a b 上连续,并且最大值点0x 是唯一的,又设0[,]x a b ∈,使0lim ()()n x f x f x →∞=,求证0lim n x x x →∞=2.设()f x 在[,]a b 上连续,可微,又设(1)min ()max ();a x ba x bf x p f x ≤≤≤≤<<(2) 如果()f x p =,则有'()0f x ≠,求证:()f x p =的根只有有限多个.3.设()f x 在[,]a b 连续,()0f a <,()0f b >,求证:存在(,)a b ξ∈,使()0f ξ=,且()0()f x x b ξ><≤.4.设()f x 是[,]a b 上的连续函数,其最大值和最小值分别为M 和()m m M <,求证:必存在区间[,]αβ,满足条件: (1)(),()f M f m αβ= =或(),()f m f M αβ= =; (2)()m f x M <<,当(,)x αβ∈.5.()f x 在[0,2]a 连续,且(0)(2)f f a =,求证:存在[0,]x a ∈,使()()f x f x a =+.6.设()f x 在[,]a b 上连续,且取值为整数,求证:()f x ≡常数. 7.设()f x 在(,)a b 上一致连续,,a b ≠±∞,证明()f x 在(,)a b 上有界;8.若函数()f x 在(,)a b 上满足利普希茨(Lipschitz)条件,即存在常数K ,使得|(')('')||'''|,',''(,).f x f x K x x x x a b -≤- ∈证明:()f x 在(,)a b 上一致连续.9.试用一致连续的定义证明:若函数()f x 在[,]a c 和[,]c b 上都一致连续,则()f x 在[,]a b 上也一致连续.10.设()f x 在(,)-∞+∞上连续,且lim ()x f x →-∞与lim ()x f x →+∞存在.证明;()f x 在(,)-∞+∞上一致连续.11.若()f x 在区间X (有穷或无穷)中具有有界的导数,即|'()|,f x M x X ≤ ∈,则()f x 在X 中一致连续.12.求证:()f x x =在(0,)+∞上一致连续.13.设()f x 在(,)a +∞上可导,且lim '()x f x →+∞=+∞,求证:()f x 在(,)a +∞上不一致连续.14.求证:()ln f x x x =在(0,)+∞上不一致连续.微分中值定理及应用微分中值定理1.证明:(1)方程330x x c -+=(c 是常数)在区间[0,1]内不可能有两个不同的实根;(2)方程nx0px q ++=(n 为正整数,,p q 为实数)当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根。

微积分(数学分析)练习题及答案doc

微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。

全国大学生数学竞赛(数学专业组)《数学分析》部分 培训练习题

全国大学生数学竞赛(数学专业组)《数学分析》部分 培训练习题
k=1 ak
dx xα+1
=
∫ an+1
a1
dx xα+1
=
1 α
(a−1 α

a−n+α1)
<
1 α
a−1 α.
∑∞ ak+1−ak
k=1 aαk++11
.
∑∞
k=1
(
1
aαk

)
1
aαk+1
,
∑ ∞
k=1
ak+1 − ak ak+1
( 1 aαk

) 1 aαk+1
.
(
)
ak+1 − ak ak+1aαk
(1)
y
= log b,
x=
log a log b
> 1.
b = ey, log a = x log b = xy, a = exy,
b log a = eyxy, a log b = yexy.
(1)
log x > y(xey − exy), x > 1, y > 0.
(2)
x > 1, y > 0 x > 1, f y
f (x) ≤ f (x),
f (x)f (x) + (f (x))2 ≤ f (x)f (x) + (f (x))2.
(−∞, x)
,
1 (f
∫ (x))2 +
x
(f (t))2 dt ≤ f (x)f (x).
(1)
2
−∞
f (x),
f (x) ≤ f (x),

数学分析试题库-选择题

数学分析试题库-选择题

数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。

数学分析上册练习题及答案第四,五章

数学分析上册练习题及答案第四,五章

一元函数的连续性 第四章 函数的连续性 1连续性概念1. 按定义证明下列函数在其定义域内连续:(1)xx f 1)(=;(2) x x f =)(. 证明(1) xx f 1)(=的定义域是R x ∈且0≠x ,取00≠x ,由函数极限四则运算可知)(11lim)(lim 0000x f x x x f x x x x ===→→,所以)(x f 在0x 连续.由0x 在定义域内的任意性知)(x f 在其定义域内连续.(2) )(x f 的定义域是R x ∈,任取R x ∈0,由于00x x x x -≤-,所以对任给的0>ε,取εδ=,使得当δ<-0x x 时有ε<-≤-=-000)()(x x x x x f x f .按函数在一点连续的δε-定义, )(x f 在0x 连续,由0x 在R 中的任意性知)(x f 在定义域R 内连续.2. 指出下列函数的间断点并说明其类型: (1) xx x f 1)(+=;(2) x x x f sin )(=;(3) ]cos [)(x x f =;(4) x x f sgn )(=;(5))sgn(cos )(x x f =;(6) ⎩⎨⎧-=;,,)(为无理数为有理数x x x x x f(7) ⎪⎪⎩⎪⎪⎨⎧+∞<<--≤≤--<<∞-+=.1,11sin )1(,17,,7,71)(x x x x x x x x f解(1)因)(x f 仅在0=x 处无定义,故0=x 为函数的间断点,又因+∞=+→)(lim 0x f x ,-∞=-→)(lim 0x f x ,所以0=x 为第二类间断点.(2)因)(x f 仅在0=x 处无定义,故0=x 为函数的间断点, 又因,1sin lim sin lim )(lim ,1sin lim )(lim 0000-=-=-===---++→→→→→xxx x x f x x x f x x x x x 所以0=x 是)(x f 的第一类间断点,且为跳跃间断点.(3)由于,,0]cos [lim Z n x n x ∈=→π而0]1[])1([]cos [)(≠=-==n n n f ππ,所以)(Z n n x ∈=π为该函数的可去间断点.(4)由于,0,00,1sgn ⎩⎨⎧=≠=x x x 故1)(lim 0=→x f x ,而0)0(=f ,所以0=x 为函数的可去间断点.(5)由于⎪⎪⎪⎩⎪⎪⎪⎨⎧++∈-±=+-∈==)232,22(1220)22,22(1)sgn(cos )(ππππππππππk k x k x k k x x x f 故,1)(lim,1)(lim ,1)(lim ,1)(lim )22()22()22()22(-===-=-+-+-→-→+→+→x f x f x f x f k x k x k x k x ππππππππ所以),2,1,0(22 ±±=±=k k x ππ皆为函数的跳跃间断点.(6)当00≠x 时,由于存在有理数列{}n x '和无理数列{}n x ''使得: 0x x n <'且)(0∞→→'n x x n;0x x n <''且)(0∞→→''n x x n , 故,)(lim )(lim ,lim )(lim 00x x x f x x x f n n n n n n nn -=''-=''='='∞→∞→∞→∞→而且,00x x -≠ 据函数极限的归结原则, )(lim 0x f x x -→不存在,同理)(lim 0x f x x +→也不存在,所以0≠x 的点皆为函数的第二类间断点.(7)因为,71lim )(lim)7()7(+∞=+=---→-→x x f x x 所以7-=x 为函数的第二类间断点.因为,01sin )1(lim )(lim ,1lim )(lim 1111=⋅-===++--→→→→x x x f x x f x x x x 即),01()01(+≠-f f 所以1=x 为函数的跳跃间断点.综上, 7-=x 是该函数的第二类间断点, 1=x 是该函数的跳跃间断点. 3. 延拓下列函数,使其在R 上连续:(1) 28)(3--=x x x f ;(2) 2cos 1)(xx x f -=;(3) x x x f 1cos )(=. 分析:如果函数)(x f 在R 上无定义的点皆为可去间断点,那么只需在每个无定义的点0x 处补充定义)(lim )(00x f x f x x →=,就可以使)(x f 的定义扩大到R 上且处处连续.解(1) )(x f 在2=x 时无定义,而12)42(lim 28lim)(lim 22322=++=--=→→→x x x x x f x x x ,故2=x为)(x f 的可去间断点,令,2,122),()(⎩⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓,且在),(+∞-∞上连续.(2) )(x f 在0=x 时无定义,而2122sin 21lim 2sin 2lim cos 1lim)(lim 0220200=⎪⎪⎪⎪⎭⎫⎝⎛⋅==-=→→→→x x x x xxx f x x x x ,所以0=x 为该函数的可去间断点.令,0,210),()(⎪⎩⎪⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓,且在),(+∞-∞上连续.(3) )(x f 在0=x 时无定义, 而01coslim )(lim 0=⋅=→→xx x f x x ,所以0=x 为该函数的可去间断点. 令,0,00),()(⎩⎨⎧=≠=x x x f x F 则)(x F 为)(x f 在R x ∈上的延拓.4. 证明:若f 在点0x 连续,则f 与2f 也在点0x 连续.又问:若f 或2f 在I 上连续,那么f在I 上是否必连续?分析 将)()(0x f x f -和)()(022x f x f -与)()(0x f x f -的不等式关系找出,从而利用极限定义求证其连续,即运用极限理论讨论可得结论.证明(1)因为)(x f 在点0x 连续,所以)()(lim 00x f x f x x =→,则根据极限的δε-定义,对任给的0>ε,存在0>δ,使得当δ<-0x x 时有ε<-)()(0x f x f .又因,)()()()(00x f x f x f x f -<-所以当δ<-0x x 时也有.所以)()(lim 00x f x f x x =→,即可知f 在点0x 连续.(2) 因)(x f 在0x 连续,即)()(lim 00x f x f x x =→,所以由函数极限的局部有界性知,存在0>M ,01>δ使得当10δ<-x x 时,有M x f x f ≤-)()(0.取},m in{1δδδ=',当δ'<-0x x 时,有)()()()()()(00022x f x f x f x f x f x f +⋅-=- ()εεM M x f x f x f x f 22)()()()(00=⋅<-⋅-≤.所以2f 在0x 连续.但是,当f 或2f 在I 上连续时, f 在I 上不一定连续.例如,,1,1)(⎩⎨⎧-=为无理数为有理数x x x f 则f ,2f 为常数1,故处处连续,但)(x f 却处处不连续.5. 设当0≠x 时, )()(x g x f ≡,而)0()0(g f ≠.证明: f 与g 两者中至多有一个在0=x 连续.证明:反证法 假设)(x f 和)(x g 都在0=x 连续,即)0()(lim 0f x f x =→,)0()(lim 0g x g x =→,又因0≠x 时,)()(x g x f ≡,所以)(lim )(lim 0x g x f x x →→=,从而有)0()0(g f =,这与题设)0()0(g f ≠相矛盾.因此假设错误. )(x f 与)(x g 两者中至多有一个在0=x 连续.6. 设f 为区间I 上的单调函数.证明:若I x ∈0为f 的间断点,则0x 必是f 的第一类间断点.证明:设)(x f 在I 上递增,当I x ∈0且0x 不是I 的端点时,必存在0x 的某邻域I x U ⊂)(0,因)(x f 在)(0x U -内递增且以)(0x f 为上界,在)(0x U +内递增且以)(0x f 为下界,据函数极限的单调有界原理知)(lim 0x f x x +→与)(lim 0x f x x -→都存在,从而0x 是)(x f 的第一类间断点.当I x ∈0且为I 的左(右)端点时, )(x f 在0x 处的右(左)极限存在,所以0x 仍为第一类间断点.7. 设函数f 只有可去间断点,定义)(lim )(y f x g xy →=.证明g 为连续函数.证明:设f 的定义域为I ,则对任意的I x ∈0,因为)(lim )(00y f x g x y →=,所以对任意的0>ε,存在0>δ,当),(0δx U y ∈时,有ε<-)()(0x g y f .对任意的),(0δx U x ∈,因为)(lim )(y f x g xy →=,所以对同一ε,存在0>'δ,使),(),(0δδx U x U ⊂',且对任意的),(δ'∈x U y 时,有ε<-)()(x g y f .从而有ε2)()()()()()()()()()(000<-+-≤-+-=-x g y f y f x g x g y f y f x g x g x g .从而得)()(lim 00x g x g x x =→,所以)(x g 在点0x 处连续.由0x 的任意性知, )(x g 在I 上连续.8. 设f 为R 上的单调函数,定义)0()(+=x f x g .证明g 在R 上每一点都右连续.证明:假定f 为R 上的单调函数.对任意的R x ∈0,因)0(0+x f 存在,即)0()(lim 00+=+→x f x f x x ,所以对任意的0>ε,存在0>δ,当δ+<<00x x x 时,有ε<+-)0()(0x f x f .取x '使δ+<'<<00x x x x ,有ε<+-')0()(0x f x f .又由f 在R 上的单调增加性有εε++≤'≤+≤≤+≤-+)0()()0()()0()0(000x f x f x f x f x f x f ,即有εεεε+=++≤=+≤-+=-)()0()()0()0()(0000x g x f x g x f x f x g .由此可知,对一切),(00δ+∈x x x 有ε<-)()(0x g x g .因此点0x 是g 的右连续点,再由0x 在R 上的任意性,推得g 为R 上的右连续函数.9. 举出定义在]1,0[上分别符合下述要求的函数:(1) 只在31,21和41三点不连续的函数; (2) 只在31,21和41三点连续的函数;(3) 只在),3,2,1(1=n n上间断的函数;(4) 只在0=x 右连续,而在其它点都不连续的函数.解(1) .121,42131,33141,2410,1)(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤<≤<≤<≤=x x x x x f (2) .,0),41)(31)(21()(⎪⎩⎪⎨⎧---=为无理数为有理数x x x x x x f (3) .sin1)(xx f π=(4) .,0,)(⎩⎨⎧=为无理数为有理数x x x x f2连续函数的性质1. 讨论复合函数g f 与f g 的连续性,设 (1) 21)(,sgn )(x x g x x f +==; (2) .)1()(,sgn )(2x x x g x x f -==解(1)由于01)(2>+=x x g ,故1)1sgn())(())((2≡+==x x g f x g f ,所以g f 在所有点上都连续.又,0,20,1)(sgn 1))(())((2⎩⎨⎧≠==+==x x x x f g x f g 且)0)((2)(lim 0f g f g x ≠=→,所以0=x 为f g 的可去间断点,其余点均为f g 的连续点.(2)由于()⎪⎩⎪⎨⎧<<<---=<<-<=-=101,11,1,0,0101,1)1(sgn ))((2x x x x x x x x g f 或或 ,且,1)(lim 1=-→g f x ,1)(lim 1-=→g f x ,1)(lim 0-=-→g f x ,1)(lim 0=+→g f x ,1)(lim 1=-→g f x ,1)(lim 1-=+→g f x 所以))((x g f 在1,0,1-=x 处有跳跃间断点,在其它点连续.又0sgn ])(sgn 1[))((2≡-=x x x f g ,所以f g 处处连续. 2. 设g f ,在点0x 连续,证明:(1) 若)()(00x g x f >,则存在);(0δx U ,使在其内有)()(x g x f >; (2) 若在某)(00x U 内有)()(x g x f >,则)()(00x g x f ≥. 证明(1)令)()()(x g x f x F -=,则0)()()(000>-=x g x f x F ,又因为g f ,在点0x 连续,由定理4.4知F 在点0x 连续.由连续函数的局部保号性,对任何正数)(0x F r <,存在某)(0x U ,使得对一切)(0x U x ∈,有0)(>>r x F ,即存在)(0x U ,使得对一切)(0x U x ∈,有0)()()(>-=x g x f x F ,即)()(x g x f >.(3) 由)(),(x g x f 在点0x 连续可知,有)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→,又因为在)(00x U 内有)()(x g x f >,则有极限保号不等式性有)()(lim )(lim )(000x g x g x f x f x x x x =≥=→→.3. 设g f ,在区间I 上连续.记{}{})(),(m in )(,)(),(m ax )(x g x f x G x g x f x F ==. 证明F 和G 也都在I 上连续.证明:法一利用第一章总练习题1的结论. 因)(),(x g x f 在I 上连续,而])]()([)()([21])()()()([21)(2x G x f x g x f x G x f x g x f x F -++=-++=,是由)(),(x g x f 经过加,减,乘运算及其幂函数的复合运算所得,故)(x F 也在I 上连续.法二 利用max 和min 的性质,由g f ,的连续性推出F 和G 的连续性. 对区间I 上任意一点0x ,g f ,在点0x 连续,则对任给0>ε,存在正数21,δδ,使得当10δ<-x x 时,有εε+<<-)()()(00x f x f x f ,当20δ<-x x 时,有εε+<<-)()()(00x g x g x g .取},m in{21δδδ=,则有εε+<<-)()()(00x f x f x f ,εε+<<-)()()(00x g x g x g 同时成立. 从而有{}ε+<)()(),(m ax 0x f x g x f 且{}ε+<)()(),(m ax 0x g x g x f .即{}{}ε+<)(),(m ax )(),(m ax 00x g x f x g x f .又有{}ε->)()(),(m ax 0x f x g x f 且{}ε->)()(),(m ax 0x g x g x f ,即{}{}ε->)(),(m ax )(),(m ax 00x g x f x g x f .综合以上得{}{}{}εε+<<-)(),(m ax )(),(m ax )(),(m ax 0000x g x f x g x f x g x f .由ε的任意性得{}{})(),(max )(),(max lim 000x g x f x g x f x x =→.即).()(lim 00x F x F x x =→同理可证).()(lim 00x G x G x x =→4. 设f 为R 上连续函数,常数0>c .记⎪⎩⎪⎨⎧>≤-<-=.)(,,)(),(,)(,)(c x f c c x f x f c x f c x F 若若若证明F 在R 上连续.证明:令{})}(,m in{,m ax )(x f c c x F -=,因常数c ,)(x f 都在R 上连续,所以由3题结论知)}(,min{x f c 在R 上连续,又因c -也在R 上连续,再由3题结论知{})}(,m in{,m ax x f c c -在R 上连续,即F 在R 上连续.5. 设⎩⎨⎧>+≤-==.0,0,)(,sin )(x x x x x g x x f ππ证明复合函数g f 在0=x 连续,但g 在0=x 不连续.证明:因⎩⎨⎧>+≤-=,0),sin(0),sin())((x x x x x g f ππ 所以0)sin(lim ))((lim 00=-=--→→πx x g f x x ,0)sin(lim ))((lim 00=+=++→→πx x g f x x .又0)0)((=g f ,故g f 在0=x 连续,但是ππ-=-=→→-)(lim )(lim 00x x g x x ,ππ=+=++→→)(lim )(lim 0x x g x x ,因)(lim )(lim 0x g x g x x +-→→≠,故)(x g 在0=x 不连续.6.设f 在),[+∞a 上连续,且)(lim x f x +∞→存在.证明: f 在),[+∞a 上有界,又问f 在),[+∞a 上必有最大值或最小值吗?证明(1)由于)(lim x f x +∞→存在,设A x f x =+∞→)(lim ,则根据极限定义,对1=ε,存在a M >,使得当M x >时,有1)(<-A x f ,从而A A A x f A A x f x f +<+-≤+-=1)()()(。

(完整word版)数学分析—极限练习题及详细答案

(完整word版)数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

谢惠民数学分析习题课讲义部分题目解答

谢惠民数学分析习题课讲义部分题目解答

数学分析习题课讲义问题解答第一章引论1.3.2练习题1.关于Bernoulli 不等式的推广:(1)证明:当12-≤≤-h 时Bernoulli 不等式nh h n+≥+1)1(仍成立;(2)证明:当0≥h 时成立不等式2)1()1(2h n n h n-≥+,并推广之;(3)证明:若),,2,1(1n i a i =->且同号,则成立不等式∑∏==+≥+ni in i iaa 111)1(.2.阶乘!n 在数学分析以及其他课程中经常出现,以下是几个有关的不等式,它们都可以从平均不等式得到:(1)证明:当1>n 时成立nn n )21(!+<;【证明】利用平均值不等式,有n nk nk kk n ∏∑==≥111所以nn n )21(!+≤因为1>n ,所以取等号的条件n === 21不满足,故nn n 21(!+<.(2)利用)1(]2)1)[(1()!(2n n n n ⋅⋅-⋅= 证明:当1>n 时成立nn n 62(!+<;【证明】利用平均值不等式,有n nk nk k n k k n k n ∏∑==-+≥-+11)1()1(1所以nn n n n n 62(]6)2)(1([!+<++≤(3)比较(1)和(2)中两个不等式的优劣,并说明原因;(4)证明:对任意实数r 成立nn k r n rk n n )(1)!(1∑=≤.【证明】利用平均值不等式,有n nk rn k rkk n ∏∑==≥111所以nn k r n rk n n )(1)!(1∑=≤3.证明几何平均值-调和平均值不等式:若0>k a ,n k ,,2,1 =,则有∑∏==≥nk knnk k a n a 1111)(【证明】利用平均值不等式,有n nk kn k ka a n ∏∑==≥11111所以∑∏==≥nk knnk k a n a 1111)(4.证明:当c b a ,,为非负数时成立333cb a ca bc ab abc ++≤++≤.【证明】由于cabc ab c b a a c c b b a ++≥++⇒≥-+-+-2222220)()()(所以33)(3)(2cabc ab cb a ca bc ab c b a ++≥++⇒++≥++利用平均值不等式,有323)(33abc ca bc ab ca bc ab =⋅⋅≥++所以33abc ca bc ab ≥++5.证明下列不等式:(1)b a b a -≥-和b a b a -≥-;【证明】利用三点不等式,有ab b a b b a =+-≥+-)(由对称性知ba b a ≥+-所以ba ab b a b a -=--≥-),max((2)∑∑∑===≤≤-n k k nk knk ka aaa 1121;有问:左边可否为∑=-nk k a a 21?【证明】利用(1)的结论,有∑∑∑====-≤-nk knk knk kaa aaa 21111反复利用三点不等式,有∑∑∑∑∑=====≤≤++≤+≤+=nk knk knk knk k nk ka aa a aa a a a132121211再利用这个结论,有∑∑∑===≤≤-nk knk knk ka aaa 2211(3)bb aa ba b a +++≤+++111;【证明】显然函数x x x x f +-=+=1111)(是单调增加的,所以有bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111(4)nnnna b a a b a -+≤-+)()(.【证明】利用三点不等式,有nnn n n n n n n b a b a b a a a b a a a b a )()()()(+≤+=+≤+-+=+-+第二章数列极限2.7.3参考题第一组参考题1.设}{12-k a ,}{2k a 和}{3k a 都收敛,证明:}{n a 收敛.【证明】设}{12-k a ,}{2k a 和}{3k a 分别收敛于数c b a ,,.取}{12-k a 的一个子列}{36-k a ,它收敛于数a ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c a =.取}{2k a 的一个子列}{6k a ,它收敛于数b ,同时它又是}{3k a 的子列,所以也收敛于数c ,所以c b =.于是有b a =.对任给的0>ε,存在正整数1N 与2N ,当1N n >时有εa a n <--12,当2N n >时有εa a n <-2.现取),max(221N N N =,当N n >时有εa a n <-,故}{n a 收敛于a .2.设}{n a 有界,且满足条件2+≤n n a a ,3+≤n n a a ,+∈N n ,证明:}{n a 收敛.【证明】由条件2+≤n n a a 知}{12-k a 与}{2k a 都是单调增加的数列,又有界,故都收敛.由条件3+≤n n a a 知}{3k a 单调增加,又有界,故收敛.利用1的结论知}{n a 收敛.3.设}{1++n n a a 和}{2++n n a a 都收敛,证明:}{n a 收敛.【证明】设}{1++n n a a 和}{2++n n a a 分别收敛于数b a ,.那么有ab a a a a a a n n n n n n n n -=+-+=-++∞→++∞→)]()[(lim )(lim 1212ba a a a a a a n n n n n n n n -=+-+=-+++∞→+∞→)]()[(lim )(lim 2211进而有)]()[(lim )(lim 1122=-+-=-+++∞→+∞→n n n n n n n n a a a a a a 故2)]()[(lim 21lim 22a a a a a a n n n n n n n =--+=++∞→∞→5.设∑=-+=nk n nka 12)11(,+∈N n ,计算n n a ∞→lim .【解】由于∑∑∑∑====++≤++=-+≤++nk n k n k n k nknn k n k n k n k n n 122122121221111111)11(111而2121lim lim 12=+=∞→=∞→∑n n n k n nk n 211111lim2=++∞→n n ,21111lim 2=++∞→nnn 故41lim =∞→n n a 7.设p a a a ,,,10 是1+p 个给定的数,且满足条件010=+++p a a a .求)1(lim 10p n a n a n a p n +++++∞→ 【解】)1(lim 10p n a n a n a p n +++++∞→ 1)[(lim 121p n a n a n a a a p p n +++++----=∞→()1([lim 1n p n a n n a p n -+++-+=∞→ 01(lim 1=++++++=∞→np n pa n n a p n 8.证明:当10<<k 时,0])1[(lim =-+∞→kkn n n 【证明】(这里用到后面将要学习的等价无穷小知识)0lim ]1)11[(lim ])1[(lim 1==-+=-+-∞→∞→∞→k n k k n k k n n k nn n n 12.证明:nnn n n)2(e !)e(<<.【证明】利用数列})11{(nn+单调增加趋于e ,有!)e(!!)1()11()211()111(e 21n nn n n n n n n n n n<⇒>+=+++> 利用1.3.2中题2的结论:nn n )21(!+<,有nn n n n n n n n n n n n )2(e !!2)1()11(e <⇒>+=+>14.设n na n 2131211-++++= ,+∈N n ,证明:}{n a 收敛.【证明】一方面,有01211212111<++-+=++-+=-+nn n n n n a a n n 另一方面,有n n n a n 2124323221-++++++++> n n n 21(2)34(223(21--+++-+-+= 221212221->-++-=n n 根据单调有界定理知}{n a 收敛.15.设已知存在极限na a a n n +++∞→ 21lim ,证明:0lim =∞→n an n .【证明】设T T na a a n n→=+++ 21,∞→n ,于是1)1(---=n n n T n nT a ,2≥n ,由此得0])11([lim lim1=-=--=-∞→∞→T T T nT n a n n n n n 17.设对每个n 有1<n x 和41)1(1≥-+n n x x ,证明}{n a 收敛,并求其极限.【证明】显然有0>n x ,2≥n .所以有1211)21()1(41+++≤⇒+-≤-≤n n n n n n x x x x x x 根据单调有界定理知}{n a 收敛,且可设收敛于数10≤≤A ,于是有41)1(≥-A A ,解得21=A .18.设b a =1,c a =2,在3≥n 时,221--+=n n n a a a ,证明}{n a 收敛,并求其极限.【证明】由于)(21211-----=-n n n n a a a a ,所以)(21()()21(21221b c a a a a n n n n --=--=----,进而有b bc a b c a n n n n +-----=+-++-+--=---)()21(1)21(1]21()21()21)[((11032 ,于是32lim c b a n n +=∞→.第二组参考题1.设n a n +++= 21,+∈N n ,证明:}{n a 收敛.【证明】利用不等式1111211+-=+-+-≤+-n n n n n ,+∈N n 以及221-≤-n n ,3≥n 有2213411231+≤≤+-+-++≤+-+-++≤ n n n n a n 又因为}{n a 是单调增加的数列,利用单调有界定理知}{n a 收敛.2.证明:对每个正整数n ,成立不等式n k n nk n 2e!1)11(0->+∑=.【证明】利用1.3.2中题1的结论:∑∏==+≥+ni in i iaa 111)1(,),,2,1(1n i a i =->且同号,当2≥n 时有∑∑∑===---++=-==+nk n k k n k k k n n n k n k n k n n k n C n 200)11()11(!111)!(!!11)11(∑∑==--++=----++>nk nk n k k k n k n k 22)2)1(1(!111111(!111 n k k n k nk n k nk 2e !1)!2(121!1020->--=∑∑∑===当1=n 时,2e22->显然成立.3.求极限)e !π2sin(lim n n n ∞→.【解】利用命题2.5.4,有1(π21!!(π2e !π2)11!!(π211(π200n N n k n n n k n n N nk n k +=+<<++=++∑∑==所以nn n n n n π2sin e)!π2sin(1π2sin<<+,4≥n 利用夹逼准则知π2)e !π2sin(lim =∞→n n n 4.记n S n 1211+++= ,+∈N n .用n K 表示使得n S k ≥的最小下标,求极限nn n K K 1lim +∞→.【解】由条件知n K K n S n n 1+≤≤与01lim=∞→nn K 因为γn S n n =-∞→)ln (lim 而nn n K n K K n K S K n n 1ln ln ln +-≤-≤-所以)ln (lim )ln (lim n n n n K n γK n -≥≥-∞→∞→于是γK n n n =-∞→)ln (lim 所以11)]ln 1()ln [(lim lnlim 11=+-+--=+∞→+∞→n n n nn n K n K n K K 故elim 1=+∞→nn n K K 5.设∑==nk k n n Cnx 02ln 1,+∈N n ,求n n x ∞→lim .【解】利用Stolz 定理,有220112)1(ln ln lim ln 1limlim n n C CCn x nk kn n k k n n nk k nn n n -+-==∑∑∑=+=+∞→=∞→∞→1211ln lim 12)ln (ln lim 01+-++=+-=∑∑=∞→=+∞→n kn n n C Cnk n nk k nk n n )12()32(11ln 22ln lim 01+-+-++--++=∑∑=+=∞→n n k n n k n n nk n k n 11ln 12ln (lim 2110∑∑==∞→-++--++=n k n k n k n n k n n 2112ln lim 21)12ln 12(ln lim 211=++=+++++=∞→=∞→∑n n n n n n n n n k n 6.将二项式系数⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n n n n ,,1,0 的算术平均值和几何平均值分别记为n A 和n G .证明:(1)2lim =∞→n n n A ;(2)e lim =∞→n n n G .【证明】由于n nnA n n n n =⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+ 10)11(,所以有22lim 2lim lim ===∞→∞→∞→n n n nn nn n nn A 因为)!(!!k n k n k n -=⎪⎪⎭⎫ ⎝⎛,所以21)!!1!0()!(n n G n nn ⨯⨯⨯=+ ,所以有)!!2!1ln(2!ln )1(exp(lim ])!!2!1()!([lim lim 21212n n n n n n G n n n n n n n ⨯⨯⨯-+=⨯⨯⨯=∞→+∞→∞→ 12!ln )1ln(exp(lim )12)!1ln(2!ln )1()!1ln()2(exp(lim +-+=++-+-++=∞→∞→n n n n n n n n n n n n )21exp(212ln)1(exp(lim =+++=∞→n n n n 7.设∑==nk kn aA 1,+∈N n ,数列}{n A 收敛.又有一个单调增加的正数数列}{n p ,且为正无穷大量.证明:lim2211=+++∞→nnn n p a p a p a p【证明】利用Stolz 定理,有nn n n n n n n n p A A p A A p A p p a p a p a p )()(lim lim 1122112211-∞→∞→-++-+=+++ nnn n n n n p A p A p p A p p A p p +-++-+-=--∞→11232121)()()(lim 0lim lim lim )(lim11=+-=+--=∞→∞→∞→++∞→n n n n n n nn nn n n A A A p p A p p 8.设}{n a 满足1)(lim 12=∑=∞→ni i n n aa ,证明:13lim 3=∞→n n a n .【证明】令∑==ni in aS 12.因为1)(lim 12=∑=∞→ni i nn aa ,所以}{n a 不会恒为零,故}{n S 当n 足够大时是单调增加的正数列.若+∞=∞→n n S lim ,则01limlim 12==∑=∞→∞→ni i n n n a a ;若}{n S 收敛,则0lim 0lim 2=⇒=∞→∞→n n n n a a ;即总有0lim =∞→n n a .所以1lim )(lim lim 11211111==-=++∞→++++∞→+∞→n n n n n n n n n n n S a a a S a S a 以及+∞=∞→n n S lim ,故31)(1lim )1(lim lim )(lim lim 2121213313333=++=--+==⋅=+++∞→+∞→∞→∞→∞→n n n n n n n n n n n n n n n nn S S S S a S S n n S n S S a n na 所以13lim 3=∞→n n a n 12.设10<<λ,}{n a 收敛于a .证明:λa a λa λa λa n n n n n -=++++--∞→1)(lim 0221 【证明】令a a b n n -=,那么)]()()[(lim )(lim 010221a b λa b λa b a λa λa λa n n n n n n n n n ++++++=++++-∞→--∞→ λa b λb λb λλa b λb λb n n n n n n n n n n -++++=+++++++=-∞→∞→-∞→1)(lim )1(lim )(lim 0101 故只需要证明)(lim 01=+++-∞→b λb λb n n n n 存在正数M 使得M b n <恒成立.对任给的0>ε,存在正整数N ,当N n >时有εb n <.所以当N n >时有估计11101b λb λb λb λb b λb λb n N N n N N n n n n n n ++++++≤+++-+---- M λλελλn N n N n )()1(1++++++≤--- M λN ελN n -++-≤)1(11因为0lim =-∞→Nn n λ,所以存在正整数N N >1,当1N n >时有εMN λN n )1(1+<-,此时有估计ελb λb λb n n n )111(01+-≤+++- 故)(lim 01=+++-∞→b λb λb n n n n 17.令20≥y ,221-=-n n y y ,+∈N n .设nn y y y y y y S 10100111+++=.证明:24lim 200--=∞→y y S n n 【证明】令10-+=a a y ,1≥a .可归纳得出nna ay n 22-+=,+∈N n ,即12211++=n na a y n .当1=a ,即20=y 时有2≡n y ,于是24121212120012--=→+++=+y y S n n ,∞→n ,命题成立;当1>a 时,有)1111(111)1()1)(1(121211211022222222222210+++++----=--=+++=n n n n n n aa a a a a a a a a a a a a y y y n 于是a a a a a a a a a S n k k n nk n n n 1)1111(lim 1)1111(lim 1lim 2212220222=----=----=+++∞→=∞→∞→∑而aa a a a y y 12)()(2411200=--+=----.第三章实数系的基本定理第四章函数极限4.5.2参考题7.对一般的正整数n 计算极限30sin sin limxxn nx x -→.【解】31030)sin )1sin((sin lim sin sin lim x x x k kx x x n nx nk x x ∑=→→---=-31031021sin 2sin 2sin 4lim ]2cos )21[cos(2sin 2lim x xk x k x x x x k x n k x n k x ∑∑=→=→--=--=6)1()1(2121--=--=∑=n n k k n k 11.设函数f 在),0(+∞上单调增加,且有1)()2(lim =+∞→x f x f x .证明:对每个0>a ,成立1)()(lim =+∞→x f ax f x .【证明】当1>a 时,存在正整数k 使得k k a 221≤≤-,于是)2()(lim )2()()2()2()()2(lim )()(lim 112x f ax f x f ax f x f x f x f x f x f ax f k x k x x -+∞→-+∞→+∞→==)2()(lim )2()()2()2(lim )2()(lim 11x f ax f x f ax f x f x f x f ax f k x k k k x k x +∞→-+∞→-+∞→==由于f 单调增加,所以1)2()(1≥-x f ax f k ,1)2()(≤x f ax f k,所以有)()(lim1)()(limx f ax f x f ax f x x +∞→+∞→≤≤故1)()(lim=+∞→x f ax f x 当10<<a 时,利用上述结果,有1)((1lim )()(1lim )()(lim ===+∞→=+∞→+∞→t f atf ax f x f x f ax f t t ax x x 当1=a 时显然,故对每个0>a ,成立1)()(lim =+∞→x f ax f x .第五章连续函数第六章导数与微分6.1.4练习题6.2.4练习题6.3.4练习题6.4.2参考题第一组参考题1.利用导数的定义计算极限xx x x sin )sin 1()tan 1(lim 10100--+→.【解】利用导数的定义,有xx x x sin )sin 1()tan 1(lim 10100--+→x x x x x x x x sin 1)sin 1(lim sin tan tan 1)tan 1(lim 100100---+-+=→→20))1((1))1((010010='++⨯'+===x x x x 2.设231)(2++=x x x f ,计算)0()100(f ,要求相对误差不超过1%.【解】由于2111)2)(1(1)(+-+=++=x x x x x f 所以101101)100()2(!100)1(!100)(+-+=x x x f 所以)211(!100)0(101)100(-=f 取!100)0()100(≈f,则相对误差为01.0121211(!100)211(!100!100101101101<-=---.3.设f 在点a 处可导,0)(≠a f .计算n n a f n a f ])()1([lim +∞→.【解】)()1(ln exp(lim ])()1([lim a f n a f n a f n a f n n n +=+∞→∞→由于)()(exp(1)()1()(1exp(lim ))()1(ln exp(lim a f a f xa f x a f a f a f x a f x x x '=-+=++∞→+∞→利用Heine 归结原则,有))()(exp()()1([lim a f a f a f n a f n n '=+∞→5.设0)0(=f ,)0(f '存在.定义数列)()2(1(222nn f n f n f x n +++= ,+∈N n ,试求n n x ∞→lim .【解】由于xx f x f x f f x x )(lim 0)0()(lim)0(00→→=--=',所以对任给的0>ε,存在0>δ,当δx <<0时有])0([)(])0([εf x x f εf x +'<<-'取11[+=δN ,当N n >时有δnn<<20,所以有])0()[21(])0(21(222222εf nnn n x εf n n n n n +'+++<<-'+++ 而n n n n n n 2121222+=+++ 所以εf x n nn <'-+)0(12故2)0(lim )0(lim 2)]0(12[lim 0f x f x f x n n n n n n n n '=⇒'-='-+=∞→∞→∞→6.求下列数列极限:(1))sin 2sin 1(sinlim 222n nn n n +++∞→ ;【解】运用上题的结论,考虑函数x x f sin )(=,即得21)0(21)sin 2sin 1(sinlim 222='=+++∞→f n n n n n (2))]1()21)(11[(lim 222n nn n n +++∞→ .【解】运用上题的结论,考虑函数)1ln()(x x f +=,即得e ))0(21exp(1(2111[(lim 222='=+++∞→f n n n n n 7.设xx y -+=11,计算)()(x y n ,+∈N n .【解】由于x xx x y ---=---=1121)1(2,通过求导找规律直接可得2122121)()1(2!)!32()1(2!)!12()(--+----+--=n nn n n x n x n x y ,2≥n 以及xx y -+-='-121)1(238.设f 在R 上有任意阶导数,证明:对每个正整数n 成立)(1)(1)]1([)1()1(1n n n n n xf x x f x -+-=【证明】用数学归纳法,当1=n 时,右式='='-=)1(1])1([2xf x xf 左式;假设当n k =时成立)(1)(1)]1([)1()1(1k k k k k xf x x f x -+-=;当1+=n k 时有)1(11)1(11([)1()]1([)1(+-+++⋅-=-n n n n n n x f x x x f x ∑+=-+-+⎪⎪⎭⎫ ⎝⎛+-=10)1(1)(11([1)1(n k k n n k n x f x x k n })]1()[1()]1([{)1()(1)1(11n n n n n x f x n x f x x -+-+++⋅-=)1(1])1(1[)(1)(1xf x n x f x x n n n n +++-'⋅-=)1(1)]1(1)1(1[)(1)1(3)(2xf x n x f x x f x n x n n n n n n +++++--+-⋅-=1(1)1(2xf x n n ++=由归纳原理知命题成立.10.证明组合恒等式:(1)112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k ,+∈N n ;【证明】考虑恒等式∑=⎪⎪⎭⎫ ⎝⎛=+nk k nx k n x 1)1(,对x 求导得∑=--⎪⎪⎭⎫ ⎝⎛=+nk k n x k n k x n 111)1(,再令1=x 即得112-=⋅=⎪⎪⎭⎫ ⎝⎛∑n nk n k n k (2)2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k ,+∈N n .【证明】由(1)可知∑=-⎪⎪⎭⎫ ⎝⎛=+n k kn x k n k x nx 11)1(,对x 求导得∑=---⎪⎪⎭⎫ ⎝⎛=+-++nk k n n x k n k x x n x n 11221])1()1()1[(再令1=x 即得2122)1(-=⋅+=⎪⎪⎭⎫ ⎝⎛∑n nk n n k n k 第二组参考题1.(1)求∑=n k kx 1sin 和∑=nk kx 1cos ;【解】利用积化和差公式)cos()cos(sin sin 2y x y x y x --+=-可知2cos)21cos(])21cos()21[cos(sin 2sin 211x x n x k x k kx x nk n k -+=--+=-∑∑==于是有2sin2)21cos(2cos sin 1x xn x kx nk +-=∑=,π2k x ≠,Z ∈k 当π2k x =时有0sin 1=∑=nk kx ;同样地,利用公式)sin()sin(cos sin 2x y y x y x --+=可知2sin)21sin(])21sin()21[sin(cos 2sin 211x x n x k x k kx x nk n k -+=--+=∑∑==于是有2sin22sin )21sin(cos 1x xx n kx nk -+=∑=,π2k x ≠,Z ∈k 当π2k x =时∑=nk kx 1cos 发散;(2)求∑=nk kx k 1sin 和∑=n k kx k 1cos .【解】利用(1)的结论,对结果求导即知4.证明:Legendre 多项式nnn n n x xn x P )1(d d !21)(2-=满足方程)()12()()(11x P n x P x P n n n +='-'-+【证明】直接计算可得])1()1(2[d d )!1(21)1(d d )!1(21)(2111122211nn n n n n n n n x x n xn x x n x P -++=-+='++++++++])1(2)1[(d d !21])1([d d !211222211-++-+-=-=n n n n n n n n n x nx x x n x x x n ])1)(11[(d d )!1(21)(1221---+--+=n nn n n x x x n x P ])1[(d d )!1(21)()12(121----++=n nn n n x x n x P n )()()12(1x P x P n n n -'++=5.证明:Legendre 多项式满足方程)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 【证明】考虑函数nx y )1(2-=,求导得12)1(2--='n x nx y ,即nxy y x 2)1(2='-,两边求1+n 次导数,利用Leibniz 公式,有∑∑+=-+++=-++='-1)1()(11)1()(21)()(2)()1(n k k n k k n n k k n k k n y x C n y x C即])1([2)1()1(2)1()()1()()1()2(2n n n n n y n xy n y n n xy n y x ++=++++-+++整理得)()1()2(2)1(2)1(n n n y n n xy y x +=+-++故0)1(2)1()()1()2(2=++--++n n n y n n xy y x 所以)()1()(2)()1(2=++'-''-x P n n x P x x P x n n n 第七章微分学的基本定理7.2.4练习题10.设f 在]1,1[-上有任意阶导数,0)0()(=n f,+∈∀N n ,且存在常数0≥C ,使得对所有+∈N n 和]1,1[-∈x 成立不等式n n C n x f !)()(≤.证明:0)(≡x f .【证明】写出nn n n n n x n ξf x n ξf x n f x f f x f !)(!)()!1()0()0()0()()()(1)1(=+-++'+=-- ,x ξ≤,所以有nn n Cxξf n x x f ≤=)(!)()(若10<≤C ,那么0)(→≤n C x f ,∞→n 此时有0)(≡x f ,]1,1[-∈x ;若1≥C ,那么当Cx C 2121<<-时有021)(→≤nx f ,∞→n 此时有0)(≡x f ,]21,21[CC x -∈,在这之上有0)0()(=n f ,+∈∀N n ,故以此类推可知分别在]22,21[C C ,]21,22[CC --,…等区间上都有0)(≡x f ,从而有0)(≡x f ,]1,1[-∈x .11.设f 在],[b a 上二阶可微,且0)()(='='b f a f .证明:存在),(b a ξ∈,使得成立)()()(4)(2a fb f a b ξf --≥''.【证明】写出2121))((21)())((21))(()()(a x ξf a f a x ξf a x a f a f x f -''+=-''+-'+=2222))((21)())((21))(()()(b x ξf b f b x ξf b x b f b f x f -''+=-''+-'+=其中b ξx ξa <<<<21.取2ba x +=,则分别有4)(2)()()2(21a b ξf a f b a f -''+=+,4)(2)()(2(22a b ξf b f b a f -''+=+以上两式相减可得4)()]()([21)()(0212a b ξf ξf a f b f -''-''+-=移项后,由三点不等式可得)(])()([21)()()(4122ξf ξf ξf a f b f a b ''≤''+''≤--其中))(,)(max()(21ξf ξf ξf ''''=''.13.设f 在),[+∞a 上二阶可微,且0)(≥x f ,0)(≤''x f ,证明:在a x ≥时0)(≥'x f .【证明】假设存在),[0+∞∈a x 使得0)(0<'x f ,那么当0x x ≥时)()(0x f x f '≤',进而有)()()()()()(0000x f x x ξf x x x f x f '-≤'-=-,x ξx ≤≤0,只需再令)()(000x f x f x x '->便得0)(<x f ,这与0)(≥x f 矛盾,所以在a x ≥时0)(≥'x f .14.设f 在)1,1(-上1+n 阶可微,0)0()1(≠+n f,+∈N n ,在10<<x 上有n n n n x n x θf x n f x f f x f !)()!1()0()0()0()()(1)1(+-++'+=-- ,其中10<<θ,证明:11lim 0+=→n θx .【证明】由导数定义可知xθf x θf fn n x n )0()(lim)0()()(0)1(-=→+1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--=n nn n n x x θx f n x n f x f f x f 而其中又有1)(1)1(0)0(!])!1()0()0()0()([lim +--→----'--n nn n n x x x f n x n f x f f x f 1)0()0()(lim 11)!1(!)0(!)(lim )1()()(0)()(0+=-+=+-=+→→n f x f x f n x n n f n x f n n n x n n x 所以11lim 1lim 1)0()0(00)1()1(+=⇒+=→→++n θθn f fx x n n 15.证明:在1≤x 时存在)1,0(∈θ,使得2)(1arcsin x θx x -=,且有31lim 0=→θx .【证明】利用Lagrange 中值定理知存在ξ介于0与x 之间使得210arcsin arcsin ξx x -=-当0=x 时任取)1,0(∈θ;当10≤<x 时有10<<x ξ,令xξθ=,故存在)1,0(∈θ使得2)(1arcsin x θx x -=所以31))(arcsin (arcsin lim arcsin arcsin lim arcsin 1lim lim 4022220222020=+-=-=-=→→→→x x x x x x x x x x x x θx x x x 故31lim 0=→θx 16.设f 在)(0x O δ上n 阶可微,且0)()(0)1(0===''-x fx f n ,0)(0)(≠x f n .证明:当δh <<0时,成立h h θx f x f h x f )()()(000+'=-+,10<<θ,且成立11lim -→=n h nθ.【证明】利用Lagrange 中值定理知存在ξ介于0x 与h x +0之间使得hξf x f h x f )()()(00'=-+因而有100<-<h x ξ,令hx ξθ0-=,则成立h h θx f x f h x f )()()(000+'=-+,10<<θ.所以有1100000)()()()()()(--⋅'-+'='--+n n n θh θx f h θx f h h x f x f h x f 而!)(!)(lim )()()(lim 0)(0)1(00000n x f h n h x f h h x f x f h x f n n h n h =+='--+-→→)!1()()!1()(lim )()(lim )()()(lim 0)(0)1(010001000-=-+='-+'='-+'-→-→-→n x f t n t x f t x f t x f h θx f h θx f n n t n t n h 故10101lim 1lim -→-→=⇒=n h n h nθn θ7.3.2参考题第一组参考题1.设有n 个实数n a a a ,,,21 满足12)1(31121=--++--n a a a n n 证明:方程0)12cos(3cos cos )(21=-+++=x n a x a x a x f n 在区间2π,0(中至少有一个根.【证明】构造辅助函数x n n a x a x a x F n )12sin(123sin 3sin )(21--+++= 则可见0)2π()0(==F F .对F 在区间]2π,0[上用Rolle 定理,就知道)()(x f x F ='在区间)2π,0(中有零点.2.设0≠c ,证明:方程0345=+++c bx ax x 至少有两个根不是实根.【证明】设c bx ax x x f +++=345)(,那么22234)345(345)(x b ax x bx ax x x f ++=++='若03452=++b ax x 有两个相同实根,那么0≥'f ,此时f 严格单调增加,故方程只有一个实根,还有四个根不是实根;若03452=++b ax x 无实根,那么f 严格单调增加,同上;若03452=++b ax x 有两不同实根21x x <,那么f 在),(1x -∞,),(2+∞x 上严格单调增加,在),(21x x 上严格单调减少,此时方程至多有3个实根,还有两个根不是实根.3.设0≠a ,证明:方程n n na x a x 222)(+=+只有一个实根0=x .【证明】设n n na x a xx f 222)()(+-+=,那么])([2)(1212--+-='n n a x x n x f 当0>a 时,0)(<'x f ;当0<a 时,0)(>'x f .总之f 是严格单调的,故至多有一个实根,而0=x 是它的一个实根,所以方程只有一个实根0=x .4.设f 在],[b a 上连续,在),(b a 内可微,且满足条件0)()(>b f a f ,0)2()(<+ba f a f 证明:对每个实数k ,在),(b a 内存在点ξ,使成立0)()(=-'ξkf ξf .【证明】因为0)2()(<+b a f a f ,0)2()(<+b a f b f ,所以f 在)2,(b a a +和),2(b ba +上分别存在一个零点1x 与2x .构造辅助函数)(e )(x f x g kx-=,那么0)()(21==x g x g ,于是存在),(21x x ξ∈使得有0)(='ξg ,0)]()([e =-'-ξkf ξf ξk ,故0)()(=-'ξkf ξf .5.设∑==nk xλkk c x f 1e)(,其中n λλ,,1 为互异实数,n c c ,,1 不同时为0.证明:f 的零点个数小于n .【证明】用数学归纳法.当1=n 时xλc x f 1e )(1=,而01≠c ,此时f 没有零点;假设当n 时命题成立;当1+n 时,不妨令01≠+n c ,那么e )(0eee)(11)(11)(11111==⇒===∑∑∑+=-+=-+=n k x λλk n k xλλk xλn k xλk k k k c x g c c x f 而∑+=--='12)(11e )()(n k x λλk kk c λλx g 的零点个数至多有1-n 个,所以g 的零点个数至多有n 个,即f 的零点个数至多有n 个.根据归纳原理知命题成立.7.设f 在],[b a 上连续,在),(b a 内可微,但不是线性函数,证明:存在),(,b a ηξ∈,使成立)()()()(ηf ab a f b f ξf '>-->'【证明】构造辅助函数)()()()()()(a f a x ab a f b f x f x g -----=因为f 不是线性函数,所以g 不恒为零,而0)()(==b g a g ,所以存在),(b a c ∈使得0)(≠c g ,不妨设为0)(>c g .于是存在),(,b a ηξ∈,使成立0)()()(>'=--ξg a c a g c g ,0)()()(<'=--ηg bc b g c g 即有)()()()(ηf ab a f b f ξf '>-->'8.设f 在],[b a 上二阶可微,0)()(==b f a f ,且在某点),(b a c ∈处有0)(>c f ,证明:存在),(b a ξ∈,使0)(<''ξf .【证明】利用Lagrange 中值定理,存在),(1c a ξ∈与),(2b c ξ∈使得0)()()(1>'=--ξf a c a f c f ,0)()()(2<'=--ξf cb c f b f 再次利用此定理,存在),(21ξξξ∈使得)()()(1212<''=-'-'ξf ξξξf ξf 9.利用例题7.1.3的方法(或其他方法)解决以下问题:(1)设f 在],[b a 上三阶可微,且0)()()(=='=b f a f a f ,证明:对每个],[b a x ∈,存在),(b a ξ∈,使成立)()(!3)()(2b x a x ξf x f --'''=【证明】当),(b a x ∈时构造辅助函数)()()()()()()(22t f b t a t b x a x x f t g -----=那么有0)()()(===x g b g a g ,于是存在b ξx ξa <<<<21使得0)()(21='='ξg ξg ,又)())](()(2[)()()()(2t f a t a t b t b x a x x f t g '---+---='所以0)(='a g ,于是存在2211ξηξηa <<<<使得0)()(21=''=''ηg ηg ,最后存在21ηξη<<使得)()(3)()(0)()()()(60)(22b x a x ξf x f ξf b x a x x f ξg --'''=⇒='''---⇒='''当a x =或b x =时任取),(b a ξ∈等式都成立.(2)设f 在]1,0[上五阶可微,且0)1()1()1()32(31(=''='===f f f f f ,证明:对每个]1,0[∈x ,存在)1,0(∈ξ,使成立3)5()1)(32)(31(!5)()(---=x x x ξf x f 【证明】当}32,31{\)1,0[∈x 时构造辅助函数)()1)(3231()132)(31()()(33t f t t t x x x x f t g -------=重复(1)中的操作,最终存在)1,0(∈ξ使等式成立.当31=x 或32=x 或1=x 时任取),(b a ξ∈等式都成立.(3)设f 在],[b a 上三阶可微,证明:存在),(b a ξ∈,使成立)()(121)]()()[(21)()(3ξf a b b f a f a b a f b f '''--'+'-+=【证明】【法一】设2a b c +=,2a b h -=,待证等式化为)(32)]()([)()(3ξf x h c f h c f h h c f h c f '''-+'+-'+-=+令K x h c f h c f h h c f h c f 332)]()([)()(-+'+-'+-=+构造辅助函数K x x c f x c f x x c f x c f x g 332)]()([)()()(++'+-'---+=那么0)()0(==h g g ,利用Rolle 中值定理,存在),0(1h x ∈使得0)(1='x g ,而)(]2)()([)(x xh xK x c f x c f x x g =++''--''='所以0)()0(1==x h h ,于是存在),0(12x x ∈使得0)(2='x h ,而Kx c f x c f x h 2)()()(++'''--'''-='所以有)()(2)()(222ξf K ξf x c f x c f K '''=⇒'''=+'''+-'''=【法二】考虑函数)]()()[(21)()()(a f x f a x a f x f x F '+'---=,3)()(a x x G -=那么0)()()()(='=='=a G a G a F a F ,连续运用Cauchy 中值定理,知)(121)()()()()()()()()()()()()()(ξf ξG ξF a G c G a F c F c G c F a G b G a F b F b G b F '''-=''''='-''-'=''=--=其中b c ξa <<<.(4)设f 在],[b a 上二阶可微,证明:对每个),(b a c ∈,有),(b a ξ∈,使成立))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''【证明】构造辅助函数)())(())()(())(())()(())(())()(()(x f b c a c b x a x c f a b c b a x c x b f c a b a c x b x a f x g -----+----+----=那么有0)()()(===c g b g a g ,于是存在c ξb ξa <<<<21使得0)()(21='='ξg ξg ,进而知存在),(21ξξξ∈使得0)(=''ξg ,即))(()())(()())(()()(21b c a c c f a b c b b f c a b a a f ξf --+--+--=''10.设b a <<0,f 在],[b a 上可微,证明:存在),(b a ξ∈,使成立)()()()(1ξf ξξf b f a f b a b a '-=-【证明】利用Cauchy 中值定理,知存在),(b a ξ∈,使成立)()(1)()(11)()()()()()(122ξf ξξf ξξξf ξf ξa b a a f b b f b a a bf b af b f a f b a b a '-=--'=--=--=-16.设f 在]2,0[上二阶可微,且1)(≤x f ,1)(≤''x f ,证明:2)(≤'x f .【证明】写出21))((21))(()()0(x ξf x x f x f f -''+-'+=22)2)((21)2)(()()2(x ξf x x f x f f -''+-'+=其中2021≤≤≤≤ξx ξ.两式相减得])()2)(([21)(2)0()2(2122x ξf x ξf x f f f ''--''+'=-所以2122)()2)((21)0()2()(2x ξf x ξf f f x f ''--''+-≤'])2[(21)0()2(22x x f f +-++≤44212=⨯+≤故2)(≤'x f 18.设当],0[a x ∈时有M x f ≤'')(.又已知f 在),0(a 中取到最大值.证明:Ma a f f ≤'+')()0(.【证明】设f 在点),0(a b ∈处取得最大值,由Fermat 定理知0)(='b f .写出))(()()(1a b ξf a f b f -''+'='bξf f b f )()0()(2''+'='其中),(1a b ξ∈,),0(2b ξ∈.由此有估计Mab ξf b a ξf a f f ≤''+-''='+')()()()()0(21第二组参考题5.设f 在],[b a 上可微,)()(b f a f '=',证明:存在),(b a ξ∈,使成立aξa f ξf ξf --=')()()(【证明】考虑函数x a f x f x g )()()('-=,那么0)()(='='b g a g ,待证式为aξa g ξg ξg --=')()()(.考虑辅助函数⎪⎩⎪⎨⎧=≤<--=ax b x a ax a g x g x G ,0,)()()(若)()(a g b g =,那么有0)()(==a G b G ,于是存在),(b a ξ∈使得0)(='ξG ,即aξa g ξg ξg a ξa g ξg a ξξg --='⇒=-+--')()()(0)()()())((2若)()(a g b g >,那么0)()()()()()())(()(22<--=-+--'='a b b g a g a b a g b g a b b g b G 以及0)(>b G ,所以在b x =的某个左邻域],[b δb -内有点c 使得0)()(>>b G c G ,从而)(x G 在),(b a 内取到最大值,故存在),(b a ξ∈使得0)(='ξG .若)()(a g b g <,同理.6.设f 在],[b a 上连续,在),(b a 内可微,又有),(b a c ∈使成立0)(='c f ,证明:存在),(b a ξ∈,满足ab a f ξf ξf --=')()()(【证明】构造辅助函数ab x a f x f x g ---=e)]()([)(那么ab xa b a f x f x f x g -----'='e ])()()([)(.如果0)(='c g ,那么取c ξ=即可.如果0)(>'c g ,那么)()(a f c f <,于是0)(<c g ,所以存在),(0c a x ∈使得0)()()(0<--='ac a g c g x g ,由达布定理知存在),(0c x ξ∈使得0)(='ξg .如果0)(<'c g ,同理.7.设f 在],[b a 上连续,在),(b a 上可微,0)(=a f ,0)(>x f ,],(b a x ∈∀,证明:对每个0>α,存在),(,21b a x x ∈,使成立)()()()(2211x f x f αx f x f '='【证明】只需考虑1>α的情形.构造辅助函数)(ln )(x f x F =,],(b a x ∈,则-∞=+→)(lim x F ax .记λb F =)(,可取),(b a c ∈使得1)(-=λc F ,由Lagrange 中值定理知)()()(11ξF cb c F b F c b '=--=-,),(1b c ξ∈再取),(c a d ∈使得cb ab αλd F ---=)(,由Lagrange 中值定理知)(1)()()(12ξF αcb αc b a b a b αd b d F b F ξF '>-=--->--=',),(2d a ξ∈由达布定理可知存在),(3b a ξ∈使得)()(13ξF αξF '='.8.设f 在),(+∞-∞上二阶连续可微,1)(≤x f ,且有4)]0([)]0([22='+f f ,证明:存在ξ,使成立0)()(=''+ξf ξf .【证明】在]2,0[上利用Lagrange 中值定理,知存在)2,0(1∈x 使得1)(2)0()2()(11≤'⇒-='x f f f x f 同理存在)0,2(2-∈x 使得1)(2)0()2()(22≤'⇒---='x f f f x f 构造辅助函数22)]([)]([)(x f x f x h '+=,]2,2[-∈x ,于是2)(1≤x h ,2)(2≤x h ,4)0(=h ,所以h 在)2,2(-∈ξ处取到最大值,于是0)(='ξh ,即有)()]()([2='''+ξf ξf ξf 由于3)]([4)]([22≥-≥'ξf ξf ,所以0)(≠'ξf ,故0)()(=''+ξf ξf .9.设f 在),(+∞-∞上二阶连续可微,且对所有R ,∈h x 成立。

数学分析课本-习题及答案01

数学分析课本-习题及答案01

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。

证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。

2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。

3、 设a 、b ∈R 。

证明:若对任何正数ε有|a-b|<ε,则a = b 。

4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。

5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。

6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。

证明 |22b a +-22c a +|≤|b-c|。

你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。

证明x b x a ++介于1与ba 之间。

8、 设p 为正整数。

证明:若p 不是完全平方数,则p 是无理数。

9、 设a 、b 为给定实数。

试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。

§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。

2、 设S 为非空数集。

试对下列概念给出定义:(1)S 无上界;(2)S 无界。

3、 试证明由(3)式所确定的数集S 有上界而无下界。

4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析(四)练习一
一、基础练习
1. 0),(00≠y x F y 是确保方程0),(=y x F 确定唯一隐函数)(),(00x f y x f y ==的必要条件. ( )
2.. 第一型曲线积分与曲线的方向无关 ( )
3. 第一型曲面积分与曲面的侧无关 ( )
4. 若),(),,(y x g y x f 在D 上不可积,则),(),(y x g y x f +在D 上也不可积 ( )
5. 所有的曲面都是双侧曲面 ( )
6. 如果有界闭区域V 上的有界函数),,(z y x f 的间断点集中在有限多个零体积的曲面上,则),,(z y x f 在V 上必定可积 ( )
7. 若),(y x f 与),(y x g 在D 上可积,且D y x y x g y x f ∈≤),(),,(),(,则
⎰⎰⎰⎰≤D
D
dxdy y x g dxdy y x f ),(),(. ( )
8 平面点集}),()(|),{(21d y c y x x y x y x D ≤≤≤≤=称为y 型区域 ( ) 9.任一方程0),(=y x F 都能确定隐函数 ( ) 10. 第二型曲线积分与曲线的方向有关 ( )
11. 第二型曲面积分与曲面的侧有关 ( ) 12. 若),(y x f 在有界闭区域D 上可积,则一定存在D ∈),(ηξ,使得
D
D
S
f dxdy y x f ),(),(ηξ=⎰⎰ ( )
13. 有界闭区域V 上的连续函数),,(z y x f 必定可积 ( ) 14. 若),(y x f 在D 上可积,则函数),(y x f 在D 上也可积,且
σσd y x f d y x f D
D
⎰⎰⎰⎰≤),(|),(| ( )
15. 含参量反常积分⎰
+∞
c
dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于∞
+的递增数列}{n A (其中c A =1),函数项级数∑∑⎰

=∞
==+1
1
)(),(1
n n n A A x u dy y x f n n
在I 上
一致收敛. ( )
16.平面点集}),()(|),{(21b x a x y y x y y x D ≤≤≤≤=称为x 型区域 ( )
17.由方程220x y c ++=能确定连续可微的隐函数()y f x =. ( ) 18.平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为零. ( )
19. 在2R 内,曲线积分
⎰-+L
dy dx y x ))((与路径无关. ( )
20. 的非负连续函数,上的不恒为为有界闭区域设0),(D y x f 则⎰⎰>D
d y x f 0),(σ.
( ) 21. 含参量反常积分dx x
xy
3
1sin +⎰
+∞
在),(+∞-∞上一致收敛. ( ) 22.
⎰⎰


+∞
+∞
=
b
a
c
c
b
a
dx y x f dy dy y x f dx ),(),( ( )
23. 方程xy
e y x =+sin cos 能在原点的某邻域内确定隐函数)(x
f y =.
( )
24. 上的有界函数,为有界闭区域设D y x f ),(则必有
⎰⎰D
dxdy y x f ),(存在 ( )
25. 设平面上一闭曲线,为xy L ⎰
=+L xdy ydx 0则有: ( )
26. 含参量反常积分
dx x yx
2
1arctan +⎰
+∞
在),(+∞-∞上一致收敛. ( )
27. 平面曲线0),(=y x F 在点),(000y x P 的法线方程为 28. 空间曲线)(),(),(:t z z t y y t x x L ===在),,(0000z y x P 处的法平面方程为 29 曲面0).,(=z y x F 在),,(0000z y x P 的法线方程为 30.Γ函数与Β函数的关系为
31. 若L 是以原点为中心,R 为半径的右半圆周,则=+⎰L
ds y x 2
12
2
)(
32. 对于球坐标变换:,cos ,sin sin ,cos sin ϕθϕθϕr z r y r x ====),,(θϕr J 33. 如果V 内任一封闭曲线皆可以不经过V 以外的点而连续收缩于属于V 的点, 则称V 是 区域.
34. 平面曲线0),(=y x F 在点),(000y x P 的切线方程为 35. 空间曲线)(),(),(:t z z t y y t x x L ===在),,(0000z y x P 处的切线方程为 36. 曲面0).,(=z y x F 在),,(0000z y x P 的切平面方程为
37.Γ函数的递推公式为 38.=+Γ)1(n 39. 对于柱面坐标变换:z z r y r x ===,sin ,cos θθ,=),,(z r J θ
40.设0522
3
2
=-+y x y x 确定隐函数)(x f y =,则=dx
dy
41. 设}9|),{(2
2
≤+=y x y x D ,则=⎰⎰D
dxdy
42. 设函数0,)(10
>=Γ--+∞⎰
s dx e x s x s ,则'()s Γ=
43. 设连续),(y x f ,交换累次积分的顺序则有=⎰⎰
x
dy y x f dx 0
1
),(
44. 设曲线,10,3,:≤≤=
=t t y t x L 则曲线积分⎰=L
xds
45. 设空间物体V 的密度为),,(z y x ρ,则物体的质量用积分表示为: 46.设曲线1:2
2
=+y x L ,则曲线积分=⎰
ds L
47. 设V 是由曲面1,22=+=
z y x z 围成的空间区域,则=⎰⎰⎰V
dxdydz
48. =++⎰
+→2
210
01lim
y x dx
y
y
49. 设连续,),(y x f 交换累次积分的顺序则有
=⎰⎰
d
c
b
a
dy y x f dx ),(
50. 设曲线,,:t y t x AB ==则)1,1()0,0(B A 到从的曲线积分

=AB
xdy
51.. 设dy e
x F x
x
xy
⎰-=22
)(,则=)('x F 52.已知121
:
312
x y z L --+==
从点(1,2,1)-到点(4,3,1)的一段,则积分L
ydx zdy ydz ++=⎰
53.53
1
ln x x dx x
-=⎰ 54.写出各种积分的符号,具物理意义及几何意义的表达式。

相关文档
最新文档