华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 不定积分)【圣才出品】

合集下载

华东师范大学数学系《数学分析》(第4版)(下册)-第十五章至第十七章(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)-第十五章至第十七章(圣才出品)

第15章傅里叶级数15.1复习笔记一、傅里叶级数1.三角级数·正交函数系(1)称(15-1)是由三角函数列(也称为三角函数系)1,cos x,sin x,cos2x,sin2x,…,cos nx.sin nx,…(15-2)所产生的一般形式的三角级数.(2)若级数收敛,则级数(15-1)在整个数轴上绝对收敛且一致收敛.(3)若两个函数与在[a,b]上可积,且则称函数与在[a,b]上是正交的.由此,三角函数系(15-2)在[-π,π]上具有正交性,或称(15-2)是正交函数系.2.以2π为周期的函数的傅里叶级数(1)若在整个数轴上(15-3)且等式右边级数一致收敛.则有如下关系式:(15-4)(2)若f是以2π为周期且在[-π,π]上可积的函数,则按公式(15-4)计算出的a n 和b n称为函数f(关于三角函数系)的傅里叶系数.以f的傅里叶系数为系数的三角级数称为f(关于三角函数系)的傅里叶级数,记作(15-5)3.收敛定理(1)傅里叶级数收敛定理若以2π为周期的函数f在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(4)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.(2)按段光滑若f的导函数在[a,b]上连续,则称f在[a,b]上光滑.但若定义在[a,b]上除了至多有有限个第一类间断点的函数f的导函数在[a,b]上除了至多有限个点外都存在且连续.在这有限个点上导函数f′的左、右极限存在,则称f在[a,b]上按段光滑.根据上述定义,若函数f在[a,b]上按段光滑,则有如下重要性质:①f在[a,b]上可积;②在[a,b]上每一点都存在f(x±0),且有③补充定义f′在[a,b]上那些至多有限个不存在点上的值后(仍记为f′),f′在[a,b]上可积.(3)若f是以2π为周期的连续函数,且在[-π,π]上按段光滑,则f的傅里叶级数在(-∞,+∞)上收敛于f.二、以2l为周期的函数的展开式1.以2l为周期的函数的傅里叶级数设f是以2l为周期的函数,则F的傅里叶级数展开式是(15-6)与(15-7)这里(15-7)式是以2l为周期的函数f的傅里叶系数,(15-6)式是f的傅里叶级数.若函数f在[-l,l]上按段光滑,则同样可由收敛定理知道(15-8)2.偶函数与奇函数的傅里叶级数(1)设f是以2l为周期的偶函数,或是定义在[-l,l]上的偶函数,则在[-l,l]上,f (x)cos nx是偶函数,f(x)sin nx是奇函数.因此,f的傅里叶系数(15-7)是(15-9)于是f的傅里叶级数只剩有余弦函数的项,即(15-10)(15-10)式右边的级数称为余弦级数.(2)同理,若f是以2l为周期的奇函数,或是定义在[-l,l]上的奇函数,则可推得(15-11)所以当f为奇函数时,它的傅里叶级数只含有正弦函数的项,即(15-12)(12)式右边的级数称为正弦级数.三、收敛定理的证明1.预备定理1(贝塞尔(Bessel)不等式)若函数f在[-π,π]上可积,则(15-13)其中a n,b n为f的傅里叶系数,(15-13)式称为贝塞尔不等式.2.推论①黎曼-勒贝格定理若f为可积函数,则(15-14)②若f为可积函数,则(15-15)3.预备定理2若f(x)是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和S n (x)可写成当t=0时,被积函数中的不定式由极限来确定.4.收敛定理若以2π为周期的函数,在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(15-5式)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.15.2课后习题详解§1傅里叶级数1.在指定区间内把下列函数展开成傅里叶级数:解:(1)(i)f(x)及其周期延拓的图像如图15-1所示,图15-1显然f(x)在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,因为。

华东师范大学数学系《数学分析》(第4版)(上册)(名校考研真题 不定积分)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(上册)(名校考研真题  不定积分)【圣才出品】

解:f(x)的原函数为
.当 x≤1 时,有
当 x>1 时,有
所以 f(x)的原函数为

5/6
圣才电子书

十万种考研考证电子书、题库视频学习平 台
6/6
un
n1
收敛,从而 un
0 ,即
f
(xn )
0 ,也即
f (xn ) 0 ,故对上述的 ,存在 N N¢ ,使得
当 n N 时,
f (xn )
2
.
取 X a N ,则当 x X 时,因
x a, Ua (k 1) ,a k k 0
故存在惟一的 k N¢ ,使得 x a (k 1) , a k ,易见 k N ,且
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 8 章 不定积分
1.设 f (x) d x 收敛,且 f (x) 在 a,上一致连续,证明 lim f (x) = 0. [上海
a
x
交通大学 2004 研]
证明:因 f (x) 在 a,上一致连续,故对于 0 , 0 ,使得当

十万种考研考证电子书、题库视频学习平 台
4.求不定积分 解:
[华东师范大学研]
5.求不定积分 解:令 t=lnx,则
[四川大学研]
6.求
(a 为常数).[西安交通大学研]
解:(1)当 a=-1 时,
(2)当 a≠-1 时,
3/6
圣才电子书

x2
x台2 )
dx
ln(1 x2 )d 1 x
ln(1 x2 )
1
2x dx
x
x 1 x2
ln(1 x2 ) 2 1 dx
x

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令


4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书

体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面

2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,

D 为 S 在 xOy 面投影
所以质心坐标为

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 实数的完备性)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题  实数的完备性)【圣才出品】

§1 关于实数集完备性的基本定理1.证明数集有且只有两个聚点和解:令数集数列则数列都是各项互异的数列,根据定义2,1和-1是S的两个聚点.对任意且令由得取,则当n>N时,或者有或者有总之由定义2知x0不是S的聚点,故数集有且只有1和-1两个聚点.2.证明:任何有限数集都没有聚点.证明:用反证法.设S是一个有限数集.假设ζ是S的一个聚点,按照定义2,在ζ的任何邻域内都含有S中无穷多个点,这个条件是不可能满足的,因为S是一个有限集.故任何有限集都没有聚点.3.设是一个严格开区间套,即满足且证明:存在惟一的一点ξ,使得证明:由题设知,是一个闭区间套.由区间套定理知,存在惟一的点ξ,使n以…,即4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立.解:(1)设则S是有界集,并且但故有理数集S在Q内无上、下确界,即确界原理在有理数集内不成立.(2)由的不足近似值形成数列这个数列是单调有上界的,2是它的一个上界.它的上确界为于是它在有理数集内没有上确界.因此,单调有界原理在有理数集内不成立.(3)设M是由的所有不足近似值组成的集合.则1.4是M的一个下界,2是M 的一个上界.即M是一个有界无限集,但它只有一个聚点故在有理数集内不存在聚点.因此,聚点定理在有理数集内不成立.(4)的不足近似值形成的数列满足柯西条件(因为当m,n>N时,但其极限是而不是有理数,于是这个满足柯西条件的数列在有理数集内没有极限.因此,柯西收敛准则在有理数集内不成立.5.设问(1)H能否覆盖(0,1)?(2)能否从H中选出有限个开区间覆盖(i)解:(1)有有所以即故H 能覆盖(0,1).(2)设从H 中选出m 个开区间,它们是令则并集的下确界为于是的子集,实际上故不能从H 中选出有限个开区间来覆盖从H 中选出98个开区间因为所以这些开区间覆盖了故可以从H 中选出有限个开区间覆盖6.证明:闭区间的全体聚点的集合是本身.证明:设的全体聚点的集合是M .设不妨设则由实数集的稠密性知,集合中有无穷多个实数,故a 是的一个聚点.同理,b也是的一个聚点.设不妨设则故x 0的任意邻域内都含有中的无穷多个点,故x 0为的一个聚点.总之设令则即不是的聚点,即故M.综上所述,M=,即闭区间的全体聚点的集合是本身.7.设为单调数列.证明:若存在聚点,则必是惟一的,且为的确界.证明:设是一个单调递增数列.假设ξ,η是它的两个不相等的聚点,不妨设ξ<η.令δ=η-ξ,则δ>0,按聚点的定义,中含有无穷多个中的点,设则当n>n1时,x n 于是中只能含有{x n }中有穷多个点,这与ξ是聚点矛盾.因此,若存在聚点,则必是惟一的.假设无界,则即任给M>0,存在正整数N,当n>N时,x n>M,于是小于M 的只有有限项,因此不可能存在聚点,这与已知题设矛盾,故有界.对任给的ε>0,由聚点定义,必存在x N,使按上确界定义知综上,若有聚点,必惟一,恰为的确界.8.试用有限覆盖定理证明聚点定理.证明:设S 是实轴上的一个有界无限点集,并且假设S没有聚点,则任意都不是S 的聚点,于是存在正数使得中只含有S中有穷多个点.而开区间集是的一个开覆盖.由有限覆盖定理知,存在的一个有限覆盖,设为它们也是S的一个覆盖.因为每一个中只含有S 中有穷多个点,故S 是一个有限点集.这与题设矛盾.故实轴上的任一有界无限点集S至少有一个聚点.9.试用聚点定理证明柯西收敛准则.证明:设收敛,令于是,对任给的ε>0,存在正整数N,使得当n,m >N时,有于是设数列满足柯西收敛准则的条件.如果集合只含有有限多个不同的实数,则从某一项起这个数列的项为常数,否则柯西条件不会成立.此时,这个常数就是数列的极限.如果集合含有无限多个不同的实数,则由柯西条件容易得知它是有界的.于是由聚点定理,集合至少有一个聚点假如有两个不等的聚点ξ,η,不妨设η>ξ,令δ=η-ξ,则与都含有集合中无限多个点.这与取,存在正整数N ,当n ,m >N 时,有矛盾.故的聚点是惟一的,记之为ξ.对于任意ε>0,存在N ,使得当n ,m >N 时,又因为ξ是的聚点,所以存在n0>N ,使得因而,当n >N 时,故数列收敛于ξ.10.用有限覆盖定理证明根的存在性定理.证明:根的存在定理:若函数f 在闭区间上连续,且f (a )与f (b )异号,则至少存在一点,使得f (x 0)=0.假设方程f (x )=0在(a ,b )内无实根,则对每一点有由连续函数的局部保号性知,对每一点存在x 的一个邻域,使得f (x )在内保持与f (x )相同的符号.于是,所有的形成的一个开覆盖.根据有限覆盖定理,从中可以选出有限个开区间来覆盖.把这些开区间的集合记为S ,则点a 属于S 的某个开区间,设为它的右端点x 1+δ1又属于S的另一个开区间,设为以此类推,经过有限次地向右移动,得到开区间,使得δn )这n 个开区间显然就是的一个开覆盖.f (x )在每一个内保持同一个符号.在内f (x )与f (a )具有相同的符号.因为所以f (x )在内也具有f (a )的符号.以此类推,f (b )与f (a )具有相同的符号.这与f (a )与f (b )异号矛盾.故至少存在一点,使得f (x 0)=0.11.用有限覆盖定理证明连续函数的一致连续性定理.证明:一致连续性定理:若函数f 在闭区间上连续,则f 在上一致连续.因为f 在上连续,所以任绐任意ε>0,存在对任意有取.则H 是的无限开覆盖.由有限覆盖定理,从中可以选出有限个开区间来覆盖不妨设选出的这有限个开区间为取对任意不妨设,即当时,由于因此由一致连续定义,f 在上一致连续.§2 上极限和下极限1.求以下数列的上、下极限。

数学分析第四版答案 (3)

数学分析第四版答案简介《数学分析第四版》是一本经典的数学教材,主要介绍了数学分析的基本概念、理论和方法。

本文档旨在提供《数学分析第四版》习题的答案,帮助读者更好地理解和掌握数学分析的知识。

第一章简介1.1 数学分析的基本概念习题答案:1.由已知条件可知,当a=a时,a(a)=a(a)成立。

所以函数a(a)是一个常函数。

2.对于任意实数a和a,有a(a+a)=a(a)+a(a),即函数a(a)满足加法性。

根据题意,我们需要证明a(aa)=a(a)a(a)。

证明:设实数a和a,并令a=a和 $b=\\frac{y}{x}$,根据加法性,我们有:$$ f(a+b) = f(a) + f(b) \\quad \\text{(1)} $$将a=a和 $b=\\frac{y}{x}$ 代入上式,得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(x) +f\\left(\\frac{y}{x}\\right) \\quad \\text{(2)} $$又根据题目条件,我们知道a(aa)=a(a)a(a),将$b=\\frac{y}{x}$ 代入该式,得到:$$ f(xy) = f\\left(x\\cdot\\frac{y}{x}\\right) =f(x)f\\left(\\frac{y}{x}\\right) \\quad \\text{(3)} $$将式 (3) 代入式 (2),得到:$$ f\\left(x + \\frac{y}{x}\\right) = f(xy) \\quad \\text{(4)} $$根据题目条件中的函数性质,我们得到:$$ x+\\frac{y}{x} = xy $$上式可以转化为二次方程的形式,解得:$$ x^2 - xy + \\frac{y}{x} = 0 $$由上式可知,a是方程a2−aa+a=0的一个根。

根据韦达定理,该方程的两个根分别为:$$ x_1 = \\frac{y+\\sqrt{y^2+4}}{2} \\quad \\text{和}\\quad x_2 = \\frac{y-\\sqrt{y^2+4}}{2} $$由于题目中没有限制a的取值范围,所以a可以取任意实数。

数学分析PPT课件第四版华东师大研制--第8章-不定积分(1)可编辑全文


例6 求sec xdx.

(解法一)
sec xdx
cos x
cos2 x
dx
d(sin x)
1 sin2 x
1 ln 1 sin x C. 2 1 sin x
(解法二) sec
xdx
sec x(sec x tan sec x tan x
x)
dx
d(sec x tan x sec F (x)是 f (x) 的一个原函数, 则称 y = F (x) 的图
像是 f (x) 的一条积分曲线.
所有的积分曲线都是
y
y F(x) C
由其中一条积分曲线
y F(x)
沿纵轴方向平移而得 到的.
( x0 , y0 )
O
x
前页 后页 返回
满足条件 F( x0 ) y0 的原函数正是在积分曲线中 通过点( x0 , y0 )的那一条积分曲线. 例如, 质点以匀速 v0 运动时, 其路程函数
法则. 定理 8.3 (不定积分的线性运算法则)
若函数 f 与 g 在区间 I 上都存在原函数, k1, k2为
任意常数, 则 k1 f k2 g 在 I上也存在原函数, 且
( k1 f ( x) k2g( x) )dx k1 f ( x)dx k2 g( x)dx.
例1 p( x) a0 xn a1 xn1 an1x an , 则
s(t) v0 dt v0 t C.
若 t0 时刻质点在 s0 处, 且速度为 v0, 则有 s (t ) v0(t t0 ) s0 .
前页 后页 返回
四、基本积分表
由基本求导公式可得以下基本积分公式:
1. 0dx C.
2. 1dx dx x C. 3. xdx x1 C ( 1, x 0).

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 定积分)【圣才出品】

第9章 定积分§1 定积分概念1.按定积分定义证明:证明:对于[a ,b]的任一分割,任取,f (x )=k 相应的积分和为从而可取δ为任何正数,只要使,就有根据定积分定义有2.通过对积分区间作等分分割,并取适当的点集,把定积分看作是对应的积分和的极限,来计算下列定积分:解:(1)因f (x )=x 3在[0,1]上连续,所以f (x )在[0,1]上可积.对[0,1]进行n 等分,记其分割为,取为区间的右端点,i =1,2,…,n ,得(2)同(1),有(3)由在[a,b]上连续知,f(x)在[a,b]上可积,对[a,b]进行n等分,记其分割为,则,取为区间的右端点,i=1,2,…,n,得(4)同(3),取,得§2 牛顿-莱布尼茨公式1.计算下列定积分:解:(7)先求原函数,再求积分值:2.利用定积分求极限:解:(1)把极限化为某一积分的极限,以便用定积分来计算,为此作如下变形:这是函数在区间[0,1]上的一个积分和的极限.这里所取的是等分分割,,而恒为小区间的右端点,i=1,2,…,n.所以有(2)不难看出,其中的和式是函数在区间[0,1]上的一个积分和.所以有(3)(4)3.证明:若f在[a,b]上可积,F在[a,b]上连续,且除有限个点外有F'(X)=f(x),则有证明:对[a,b]作分割,使其包含等式F'(x)=f(x)不成立的有限个点为部分分点,在每个小区间上对F (x )使用拉格朗日中值定理,则分别存在,使于是因为f 在[a ,b]上可积,所以令,有§3 可积条件1.证明:若T '是T 增加若干个分点后所得的分割,则证明:设T 增加p 个分点得到T ',将p 个新分点同时添加到T ,和逐个添加到T ,都同样得到T ',所以我们只需证p =1的情形.在T 上添加一个新分点,它必落在T 的某一小区间内,而且将分为两个小区间,记作与.但T 的其他小区间(i≠k)仍旧是新分割T 1所属的小区间,因此,比较的各个被加项,它们之间的差别仅仅是前者中的一项换为后者中的两项.又因函数在子区间上的振幅总是小于其在区间上的振幅,即有.故即一般的,对增加一个分点得到,就有这里,故2.证明:若f(x)在[a,b]上可积,[α,β][a,b],则f(x)在[α,β]上也可积.证明:已知f(x)在[a,b]上可积,故任给ε>0,存在对[a,b]的某分割T,使得,在T上增加两个分点α,β,得到一个新的分割T',则由上题结论知分割T'在[α,β]上的部分,构成[α,β]的一个分割,记为T*,则有故由可积准则知,f(x)在[α,β]上可积.3.设f、g均为定义在[a,b]上的有界函数.证明:若仅在[a,b]中有限个点处f(x)≠g(x),则当f在[a,b]上可积时,g在[a,b]上也可积,且证明:设f(x)与g(x)在[a,b]上的值仅在k个点处不同,记,由于f (x )在[a ,b]上可积.存在,使当时,有令,则当时,有当时,,所以上式中至多仅有k项不为0,故这就证明g(x)在[a,b]可积,且。

华东师范大学数学系数学分析第4版上册知识点总结笔记课后答案

第1章实数集与函数1.1复习笔记一、实数实数的性质封闭性、有序性、大小的传递性、阿基米德性、稠密性、与数轴上的点一一对应。

三角不等式二、确界原理设S为非空数集。

若S有上界必有上确界;若S有下界必有下确界。

三、函数概念函数的表示法主要有三种,即解析法(或称公式法)、列表法和图像法。

复合函数设有两函数y=f(u),u∈Du=g(x),x∈E式中的u为中间变量,函数f和g的复合运算也可简单地写作。

反函数设y=f(x),x∈D对于任意的一个y∈f(D),D中存在唯一的x,使得f(x)=y。

则按此对应法则得到的函数称为反函数,记作x=f-1(y),y∈f(D)初等函数图1-1-1四、具有某些特性的函数(见表1-1-1)表1-1-1 具有某些特性的函数1.2课后习题详解§1 实数设a为有理数,x为无理数。

证明:(1)a+x是无理数;(2)当a≠0时,ax是无理数。

证明:(1)用反证法。

假设a+x是有理数,那么(a+x)-a=x也是有理数。

这与x是无理数矛盾。

故a+x是无理数。

(2)用反证法。

假设ax是有理数,因为a是不等于零的有理数,所以ax/a=x是有理数。

这与x是无理数矛盾。

故ax是无理数。

试在数轴上表示出下列不等式的解:(1)x(x2-1)>0;(2)|x-1|<|x-3|;(3)。

解:(1)由原不等式得或不等式组① 的解是x>1,不等式组② 的解是-1<x<0。

故x(x2-1)>0的解集是{-1<x<0或x>1}。

在数轴上表示如图1-2-1所示。

图1-2-1(2)原不等式同解于不等式(x-1)2<(x-3)2。

由此得原不等式的解为x<2。

在数轴上表示如图1- 2-2所示。

图1-2-2(3)原不等式的解x首先必须满足不等式组解得x≥1。

原不等式两边平方得即当x≥1时,不可能成立,故原不等式无解。

设a,b∈R。

证明:若对任何正数ε有|a-b|<ε,则a=b。

证明:用反证法。

假设a≠b,那么a-b≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 不定积分
§1 不定积分概念与基本积分公式
1.验证下列等式,并与(
3)、(
4)两式相比照

1)

2)
(3)式为
(4)式为
解:(1)因为,所以它是对f(x)先求导再积分,等于f(x
)+C,(3)式是对f(x)先积分再求导,则等于
(2)因为,由(1)可知它是对f(x)先微分后积分,则等于f(x)+C;而(4)式是对f(x)先积分后微分,则等于f(x)dx.
2.求一曲线y=f(x),使得在曲线上每一点(x,y)处的切线斜率为2x,且通过点(2,5
).
解:由题意,有f'(x)=2x,即
又由于y=f(x)过点(2,5),即5=4+C,故C=1.因而所求的曲线为y=f(
x)=x2+1.
3.验证是|x|在(-∞,+∞)上的一个原函数.
证明:因为
所以
而当x =0时,有即y'(0)=0.因而
即是在R 上的一个原函
数.4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?
解:设x 0为f (x )在区间I 上的第一类间断点,则分两种情况讨论.
(1)若x 0为可去间断点.
反证法:若f (x )在区间I
上有原函数F (x ),则在
内由拉格朗日中值定理有
,ξ在x 0和x 之间.而这与x 0为可去间断点是矛盾的,故F (x )不存在.
(2)若x 0为跳跃间断点.
反证法:若f
(x )在区间I 上有原函数F (x ),则亦有
成立.而
这与x0为跳跃间断点矛盾,故原函数仍不存在.5.求下列不定积分:
解:
6.求下列不定积分:
解:(1)当x≥0时,当x<0时,
由于在上连续,故其原函数必在连续可微.因此
即,因此所以
(2)当时,
由于在上连续,故其原函数必在上连续可微.因此,
即,因此所以
7.设,求f(x).
解:令,则

8.举例说明含有第二类间断点的函数可能有原函数,也可能没有原函数.
解:
x=0是此函数的第二类间断点,但它有原函数
另外,狄利克雷函数D(x),其定义域R上每一点都是第二类间断点,但D(x)无原函数.
§2 换元积分法与分部积分法
1.应用换元积分法求下列不定积分:。

相关文档
最新文档