华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)
(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
华东师范大学数学系数学分析第4版下册知识点总结笔记课后答案

第12章数项级数12.1复习笔记一、级数的收敛性II级数的走义若S=f如存在极限值s r即HmS r = .S r则级数收敛,S为级数的和。
若{S“}发散,则级数发散。
创重要走理(1)级数收敛的柯西准则工叫收敛mN(NWN+ ),当m>N时以及又寸0p(pWN+ ),都有(2 )如果级数Zu n^£v n都收敛r则对任意常数c , d r级数工(cu n + dv n )也收敛r且》(* +叽)=c》冷加工耳(3)改变级数的有限个项不改变级数的敛散性。
(4 )在收敛级数的项中任意加括号r不改变其收敛性与和。
二、正项级数Q正项级数收敛性的一般判别原则(1)正项级数工%收敛O冥部分和数列{S,J有界。
(2)比较原则设工*和工□是两个正项级数r 3N (NGN* ) r使得对%> N都有u n<v n r则①若8n收敛,则工g也收敛。
②若»1…发散,则工口也发散。
(3 )设& =工*和S"=工V"是两个正项级数.如果则①若0 v 1 v +1级数si S"同敛散。
②若1 = 0且级数S"收敛,级数S,也收敛。
③若1 = + 0C且级数S"发散,级数S也发散。
Q比式判别法和根式判别法(1)比式判别法设工*为正项级数,且存在正整数N()及常数q (0<q<l ),则①若对任意n > N o , SPWu n+1/u n<q ,则工%收敛。
②若对任意n > N o ,都有5+ ]/11診1 ,则》i.发散。
(2 )比式判别法的极限形式若Xw为正项级数,且,则①若q V 1 ,则工Un收敛。
②若q > 1或q =+oo,则工片发散。
③若q = 1 ,则无法判断工叫的发散性。
(3)根式判别法设工g为正项级数,且存在正整数N()及正常数1 ,①若对任意n > N(”都有阪5*1 ,则工%收敛。
华东师范大学数学系《数学分析》(第4版)(下册)章节题库-含参量积分(圣才出品)

第19章含参量积分§1含参量正常积分1.设(这个函数在x=y时不连续),试证由含参量积分所确定的函数在上连续,并作函数F(y)的图像.解:由于因此当y<0时时,f(x,y)=﹣1,当时,所以它在上连续,F(y)的图像见图19-1图19-12.求下列极限:解:(1)在区域上连续.因此(2)在区域上连续,因此3.设求F'(x).解:存在k>0,使二元函数与在矩形区域上连续,x与x2均为可微函数.则函数在[﹣k,k]上可微,且4.应用对参量的微分法,求下列积分:解:(1)若,所以同理若,设则又因所以因而(2)设当|a|<1时因而为连续函数,且具有连续导数,所以故当|a|<1时,I(a)=C(常数),又I(0)=0,从而I(a)=0.当|a|>1时,令,则|b|<1,有I(b)=0,于是当|a|=1时,同理可得I(﹣1)=0.综上所述得5.应用积分号下的积分法,求下列积分:解:(1)记因为故令贝g(x)在[0,1]上连续,于是有记则f(x,y)在上连续,所以作代换x=e﹣t后得到因此(2)类似于(1)题6.试求累次积分与并指出它们为什么与定理19.6的结果不符.解:由于故有因为在点(0,0)不连续,所以与定理19.6的结果不符.7.研究函数的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:由于f(x)在[0,1]上是正的连续函数,故存在正数m,使得,f(x)≥m>0,x∈[0,1].当y>0时,当y<0时,因此所以F(y)在y=0处不连续,当时在上连续,所以当y≠0时,函数F(y)连续.8.设函数f(x)在闭区间[a,A]上连续,证明:证明:因为当h→0时.所以9.设其中,f(z)为可微函数,求F xy(x,y).解:10.设,其中0<k<1(这两个积分称为完。
华东师范大学数学系《数学分析》(第4版)(下册)-第十五章至第十七章(圣才出品)

第15章傅里叶级数15.1复习笔记一、傅里叶级数1.三角级数·正交函数系(1)称(15-1)是由三角函数列(也称为三角函数系)1,cos x,sin x,cos2x,sin2x,…,cos nx.sin nx,…(15-2)所产生的一般形式的三角级数.(2)若级数收敛,则级数(15-1)在整个数轴上绝对收敛且一致收敛.(3)若两个函数与在[a,b]上可积,且则称函数与在[a,b]上是正交的.由此,三角函数系(15-2)在[-π,π]上具有正交性,或称(15-2)是正交函数系.2.以2π为周期的函数的傅里叶级数(1)若在整个数轴上(15-3)且等式右边级数一致收敛.则有如下关系式:(15-4)(2)若f是以2π为周期且在[-π,π]上可积的函数,则按公式(15-4)计算出的a n 和b n称为函数f(关于三角函数系)的傅里叶系数.以f的傅里叶系数为系数的三角级数称为f(关于三角函数系)的傅里叶级数,记作(15-5)3.收敛定理(1)傅里叶级数收敛定理若以2π为周期的函数f在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(4)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.(2)按段光滑若f的导函数在[a,b]上连续,则称f在[a,b]上光滑.但若定义在[a,b]上除了至多有有限个第一类间断点的函数f的导函数在[a,b]上除了至多有限个点外都存在且连续.在这有限个点上导函数f′的左、右极限存在,则称f在[a,b]上按段光滑.根据上述定义,若函数f在[a,b]上按段光滑,则有如下重要性质:①f在[a,b]上可积;②在[a,b]上每一点都存在f(x±0),且有③补充定义f′在[a,b]上那些至多有限个不存在点上的值后(仍记为f′),f′在[a,b]上可积.(3)若f是以2π为周期的连续函数,且在[-π,π]上按段光滑,则f的傅里叶级数在(-∞,+∞)上收敛于f.二、以2l为周期的函数的展开式1.以2l为周期的函数的傅里叶级数设f是以2l为周期的函数,则F的傅里叶级数展开式是(15-6)与(15-7)这里(15-7)式是以2l为周期的函数f的傅里叶系数,(15-6)式是f的傅里叶级数.若函数f在[-l,l]上按段光滑,则同样可由收敛定理知道(15-8)2.偶函数与奇函数的傅里叶级数(1)设f是以2l为周期的偶函数,或是定义在[-l,l]上的偶函数,则在[-l,l]上,f (x)cos nx是偶函数,f(x)sin nx是奇函数.因此,f的傅里叶系数(15-7)是(15-9)于是f的傅里叶级数只剩有余弦函数的项,即(15-10)(15-10)式右边的级数称为余弦级数.(2)同理,若f是以2l为周期的奇函数,或是定义在[-l,l]上的奇函数,则可推得(15-11)所以当f为奇函数时,它的傅里叶级数只含有正弦函数的项,即(15-12)(12)式右边的级数称为正弦级数.三、收敛定理的证明1.预备定理1(贝塞尔(Bessel)不等式)若函数f在[-π,π]上可积,则(15-13)其中a n,b n为f的傅里叶系数,(15-13)式称为贝塞尔不等式.2.推论①黎曼-勒贝格定理若f为可积函数,则(15-14)②若f为可积函数,则(15-15)3.预备定理2若f(x)是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和S n (x)可写成当t=0时,被积函数中的不定式由极限来确定.4.收敛定理若以2π为周期的函数,在[-π,π]上按段光滑,则在每一点x∈[-π,π],f的傅里叶级数(15-5式)收敛于f在点x的左、右极限的算术平均值,即其中a n,b n为f的傅里叶系数.15.2课后习题详解§1傅里叶级数1.在指定区间内把下列函数展开成傅里叶级数:解:(1)(i)f(x)及其周期延拓的图像如图15-1所示,图15-1显然f(x)在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,因为。
华东师范大学数学系《数学分析》(第4版)(下册)-第十八章至第二十章(圣才出品)

(18-2)
则可使上述切平面存在,并满足与 z=0 相交成直线的要求.
图 18-1
由此可见,条件(18-2)对于隐函数的存在性是很重要的.
3.隐函数定理
(1)隐函数存在惟一性定理
若函数 F(x,y)满足下列条件:
①F 在以
为内点的某一区域
上连续;
②
(通常称为初始条件);
③F 在 D 内存在连续的偏导数
与之相对应,由此所产生的新映射称为映射 T 的逆映射(逆变换),记作 ,即
或 亦即存在定义在 B′上的一个函数组
把它代入(18-4)而成为恒等式:
这时又称函数组(18-5)是函数组(18-4)的反函数组.
(2)反函数组定理
设函数组(18-4)及其一阶偏导数在某区域
上连续,点
点,且
(18-5) (18-6) 是 D 的内
则在点
的某一邻域
上存在惟一的一组反函数(18-5),使得
6 / 112
圣才电子书 十万种考研考证电子书、题库视频学习平台
且当
时,有
以及恒等式(18-6)此外,反函数组(18-5)在
上存在连续的一阶偏导数,且
三、几何应用 1.平面曲线的切线与法线 设平面曲线由方程
(18-7)
,在
上,方程组(18-3)
惟一地确定了定义在点
的某一(二维空间)邻域
上的两个二元隐函
数
使得
且当
时,
(2) (3)
在
上连续;
在
上有一阶连续偏导数,且
3.反函数组与坐标变换 (1)设函数组
(18-4)
是定义在 xy 平面点集 平面上惟一的一点
上的两个函数.对每一点
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令
则
故
4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书
体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面
有
2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,
则
D 为 S 在 xOy 面投影
所以质心坐标为
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-傅里叶级数(圣才出品)

理 13.14(逐项求导)知
g(x),所以级数
的和函数 S(x)
有连续的导函数 g(x).
§2 以 2l 为周期的函数的展开式
1.求下列周期函数的傅里叶级数展开式: (周期π); (周期 1);
解:(1)将 f(x)进行周期延拓,又因 f(x)在(0,2π)内按段光滑,故由收敛定 理,f(x)可展开为傅里叶级数,
所以在区间(0,2π)内,有
7 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)在[-π,π]上 所以
所以在区间(-π,π)内 在 x=π或 x=-π时,上式右端收敛于 所以在闭区间[-π,π]上
(3)
8 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台所以,在(0,2π源自内所以,在(-π,π)内 故
9 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
故 所以,在(-π,π)内
故 从而在区间(-π,π)内
及其周期延拓的图像如图 15-3 所示,
显见 因为
图 15-3 在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,
所以在(-π,π)内, (ii)函数 f(x)及其周期延拓的图像如图 15-4 所示,
2 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
所以
时
当 x=0 时,上式的右端收敛到 0.
(1)当
时,由于
,因此
(2)因为 所以
(3)
时,因
,故
所以
4.设函数 f(x)满足条件:f(x+π)=-f(x),问此函数在(-π,π)上的傅里叶 级数具有什么特性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割
,
必在某个小区域 上无界.
当 i≠k 时,任取
令
由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割
当
时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而
若
=0,则由上式
若
则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书
为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
由于
因此
所以
,同理可证
得
到
7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固
3.计算下列二重积分:
图 21-8
解:(1)D 如图 21-9,
(2) (3)D 如图 21-10,
图 21-9
7 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
(4)D 如图 21-11,
图 21-10
图 21-11
4.求由坐标平面及 x=2,y=3,x+y+z=4 所围的角柱体的体积. 解:立体 V(如图 21-12)在 xOy 面上的投射区域 D-即积分区域为图 21-12 中阴影 部分,所以 V 的体积
累次积分不存在.
证明:因为对任何正数 只有有限个点使
因而存在一个分割 T,使得
所以二重积分存在且等于零.
当 y 取无理数时,
所以
然而,当 yΒιβλιοθήκη 取有理数时,在 x 为无理数处 f(x,y)=0,在 x 为有理数处
因此函数 f(x,y)在任何区间上的振幅总大于 即函数 f(x,y)在
上关于 x 的
积分不存在.显然就不存在先 x 后 y 的累次积分.
由介值性定理,存在
十万种考研考证电子书、题库视频学习平台
,使得
即
8.应用中值定理估计积分
解:由于
知:存在
使得
从而
即
的值. 上连续,据中值定理
§2 直角坐标系下二重积分的计算
1.设 f(x,y)在区域 D 上连续,试将二重积分
化为不同顺序的累次积分:
(1)D 由不等式
所 确 定 的 区 域 ;( 2 ) D 由 不 等 式
即
再由定理 16.10 知,存在
使得
4.若 f(x,y)为有界闭区域 D 上的非负连续函数,且在 D 上不恒为零,则
证明:由题设存在 使得对一切 有
由连续函数的局部保号性知:
0 且连续,所以 故
5.若 f(x,y)在有界闭区域 D 上连续,且在 D 内任一子区域
上有
2 / 48
圣才电子书
这与①式矛盾,因此 f 在 D 上有界.
3.证明二重积分中值定理(性质 7). 证明:性质 7(中值定理)若 f 为有界闭域 D 上的连续函数,则存在
使得
因为 f 在 D 上连续,所以 f 在 D 上一定存在最大值 M 与最小值 m,对 D 中一切点有 m≤f≤M,由性质 4 知:
所确定的区域;(3)D 由不等式
所确定的区域;
(4)
解:(1)积分区域 D 如图 21-1.
4 / 48
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 21-1
(2)积分区域 D 如图 21-2.
图 21-2 (3)积分区域 D 如图 21-3.
图 21-3 (4)积分区域 D 如图 21-4.
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 21 章 重积分
§1 二重积分的概念
1.把重积分 用直线网
作为其节点. 解:
作为积分和的极限,计算这个积分值,其中 D=[0,1]×[0,1],并 分割这个正方形为许多小正方形,每一小正方形取其右顶点
2.证明:若函数 f(x,y)在有界闭区域 D 上可积,则 f(x,y)在 D 上有界.
图 21-12
8 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
5.设 f(x)在[a,b]上连续,证明不等式 仅在 f(x)为常量函数时成立.
证明:
其中等号
其中
若等号成立,则对任何(x,y)∈D,有
即
所以 f(x)=f(y),即 f(x)为常量函数.
6.设平面区域 D 在 x 轴和 y 轴的投影长度分别为 和 ,D 的面积为 任一点,证明
证明:假设存在
十万种考研考证电子书、题库视频学习平台
使得
不妨设
由连续函数的保号性知:
存在
使得对一切
则
,与已知
矛盾.故必在
D 上 f(x,y)=0.
6.设 D=[0,1]×[0,1],证明函数
在 D 上不可积. 证明:对 D 上任意分割
则
若在每个 取点
使 皆为有理数,
若在每个 取点 限不存在(当
,使
为非有理点,则
定的 y,若 y 为无理数,则函数 f(x,y)恒为零.若 y 为有理数,则函数仅有有限个异于
0 的值,因此
所以累次积分存在且
同理,累次积分
§3 格林公式·曲线积分与路线的无关性
图 21-4
5 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
2.在下列积分中改变累次积分的顺序:
解:(1)
(如图 21-5)
(2)
图 21-5 (如图 21-6)
(3)
图 21-6 (如图 21-7)
图 21-7
6 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台